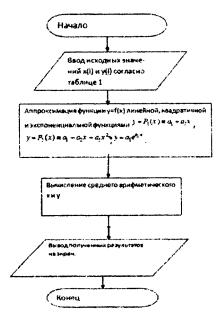
основного такта может определяться с учетом реальной длины и состави очереди. Максимальная длительность основного такта может зависеть от времени ожидания на конкурирующих направлениях. Экипажное время может зависеть от интенсивностей во всех направлениях и текущего времени фазы в цикле.

Для реализации алгоритма и моделирования были выбраны линейные функции. Минимальная длительность зависит от интенсивности в направлении разрешающего сигнала, но не менее некоторого базового значения, определённого из соображений безопасности. Максимальная длительность определяется: $T_{\text{max}} = 1,2$ T_z . Где T_z длительность разрешающего сигнала, рассчитанного по формуле Вебстера для входных параметров интенсивностей N_1 , N_2 . Экипажное время изменяется во время фазы, этот параметр убывает со скоростью, зависящей от отношения интенсивностей конкурирующих направлений и времени ожидания транспортных средств на перекрестке.

В Таблице 1 сравниваются значения среднего времени пребывания на перекрестке по очередям. Среднее значение преимущества модифицированного адаптивного алгоритма 10 %. Видно, что модифицированный алгоритм имеет преимущества и исправляет некоторые недостатки метода поиска разрывов в транспортных потоках.

Таблица 1

Очередь	Среднее время пребывания в очереди, с		
	Адаптивный алгоритм поиска разрывов в ТП	Модифицированный алгоритм	Отношение между очередями, %
Очередь 1	13,449	12,247	8,93746747
Очередь 2	14,476	12,615	12,85576126
Очередь 3	12,270	11,592	5,525672372
Очередь 4	14,587	12,789	12,32604374


УДК 519.654

Метод наименьших квадратов

Красовский С.П. Белорусский национальный технический университет

Целью было показать на примере удобство использование метода, в качестве получения функции отклика. (Руководитель – Мочалов В.В.)

Задача метода наименьших квадратов состоит в выборе вектора, минимизирующего ошибку [2].

был Метол реализован языке программирования Pascal. Разработанный алгоритм, положен в основу программы, которой (в качестве примера) была получена функция зависимости аварийности, от года. С помощью полученной функции, можно сделать прогноз аварийности на ближайшие годы, что может использоваться страховыми компаниями, при формировании цены страховых взносов.

Ссставленный мною алгоритм: Проверка правильности программы:

Проверка происходит по критериям Стьюдента, Фициера. Параметром является коэффициент корреляции, который

меньше 1, причем чем ближе к 1, то зависимость более явна.

Наиболее приближенной является логарифмическая зависимость.

Полученная функция: F(x) = 12954 Ln(x) - 50850.

Литература

- Вычислительная техника и программирование / под ред. А.В. Петрова. М.: Высшая школа, 1991.
- ?. http://www.machinelearning.ru интернет-ресурс, на котором описана плача и сущность мнк.

УЛК 656

Конвейер на магнитной подушке

Садовская Ю.О. Белорусский национальный технический университет

В настоящее время при разработке месторождений полезных ископаемых в мировой практике наблюдается расширение области использования конвейерного транспорта как наиболее эффективного по сравнению с авномобильным и железнодорожным транспортом. (Руководитель работ – Кустенко А.А.),