делены параметры системы автоматического регулирования скорости.

На основании функциональной схемы была разработана математическая и имитационная модели электропривода. Полученные графики динамических характеристик электропривода показали, что поддержание постоянства скорости двигателя а, следовательно, и натяжения материала при изменении статического момента и момента инерции во времени обеспечивается на заданном уровне.

УДК 621.3

Разработка функциональной схемы ЧРЭП центробежного насоса со стабилизацией напора

Масюкевич Е.В., Холупко О.В., Павлович С.Н. Белорусский национальный технический университет

Применение частотно-регулируемого электропривода (ЧРЭП) центробежного насоса позволяет существенно сократить расход электроэнергии. Примерами использования такого электропривода являются насосные станции водоснабжения производственных процессов и жилых домов, где при переменном расходе воды требуется поддерживать постоянное давление (напор) в сети водоснабжения на определенном (чаще всего номинальном) уровне, изменяя соответствующим образом угловую скорость ω насоса путем изменения частоты f_1 питающего асинхронный двигатель напряжения. При этом необходимо использовать экономичный закон частотного управления двигателем и обеспечивать его оптимальный пуск. Оптимальным считается такой пуск, при котором скорость ω в переходном процессе изменяется по линейному закону, что возможно при постоянном динамическом моменте $\mu_{\text{двя}}$ при пуске.

Статический момент μ_c насоса изменяется с изменением скорости ω . Значит, при пуске надо так управлять электродвигателем насоса, чтобы его электромагнитный момент μ был равен сумме переменного статического μ_c и постоянного динамического $\mu_{\text{дни}}$ моментов:

$$\mu = \mu_c + \mu_{\text{дин}}$$
.

Итак, для управления частотно-регулируемого центробежного насоса следует использовать экономичный закон

$$e_n = \alpha(t)\sqrt{(\mu_c + \mu_{mon})}, \qquad (1)$$

где $\alpha(t)=f_1(t)/f_{1 \text{ ном}}=t/t_0$; t_0 – заданное время линейного изменения частоты при пуске; e_n – относительное значение ЭДС при пуске; t – текущее значение времени.

$$\mu_c = \mu_0 \alpha^2 + (1 - \mu_0) \alpha \sqrt{((\alpha^2 - h_c)/(1 - h_c))},$$
 (2)

где μ_c - статический момент насоса в сети с противодавлением h_c .

В докладе приведена функциональная схема асинхронного ЧРЭП насоса с использованием зависимостей (1) и (2) по оптимальному пуску и экономичному закону регулирования его скорости.

УДК 621.3

Элементы защиты от перенапряжений в электрических цепях

Соколик И.С., Васильев Д.С. Белорусский национальный технический университет

Основными элементами активной защиты от перенапряжений в электрических цепях являются варисторы, разрядники, TVSтиристоры и TVS-диоды. Варисторы обладают высокими значениями допустимого тока, широким диапазоном рабочих токов и напряжений, имеют низкую стоимость. Их недостатки: ограниченный срок службы, высокие напряжения ограничения, большая собственная емкость, сложность монтажа на плате. Область применения: вторичная защита, защита силовых цепей и электронных компонентов печатной платы, первая и вторая ступени комбинированной защиты. Разрядники характеризуются высокими допустимыми токами, низкой емкостью и высоким сопротивлением изоляции. К их недостаткам можно отнести высокое напряжение возникновения разряда, малый срок службы, низкую надежность, значительное время срабатывания, высокую цену. Они могут применяться в качестве первичной защиты силовых цепей, а также первой ступени комбинированной защиты.