УДК 622.1

МУЛЬДА СДВИЖЕНИЯ ПРИ ОТРАБОТКЕ ЛАВ ПО ДИАГОНАЛЬНЫМ К ПРОСТИРАНИЮ ПЛАСТА НАПРАВЛЕНИЯМ Мухина А.С., Колесник Н А., Козловский Г.И.

Донецкий национальный технический университет, г. Донецк, Украина

Рассчитаны и построены границы мульды сдвижения на земной поверхности лав, отрабатываемых по диагональным к простиранию пласта направлениям с использованием компьютерных программ "Подработка", Surfer, AutoCAD.

Определение границ влияния очистных работ на земную поверхность является одним из главных исходных факторов при прогнозе деформаций земной поверхности и проектировании мер охраны подрабатываемых объектов.

«Правилами подработки ...» [1, 2] предусмотрено определение границ мульды графически или аналитически на разрезах вкрест и по простиранию с использованием граничных углов $\gamma_0, \beta_0, \delta_0$ в коренных породах и граничного угла φ_0 в наносах. При этом фактический контур выемки угольного пласта заменяется равновеликим по площади прямоугольником со сторонами параллельными направлению простирания и падения пласта.

Однако нередко лавы отрабатываются по диагональным к простиранию пласта направлениям (под углом ϵ к простиранию пласта) и тогда мульда сдвижения имеет вид, представленный на рис. 1 с главными сечениями 1-2 и 3-4, соответственно перпендикулярным и параллельным линии подвигания лавы. В этом случае границы мульды должны определяться с использованием граничных углов в коренных породах γ_0^s , β_0^n , δ_0^n , δ_0^s в принятых нами обозначениях.

Для установления границ влияния на земную поверхность лав, отрабатываемых по диагональным к простиранию направлениям, нами, с использованием компьютерных программ "Подработка", Surfer, AutoCAD рассчитаны и построены границы мульды при замене контура I-II-III-IV выемки пласта длинными и короткими лавами по простиранию и вкрест простирания пласта (рис. 2).

Пример полученных результатов представлен на рис. 3.

Установлено:

- 1. На участках сторон контура выемки пласта границы мульды с уменьшением длин заменяемых лав приближаются к прямолинейным и имеют форму прямой линии под некоторым углом ф к линии контура выемки пласта.
- 2. Граница мульды при замене контура I-II-III-IV выемки пласта лавами по простиранию и вкрест простиранию пласта не совпадают между собой.

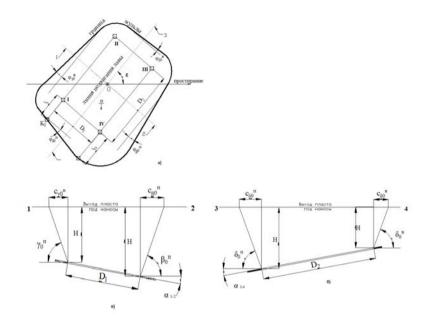


Рис. 4. Общий вид и главные сечения мульды сдвижения при отработке лавы в диагональном (под углом ε) к простиранию пласта направлении: I-II-III-IV – контур выемки угольного пласта; 1-2, 3-4 – главные сечения мульды; $\varphi_{\gamma_0}, \varphi_{\beta_0}, \varphi_{\delta_0}^{}, \varphi_{\delta_0}^{} - \text{углы непараллельности границ мульды к границам выемки угольного пласта: со стороны восстания и падения пласта в сечении 1-2, со стороны восстания и падения пласта в сечении 3-4; <math display="block">\gamma_0^s, \beta_0^n, \delta_0^n, \delta_0^s - \text{граничные углы в главных сечениях мульды.}$

С учетом сказанного нами дано аналитическое определение граничных углов γ_0^s , β_0^n , δ_0^n , δ_0^s в коренных породах при отработке лав по диагональным к простиранию направлениям. Схема и методика расчетов для определения граничного угла γ_0^s (в сечении 1-2 со стороны восстания пласта) представлены на рис. 4 и в таблице 1.

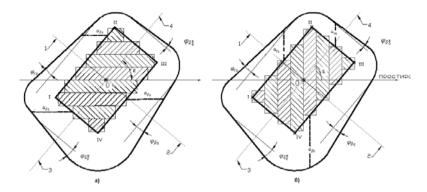


Рис. 2. Замена контура выемки пласта короткими лавами:

- а) лавами, отрабатываемыми по простиранию пласта;
- б) лавами, отрабатываемыми вкрест простирания пласта.
 I-II-III-IV контур выемки угольного пласта;

 φ_{γ_0} , φ_{β_0} , φ_{δ_0} , φ_{δ_0} , φ_{δ_0} – углы непараллельности границ мульды к границам выемки угольного пласта;

 a_{δ_0} , a_{γ_0} — расстояние от границ коротких лав до границ мульды ${
m c} \ {
m ucnohsobanuem} \ {
m rpahu}$ чных углов δ_0 , γ_0 .

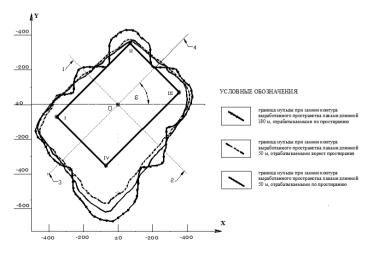


Рис. 3. Границы мульды при замене контура I-II-III-IV выемки пласта лавами вкрест и по простиранию при угле падения $\alpha=20^{\circ}$.

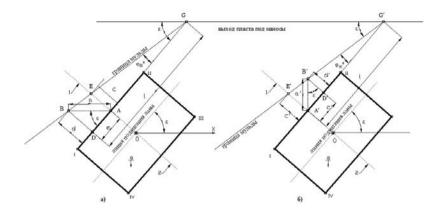


Рис. 5 - Схемы к определению граничного угла γ_0^s (со стороны восстания пласта) в сечении 1-2.

- a) с использованием граничного угла δ_0 ;
- б) с использованием граничного угла γ_0 .

На рис. 4 сторона I-II контура выемки пласта и границы мульды продлены до пересечения в точке G под углом $\varphi_{\gamma_0}^{ }, \varphi_{\delta_0}^{ }$ на линии выхода пласта под наносы, что равнозначно продлению выемки пласта до выхода его под наносы (ε – острый угол между линией подвигания лавы и линией простирания пласта).

В таблице 1 получены две формулы для определения значений граничного угла γ_0^e и следовательно необходимо использовать их весовое значение. Анализируя вид формул и рис. 3 следует за вес $\gamma_{0\delta_0}^e$ принять $\sin \varepsilon$, а за вес $\gamma_{0\gamma_0}^e$ - $\cos \varepsilon$. В этом случае при $\varepsilon \geq 0^\circ$ основное влияние оказывает граничный угол δ_0 ; при $\varepsilon \geq 90^\circ$ основное влияние оказывает граничный угол γ_0 ; при $\varepsilon \geq 45^\circ$ обеспечивается равное влияние граничных уголов δ_0 и δ_0 .

Таблица 3 - Определение граничного угла γ_0^e в коренных породах при отработке лавы по диагональному к простиранию направлению (под углом ε к простиранию пласта).

С использованием граничного угла	С использованием граничного угла
δ_0 (при замене контура выемки	γ_0 (при замене контура выемки
пласта короткими лавами по прости-	пласта короткими лавами вкрест
ранию).	простирания).
Схема к расчету рис. 4а.	Схема к расчету рис. 4 б.
1	2
$tg\alpha_{GA} = tg\alpha \cdot \sin \varepsilon$	
$H_A = l \cdot tg\alpha \cdot \sin \varepsilon$	
$a = \frac{H_A}{tg\delta_0} = \frac{l \cdot tg\alpha \cdot \sin \varepsilon}{tg\delta_0}$	$a' = \frac{H_A}{1 - \epsilon} = \frac{l \cdot tg\alpha \cdot \sin \varepsilon}{1 - \epsilon}$
$tg\delta_0 \qquad tg\delta_0$	$a' = \frac{H_A}{tg\gamma_0} = \frac{l \cdot tg\alpha \cdot \sin \varepsilon}{tg\gamma_0}$
$d = \frac{l \cdot tg\alpha \cdot \sin^2 \varepsilon}{1 \cdot tg\alpha \cdot \sin^2 \varepsilon}$	$d' = \frac{l \cdot tg\alpha \cdot \sin \varepsilon \cdot \cos \varepsilon}{l}$
$d = \frac{l \cdot tg\alpha \cdot \sin^2 \varepsilon}{tg\delta_0}$	$tg\gamma_0$
$e = \frac{l \cdot tg\alpha \cdot \sin\varepsilon \cdot \cos\varepsilon}{l}$	$l \cdot tg\alpha \cdot \sin^2 \varepsilon$
$tg\delta_0$	$e' = \frac{l \cdot tg\alpha \cdot \sin^2 \varepsilon}{tg\gamma_0}$
$tg\varphi_{\delta_0} = \frac{d}{l+e} = \frac{tg\alpha \cdot \sin^2 \varepsilon}{tg\delta_0 + tg\alpha \cdot \sin \varepsilon \cdot \cos \varepsilon}$	$tg\varphi_{\gamma_0} = \frac{d'}{l - e'} = \frac{tg\alpha \cdot \sin\varepsilon \cdot \cos\varepsilon}{tg\gamma_0 - tg\alpha \cdot \sin^2\varepsilon}$
$l + e tg \delta_0 + tg \alpha \cdot \sin \varepsilon \cdot \cos \varepsilon$	$l-e lg\gamma_0 - lg\alpha \cdot \sin \varepsilon$
$c = l \cdot tg \varphi_{\delta_0}$	$c' = l \cdot tg\varphi_{\gamma_0}$
$tg\gamma_{0_{\delta_0}}^{\mathrm{B}} = \frac{H_A}{c} = \frac{tg\alpha \cdot \sin \varepsilon}{tg\varphi_{\delta_0}}$	$tg\gamma_{0_{\gamma_0}}^{\scriptscriptstyle B} = \frac{H_A}{c'} = \frac{tg\alpha \cdot \sin\varepsilon}{tg\varphi_{\gamma_0}}$
$tg\gamma_{0_{\delta_0}}^{\mathrm{B}} = \frac{tg\delta_0 + tg\alpha \cdot \sin\varepsilon \cdot \cos\varepsilon}{\sin\varepsilon}$	$tg\gamma_{0_{\gamma_0}}^{\rm B} = \frac{tg\gamma + tg\alpha \cdot \sin^2 \varepsilon}{\cos \varepsilon}$
51116	COSE

С учетом сказанного, окончательно получаем средневзвешенное значение:

$$tg\gamma_0^s = \frac{\sin\varepsilon(tg\delta_0 + tg\alpha\cdot\sin\varepsilon\cdot\cos\varepsilon)}{\sin\varepsilon(\sin\varepsilon + \cos\varepsilon)} + \frac{\cos\varepsilon(tg\gamma_0 - tg\alpha\cdot\sin^2\varepsilon)}{\cos\varepsilon(\sin\varepsilon + \cos\varepsilon)}$$
(1)

Аналогично получены формулы для остальных граничных углов в коренных породах:

$$tg\beta_0^n = \frac{\sin\varepsilon(tg\delta_0 - tg\alpha \cdot \sin\varepsilon \cdot \cos\varepsilon)}{\sin\varepsilon(\sin\varepsilon + \cos\varepsilon)} + \frac{\cos\varepsilon(tg\beta_0 + tg\alpha \cdot \sin^2\varepsilon)}{\cos\varepsilon(\sin\varepsilon + \cos\varepsilon)}$$
(2)

$$tg\delta_0^s = \frac{\cos\varepsilon(tg\delta_0 + tg\alpha \cdot \sin\varepsilon \cdot \cos\varepsilon)}{\cos\varepsilon(\sin\varepsilon + \cos\varepsilon)} + \frac{\sin\varepsilon(tg\gamma_0 - tg\alpha \cdot \cos^2\varepsilon)}{\sin\varepsilon(\sin\varepsilon + \cos\varepsilon)}$$
(3)

$$tg\delta_0^n = \frac{\cos\varepsilon(tg\delta_0 - tg\alpha \cdot \sin\varepsilon \cdot \cos\varepsilon)}{\cos\varepsilon(\sin\varepsilon + \cos\varepsilon)} + \frac{\sin\varepsilon(tg\beta_0 + tg\alpha \cdot \cos^2\varepsilon)}{\sin\varepsilon(\sin\varepsilon + \cos\varepsilon)}$$
(4)

В приведенных формулах:

 γ_0^s , β_0^n — граничные углы в коренных породах со стороны восстания и падения пласта в сечениях перпендикулярных линии подвигания лавы;

 δ_0^s , γ_0^n - граничные углы в коренных породах со стороны восстания и падения пласта в сечениях параллельных линии подвигания лавы;

 ϵ – угол (от 0° до 90°) между линией подвигания лавы и линией простирания пласта;

 γ_0 , β_0 , δ_0 - граничные углы в коренных породах в сечениях вкрест и по простиранию пласта, определяемые по «Правилами подработки » [1, 2]; α – угол падения пласта.

Пусть (для примера) требуется определить границу мульды на участке стороны I-IV от выемки пласта в контуре I-II-III-IV (рис. 1):

- 1. По формуле (4) вычисляют значения граничного угла δ_0^n (со стороны падения пласта) в сечении параллельном линии подвигания лавы.
- 2. Определяют горизонтальные расстояния $l_{\rm I}$, $l_{\rm IV}$ от контура очистной выработки пласта до границ мульды. Расстояния могут быть определены графически или аналитически. В первом случае строят вертикальные разрезы по линиям I-K_I и I-K_{IV}, с использованием граничних улов δ_0^n и φ_0 , соответственно в коренных породах и наносах. Глубины пласта определяют по плану горных выработок, угол падения пласта в сечениях вычисляют с учетом направления последних. Аналитически расстояния $l_{\rm I-K_{II}}$, $l_{\rm IV-KIV}$ определяют из выражений:

$$l_i = (H_i - h_i)ctg\delta_0^n + h_i \cdot ctg\varphi_0, \tag{5}$$

где H_i , h_i - глубина пласта и мощность наносов в точке I или IV;

 δ_0^n , φ_0 – граничный угол в коренных породах, определяемый по формуле (4) и граничный угол в наносах, определяемый по «Правилам подработки ...» [1, 2].

3. Отложив вычисленные расстояния l_{I-K1} , l_{IV-KIV} прочерчивают границы влияния очистной выработки на земную поверхность (границу мульды) на участке I-IV (рис. 1).

Литература

- 1. Правила охраны сооружений и природных объектов от вредного влияния подземных горных разработок на угольных месторождениях. – М.: Недра, 1981. – 288 с.
- 2. Правила підробки будівель, споруд і природных об'єктів при видобуванні вугілля підземним способом: ГСТУ 101.00159226.001 2003. Введ. 01.01.2004. К.: 2004. 128 с.
- 3. Маркшейдерское дело: Учеб. для вузов. В двух частях / Под ред. И.Н. Ушакова. 3-е изд., перераб. и доп. Часть 2.-M.: Недра, 1989.-437 с.

УДК [658.562:662.66]:006.83

СОВЕРШЕНСТВОВАНИЕ ТЕХНИЧЕСКОГО КОНТРОЛЯ КАЧЕСТВА УГЛЯ НА ШАХТЕ

Ниязбекова Р.К., Жарылгасова Л.А., Абиров А.А.

Евразийский национальный университет им. Л.Н. Гумилева,

г. Астана, Казахстан

Рассмотрены вопросы совершенствования технического контроля качества угля на шахте. Использовалась методология FMEA и по итогам анализа были выявлены наиболее важные несоответствия. Для устранения одного из несоответствий рекомендуется определять плавкость золы в углехимической лаборатории шахты по стандартному методу.

Одной из основных задач системы менеджмента качества является обеспечение выявления потенциальных несоответствий (дефектов) и предотвращение их появления на всех стадиях жизненного цикла продукции [1]. Важнейшим методом решения этой задачи является анализ видов и последствий потенциальных несоответствий (FMEA). Методология FMEA позволяет оценить риски и возможный ущерб, вызванный потенциальными несоответствиями конструкции и технологических процессов на самой ранней стадии жизненного цикла продукции.

Данный метод может быть с успехом использоваться в сфере угольной промышленности, а именно в процессе технического контроля качества угля. FMEA-анализ позволяет: систематически выявлять все вероятные несоответствия; оценивать их последствия для потребителя; определять возможные причины несоответствий; проводить контроль процесса с точки зрения выявления и предупреждения несоответствий; оценивать вероятность появления, воздействия на потребителя и возможность обнаружения несоответствия, на основе чего определяется приоритетное число риска; назначить сроки мероприятий по устранению и предупреждению несоответствий и ответственные лица за их выполнение; оценивать вероят-