УДК 528.715:629.734

РАЗВИТИЕ И ОБЛАСТИ ПРИМЕНЕНИЯ ГЕОГРАФИЧЕСКИХ ИНФОРМАЦИОННЫХ СИСТЕМ

Картунова С.О.

ФГБОУ ВПО «Магнитогорский государственный технический университет»

Статья посвящена геоинформационным системам бурно развивающемуся направлению современных информационных технологий. Цель статьи показать некоторые примеры практического применения ГИС и обзор наиболее популярных ГИС.

Во все времена знания о пространственной ориентации физическихобъектов или их географическом положении, были очень важны для людей. Прикладная география в виде карт и информации опространстве помогала совершать открытия, способствовала торговле. Наиболее часто наши знания из области географии применяются к решению повседневных задач, таких как, поиск нужной улицы в незнакомом городе или вычисление кратчайшего пешего пути до места своей работы. Пространственная информация помогает нам эффективно производить сельскохозяйственную продукцию и промышленные товары, добывать тепло и электроэнергию, а также полезные ископаемые из недр земли. Последние тридцать лет прошлого столетия человечество интенсивно развивало инструментальные средства, названные географическими информационными системами (ГИС), призванные помочь в расширении и углублении географических знаний. ГИС помогают нам в накоплении и использовании пространственных данных. Некоторые компоненты ГИС исключительно технологические; они включают в себя современные хранилища пространственных данных, передовые телекоммуникационные сети и усовершенствованную вычислительную технику. Хотя есть и другие методы ГИС, которые очень просты. Например, использование простого карандаша и листа бумаги для верификации карт.

Как и многие аспекты нашей жизни в последние пятьдесят лет, процесс накопления и использования пространственных данных был сильно трансформирован интенсивным развитием микроэлектроники. Программное обеспечение и аппаратная платформа ГИС – это главный технологический результат, так как получение и обработка пространственных данных значительно ускорилисьза прошлые три десятилетия, и продолжает неустанно развиваться. История ГИС берет своё начало с конца пятидесятых годов прошлого столетия. За пятьдесят лет пройдено несколько этапов, позволивших создать самостоятельно функционирующую сферу – сферу геоинформационных технологий. Основные достижения в геоинформационной картографии были, к сожалению, получены в США, Канаде и Европе, а не в России. Россия и бывший СССР не участвовали в мировом процессе создания и развития геоинформационных технологий вплоть до

середины 1980-х годов. Тем не менее, наша страна имеет свой, пусть небольшой, опыт развития геоинформационных систем и технологий. В истории развития геоинформационных систем выделяют четыре периода:

- 1. Новаторский период (поздние 1950 ранние 1970 гг.)
- 2. Период государственного влияния (ранние 1970 ранние 1980 г.г.)
- 3. Период коммерциализации (ранние 1980-е настоящее время)
- 4. Период потребления (поздние 1980-е настоящее время)

Ключевую роль в развитии ГИС, вконце 60-х сыграло Бюро переписи США, разработало формат GBF-DIME (Geographic Base File, Dual Independent Map Encoding). В этом формате впервые была реализована схема определения пространственных отношений между объектами, называемая топологией, которая описывает, как линейные объекты на карте взаимосвязаны между собой, какие площадные объекты граничат друг с другом, а какие объекты состоят из соседствующих элементов. Впервые были пронумерованы узловые точки, впервые были присвоены идентификаторы площадям по разные стороны линий. Это было революционное нововведение. Формат GBF-DIME позже трансформировался в TIGER. Большой вклад в этот процесс внесли математик Джеймс Корбетт (James Corbett), программисты Дональд Кук (Donald Cooke) и Максфилд (Maxfield). Технологию в формате GBF-DIME использует множество современных ГИС. Многие важные идеи, касающиеся ГИС, возникли в стенах Лаборатории компьютерной графики и пространственного анализа Гарварда. Из этой лаборатории вышло несколько ключевых фигур ГИС индустрии: это Говард Фишер (Howard Fisher) – основатель лаборатории и программист Дана Томлин (Dana Tomlin), заложившая основы картографической алгебры, создав знаменитое семейство растровых программных средств Map Analysis Package - MAP, PMAP, aMAP. Наиболее известными и хорошо зарекомендовавшими себя программными продуктами Гарвардской лаборатории являются:

- SYMAP (система многоцелевого картографирования);
- CALFORM (программа вывода картографического изображения на плоттер);
- SYMVU (просмотр перспективных (трехмерных) изображений);
- ODYSSEY (предшественник знаменитого ARC/INFO). Геоинформационные системы (ГИС) в настоящее время широко применяются во всем мире и России во многих областях знаний, промышленности, а также в маркшейдерско-геодезических работах и изысканиях. В настоящее время работают две спутниковые системы американская Navstar (Navigation System using Timing And Ranging), больше известная нам как GPS (Global Positioning System), и отечественная «ГЛОНАСС». Принципы их работы во многом схожи. Главная задача спутников, входящих в состав этих систем, заключается в постоянной передаче сигналов, которые принимают

наземные (авиационные, корабельные, автомобильные, ручные и т. д.) приемники. Системы построены так, что приемник одновременно «видит» несколько спутников. Сравнивая задержки в приходе сигналов от разных спутников, приемник вычисляет расстояние от себя до них, а затем решает систему уравнений, чтобы определить свои координаты.

Что же такое ГИС сегодня? Это:

ГИС - это программно-машинный комплекс по приему, обработке, хранению, анализу и передаче любой территориально распределенной информации;

ГИС - это возможность оперативного реагирования на любую возникающую ситуацию по какой-либо территории, с получением по ней всей необходимой картографической и тематической информации;

ГИС - это наложение разнообразной тематической информации на один и тот же пространственный контур и получение новой информации о территории;

ГИС - это аналитическое и картометрическое исследование и анализ, с одновременным построением любых карт, планов и схем;

ГИС - это моделирование тех или иных процессов, явлений и изучение изменения их состояния во времени;

ГИС - это визуализация пространственной информации и возможность ее представление в динамическом режиме;

ГИС - это управление ресурсами и территориями;

ГИС - это скорость, качество и точность;

ГИС - это наука, технология и бизнес в одном лице;

ГИС - это революция в картографии, картометрии и, соответственно, в средствах пространственного анализа.

И в конечном итоге, можно смело утверждать, что:

ГИС - это новое формируемое мировоззрение и новое мышление, построенное на пространственной идеологии. Важно отметить, что ныне ГИС объединены с другой мощной системой получения и представления географической информации - данными дистанционного зондирования Земли (ДЗЗ) из космоса. Космическая информация в сегодняшнем мире становится все более разнообразной и точной. Возможность ее получения и обновления - все более легкой и доступной. Десятки орбитальных систем передают высокоточные космические снимки любой территории нашей планеты. За рубежом и в России сформированы архивы и банки данных цифровых снимков очень высокого разрешения на огромную территорию земного шара. Их относительная доступность для потребителя (оперативный поиск, заказ и получение по системе Интернет), проведение съемок любой территории по желанию потребителя, возможность последующей обработки и анализа космических снимков с помощью различных про-

граммных средств, совместная работа с ГИС-пакетами и ГИС-системами, превращают сообщество ГИС-ДЗЗ в новое мощное средство географического анализа. Это первое и наиболее реальное направление современного развития ГИС. Второе направление развития ГИС - совместное и широкое использование данных высокоточного глобального позиционирования того или иного объекта на воде или на суше, полученных с помощью систем GPS или ГЛОНАСС. Эти системы, особенно GPS, уже сейчас широко используются в морской навигации, воздухоплавании, геодезии, маркшейдерии, военном деле и других отраслях человеческой деятельности. Применение же их в сочетании с ГИС и ДЗЗ образуют мощную триаду высокоточной, актуальной (вплоть до реального режима времени), постоянно обновляемой, объективной и плотно насыщенной территориальной информации, которую можно будет использовать практически везде. Третье направление развития ГИС связано с развитием системы телекоммуникаций, в первую очередь международной сети Интернет и массовым использованием глобальных международных информационных ресурсов. В этом направлении просматривается несколько перспективных путей.

Первый путь будет определяться развитием корпоративных сетей крупнейших предприятий и управленческих структур, имеющих удаленный доступ, с использованием технологии Интернет. Этот путь подкреплен серьезными финансовыми ресурсами этих структур и теми проблемами и задачами, которые приходится решать им в своей деятельности с использованием пространственного анализа. Второй путь зависит от развития самой сети Интернет, которая распространяется по миру огромными темпами, вовлекая каждый день в свою аудиторию десятки тысяч новых пользователей. Этот путь выводит на новую и пока неизведанную дорогу, по которой традиционные ГИС из обычно закрытых и дорогих систем, существующих для отдельных коллективов и решения отдельных задач, приобретают новые качества, объединяются и превращаются в мощные интегрированные и интерактивные системы совместного глобального использования.

При этом такие ГИС сами станут:

- -территориально распределенными;
- -модульно наращиваемыми;
- -совместно используемыми;
- -легко и постоянно доступными.

Поэтому можно предполагать возникновение на базе современных ГИС, новых типов, классов и даже поколений географических информационных систем, основанных на возможностях Интернет, телевидения и телекоммуникаций. И вот здесь, на этом этапе развития ГИС из технологии, безусловно, перерастет в мировоззрение.

Исходя из имеющейся сейчас информации и отслеживая современные тенденции развития геоинформационных систем и технологий, уже сейчас есть возможность наметить некоторые черты будущих географических информационных систем и их применения:

ГИС-II - (ГИС второго поколения). Второе поколение геоинформационных систем, вероятно, будет представлять собой совокупность различных ГИС, сочетая их модульность и обладая возможностью постоянного наращивания. Собранные из модулей в определенные блоки эти системы приобретут новые качества и новые возможности. Отличительной особенностью ГИС-II от современных ГИС будет то, что организация и работа с информацией в системах нового поколения будет переведена на другой уровень и, во-вторых, это будут простые и открытые системы с удаленным доступом и интерактивными возможностями. Кроме технологической стороны они будут нести большую информационную (содержательную) нагрузку и иметь возможность совместного (модульного) использования.

ГИС-ТВ - (ГИС-телевидение). Вероятно, эти системы станут новым классом ГИС, которые будут сочетать возможности современного телевидения, а также традиционных и специализированных ГИС и Интернет. Отдельные предпосылки возникновения некоторых черт таких систем уже появились и используются на российских телевизионных каналах (например, канал Метео ТВ, который готовит обзоры погоды и т.д.). Особенно плодотворно работает в этом направлении московская группа Меркатор с их анализом результатов различных выборов, оперативным отображением объектов и событий и их привязкой к территории и другими проектами с использованием на телеэкране пространственной информации и различных электронных картографических изображений. Большой потенциал у ГИС-ТВ прослеживается в сфере дистанционного образования и образовательного телевидения, где, используя функции и возможности ГИС-систем и ГИС-технологий можно было бы уже сейчас организовывать и транслировать разнообразные передачи и уроки, построенные на пространственной идеологии. Не малое значение для образовательных целей могут иметь и компьютерные видеоролики, с помощью которых можно подготовить любой видеоряд и затем разворачивать его или в локальной сети ПК или используя кабельное телевидение. При этом надо иметь в виду, что использование разнообразной пространственной информации на телеэкране с помощью средств ГИС, значительно увеличивает аудиторию потенциальных ГИС-пользователей, прививая и постепенно развивая у них основы ГИС-мировоззрения.

ГИС-II - (ГИС о ГИС или "ГИС в квадрате"). Этот новый тип геоинформационных систем, обладает возможностью изучения и анализа не только самой территориальной информации, а значительной массы уже сущест-

вующих и территориально распределенных ГИС, созданных и используемых в разных направлениях человеческой деятельности. ГИС - II могут и должны стать определенными навигаторами по просторам ГИС-систем, и пространственной информации, а возможно и других информационных ресурсов, которые уже появились или появятся в ближайшее время в огромном числе и их количество, будет увеличиваться с каждым годом. Данный тип, безусловно, будет развиваться, и распространяться в сети Интернет, так как именно здесь появляется необходимость в нем и есть потребность и возможность в изучении и анализе различных ГИС.

· ГЛОБ-ГИС - (Глобальная ГИС). В конечном итоге на базе перечисленных нами систем, сети Интернет, а также телевидения возникнет единая телекоммуникационная Глобальная Географическая Информационная Система, у которой будут сотни миллионов пользователей во всем мире. Во многих отечественных и зарубежных научных публикациях широко обсуждаются вопросы и проблемы перехода от Web-картографирования, развитого уже сейчас, к Интернет-ГИС, которая интегрировала бы в себе достоинства геоинформационных и телекоммуникационных технологий. Причем отдельные предпосылки к созданию такой глобальной системы уже вполне наметились и постепенно реализуются. Суммирование же возможностей ГИС - ДЗЗ - GPS - Интернет составит мощнейший квартет пространственной информации, новых технологий, каналов связи и предоставляемых услуг, которые будут реализовываться как в Глобальной ГИС, обладающей различными уникальными возможностями, так и в отдельных специализированных ГИС различного типа и класса.

Все охарактеризованные выше тенденции, перспективы, направления и пути развития приведут в конечном итоге к тому, что ГИС в XXI веке будут представлять собой систему знаний, опирающуюся на пространственную идеологию и использующую самые современные технологии по переработке огромного объема любой пространственной и иной информации и широко распространенную среди мирового информационного общества.

Литература:

- 1. Электронная библиотека ГАГУ, http://e-lib.gasu.ru/
- 2. Геоинформационные системы, http://www.dataplus.ru/
- 3. Журкин И. Г., Шайтура С. В. Геоинформационные системы. Москва: КУДИЦ-ПРЕСС, 2009. 272 с.
- 4. Геоинформационные системы, http://www.gisok.spb.ru/
- 5. Санкт-Петербургский Университет, факультет географии и геоэкологии, http://www.geospb.ru/index.html