- 2. Заявка на изобретение № 2012123029. Комплекс для проведения коротких выработок с тюбинговой крепью / Иванов А.В., Юнгмейстер Д.А., Соколова Г.В., Лавренко С.А.
- 3. Механика подземных сооружений. Пространственные модели и мониторинг / Протосеня А.Г., Огородников Ю.Н., Деменков П.А., Карасев М.А., Лебедев М.О., Потемкин Д.А., Козин Е.Г. // СПб: СПГГУ-МАНЭБ, 2011. 355 с.
- 4. Эксперементальное исследование влияния параметров удара на показатель разрушения горных пород / Коняшин Ю.Г. // Научные сообщения ИГД им. А.А. Скачинского: Сборник научных трудов т. 21, М., Госгортехиздат, 1963.
- 5. Анализ использования проходческого комбайна в составе комплекса «КПШ-6» в условиях шахт ОАО «Метрострой» Санкт-Петербург./Юнгмейстер Д.А., Лавренко С.А., Иванов А.В.//журнал «Горное оборудование и электромеханика» №3, 2012 г.

УДК 622.23.054.2:622.271.64

РАСШИРЕНИЕ ОБЛАСТИ ПРИМЕНЕНИЯ ПОРОДОРАЗРУШАЮЩЕГО ИНСТРУМЕНТА ДЛЯ МАШИН ГОРИЗОНТАЛЬНО НАПРАВЛЕННОГО БУРЕНИЯ

Пушкарев А.Е., Колесников В.В., Чеботарев П.Н.

Тульский государственный университет Тула, Россия

Предлагается для расширения области применения способа горизонтально направленного бурения использовать в работе инструмента машины встроенный генератор гидродинамических колебаний на основе эффекта Польмана-Яновского и явление кавитации для создания продольно вибрационного ускорения.

Ускоренные темпы роста объёмов строительства и освоения подземного пространства, повышение требований к экологической безопасности ведения горных работ при устройстве тоннелей и прокладке инженерных коммуникаций в условиях небольших глубин и наличия на поверхности зданий и сооружений обуславливают необходимость создания технических средств, обеспечивающих образование выработок с минимальным воздействием на окружающий массив. В значительной степени этим условиям отвечают машины реализующие технологию проходки выработок малого сечения методом бестраншейной прокладки при помощи техники горизонтально направленного бурения (ГНБ). При этом обеспечивается сохранение устойчивости и целостности вмещающих пород, комплект оборудования компактен и мобилен, не требует значительных площадей и времени для подготовки и выполнения работы [1].

Сущность технологий ГНБ и прокола заключается в последовательном выполнении трех технологических операций (рис. 1).

На первом этапе работ осуществляется проходка пилотной скважины. Технически проходка осуществляется при помощи породоразрушаю-

щего инструмента (исполнительного органа) – головной секции со скосом в передней части.

Головная секция соединена с пилотным ставом, что позволяет управлять процессом проходки скважины и обходить выявленные препятствия в любом направлении в пределах естественного изгиба протягиваемой рабочей нити. Исполнительный орган может иметь отверстия для подачи бурового раствора, который закачивается в скважину и образует суспензию с размельченной породой. Буровой раствор уменьшает трение на исполнительном органе головке и штанге, предохраняет скважину от обвалов, охлаждает породоразрушающий инструмент и очищает скважину от ее обломков, вынося их на поверхность.

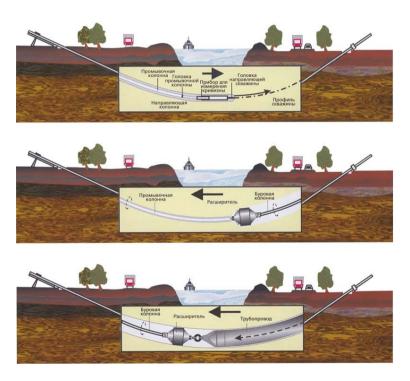


Рис. 1. Технологический цикл работы установки ГНБ

Строительство пилотной скважины завершается выходом исполнительного органа в заданной проектом точке.

После завершения проходки пилотной скважины производится ее расширение. При этом головная секция отсоединяется от става и вместо нее присоединяется риммер – расширитель обратного действия. Приложением тягового усилия с одновременным вращением риммер протягивается через створ скважины в направлении буровой установки, расширяя пилотную скважину до необходимого для протаскивания трубопровода диаметра.

Третий этап работ заключается в протягивании трубопровода по проектной траектории.

Однако работоспособность инструмента ограничена прочностью разрушаемых пород, что препятствует широкому использованию данного способа. В настоящее время основной спектр инструмента, присутствующий на рынке ГНБ, предназначен для работ по породам малой и средней крепости. Это, во-первых, связано с дешевизной, и как следствие, доступностью инструмента, а во-вторых, большая часть требуемых проколов не требует высокотехнологичного инструмента.

Одним из перспективных путей повышения эффективности работы породоразрушающего инструмента является придание воздействию на массив динамического характера (кратковременные ударные импульсы) [2, 3]. В частности, продольно вибрационные ускорения, возникающих в инструменте при колебаниях жидкости, и кавитация, протекающая в буровом растворе способны повысить его работоспособность по крепким породам и расширить область применения такой техники.

Коллективом кафедры геотехнологий и строительства подземных сооружений ТулГУ была разработана гидромониторная бурильная головка [4] (рис. 2) с встроенным генератором гидродинамических колебаний, включающая в себя буровую головку с каналами и соплами, управляющую поверхность и переднею поверхность.

Рис. 2. Экспериментальный образец гидромониторной бурильной головки в разобранном (a) и в собранном (б) виде

Внутри корпуса наконечника находится диск с входными струеформирующими каналами, резонирующими элементами в виде пластин, консольно закрепленными в диске с выходными отверстиями, фиксирующими винтами, обжимным кольцом, штифтами крепящимися к хвостовой части, с внутренним каналом. Каждая резонирующая пластина которого находится напротив соосного с ней струеформирующего канала.

В процессе работы, при набегании буровой жидкости происходит интенсивное воздействие на резонирующие элементы, появляются возмущения жидкости, пульсирующая кавитационная область, возбуждение в резонирующих элементах изгибных колебаний, появление вибрации передающихся на бурильную головку. С целью повышения интенсивности колебаний необходимо настроить частоту собственных колебаний резонирующих элементов на частоту собственных колебаний поступаемой жидкой среды для создания резонанса, реализуя эффект Польмана-Яновского [5-7].

Данное устройство может быть использовано для прокладывания пилотной скважины, применяясь, как головная часть исполнительного органа установки ГНБ, совместно с растворами, применяемыми в работе при бестраншейной прокладке трубопровода.

Экспериментальный образец гидромониторной бурильной головки с встроенным генератором гидродинамических колебаний прошел испытания, которые подтвердили его работоспособность и эффективность. Так снижение нагрузки на инструменте составило около 30% при достижении резонансного режима колебаний пластинчатых элементов и собственных колебаний поступаемой жидкой среды (промывочной жидкости).

Литература

- 1. Рыбаков А.П. Основы бестраншейных технологий. Теория и практика. Издательство: ПрессБюро, 2005.-304 с.
- 2. Меламед Ю.А. Гидроимпульсная технология: большие возможности и широкий спектр применения. Журн.: Разведка и охрана недр. № 6. М: Недра, 1993. С.17 19.
- 3. Дзоз Н.А., Жулай Ю.А Интенсификация процессов бурения с использованием гидродинамической кавитации. Журнал:Горный информационный аналитический бюллетень М: Горная книга, с. 290 296.
- 4. Колесников В.В., Лежебоков А.В., Пушкарев А.Е. Особенности конструкции гидромониторной бурильной головки, Известия ТулГУ. Технические науки. Вып. 4. Тула: Изд-во ТулГУ, 2013. С. 240 246.
- 5. Бергман Л. Ультразвук и его применение в науке и технике. М: ИИЛ, 1956. 726 с.
- 6. Неволин В.Г. Опыт применения звукового воздействия в практике нефтедобычи Пермского края Пермь, 2008. 54c.
- 7. Назаренко А.Ф. Гидродинамические излучающие системы и проблема интенсификации некоторых технологических процессов.- Дис. докт. тех. наук. Одесса, 1980. 383 с.