ским данным. Автором было проведено также математическое моделирование поведения электромотора на абсолютно гладкой поверхности. Моделирование основывалось на теореме о движении центра масс механической системы. Для реализации полученной модели была написана уникальная программа, позволяющая воспроизвести поведение электродвигателя, рассчитать параметры движения и получить графики перемещения.

УДК 629.113-585

Оптимизация конструктивных параметров одноступенчатого редуктора автомобиля

Петрашкевич А.А., Марцинкевич Д.В., Марцинкевич В.С. Белорусский национальный технический университет

В настоящее время перед автомобилестроением стоит задача конструирования автомобилей, имеющих минимальную материалоемкость. Выбору конструктивных параметров автомобильного редуктора, удовлетворяющих выше сформулированной задаче, посвящена работа.

Оптимальным считается такое решение, которое при одних и тех же материалах и технологических условиях обеспечивает наименьшую материалоемкость и заданную долговечность.

Формулируются критерии оптимальности и технические ограничения для редуктора. Исходя из условий размещения карданных валов, задается межосевое расстояние между входным и выходным валами редуктора. Определяются модули зубьев зубчатых колес, межосевые расстояния a_{w_i} ($i=\overline{1,3}$), углы между прямыми, соединяющими центры зубчатых колес зубчатой пары, ширины зубчатых венцов, углы профиля и наклона линии зубьев, коэффициенты смещения исходного контура x_1 и x_2 .

Первый критерий – минимальный суммарный объем зубчатых колес $V_{\Sigma} = f(a_{w1}, a_{w2}, a_{w3}, u, b) \rightarrow \min$.

Второй критерий – максимальный нормальный модуль зубчатых колес.

Третий критерий — максимальный угол зацепления зубчатой пары $\alpha_w = \text{inv } \alpha + (2 \lg \alpha / (z_1 + z_2))(x_1 + x_2) \rightarrow \text{max}$.

Четвертый критерий – форма корпуса редуктора, имеющая минимальную материалоемкость.

Решение вышеуказанной задачи осуществляется с помощью метода исследования пространства параметров. Предлагаемая методика может быть применена в системе автоматизированного проектирования редукторных механизмов автомобилей.

УДК 512.542

Подгруппы симметрических групп

Рыдзевский Г.Р., Смычков Н.Д., Метельский А.В. Белорусский национальный технический университет

Множество перестановок n-й степени образует по умножению конечную группу порядка n!. Эта группа называется симметрической группой n-й степени и обозначается S_n .

Симметрическая группа S_n имеет много подгрупп, причем их число очень быстро возрастает с увеличением числа n. Изучение подгрупп группы S_n актуально ввиду теоремы Кэли, согласно которой любая конечная группа изоморфна некоторой подгруппе группы перестановок множества элементов данной группы. Полностью описать все подгруппы группы S_n удается лишь для небольших n, а для больших n изучаются общие свойства подгрупп.

Рассмотрены следующие задачи.

Задача 1. Пусть H – множество перестановок

$$E = \begin{pmatrix} 1234 \\ 1234 \end{pmatrix}, \ \alpha = \begin{pmatrix} 1234 \\ 2143 \end{pmatrix}, \ \beta = \begin{pmatrix} 1234 \\ 3412 \end{pmatrix}, \ \gamma = \begin{pmatrix} 1234 \\ 4321 \end{pmatrix}.$$

Проверить, является ли H подгруппой группы S_4 .

Операция на множестве H называется коммутативной, если для любых двух элементов h_1 и h_2 из H выполняется условие: $h_1*h_2=h_2*h_1$. Перестановки α и β коммутируют, если $\alpha*\beta=\beta*\alpha$. Коммутативной подгруппой называется подгруппа с коммутативной операцией. При $n \geq 3$ симметрическая группа S_n некоммутативна.

Задача 2. Доказать, что подмножество