УДК 517.937

О нахождении дискретного спектра характеристического уравнения теории переноса излучения на основе исследования сходимости последовательностей нулей бесконечной системы полиномов Штурма

Роговцов Н.Н.

Белорусский национальный технический университет

1. При исследовании процесса многократного рассеяния учитывать свойства необходимо решений света характеристического уравнения теории переноса излучения (ТПИ) [1-3]. Данное уравнение относится к интегральным уравнениям третьего рода. Особый интерес для приложений ТПИ играет знание дискретного спектра и соответствующих ему собственных функций однородного характеристического уравнения. Хотя качественная теория указанного уравнения была развита еще в работах [1-3], вопросы, связанные с обоснованием сходимости математическим следовательностей корней, полученных на основе процедуры усечения и задающих приближенные положения точек дискретного спектра, в литературе не рассматривались. В этой статье будет восполнен этот пробел.

Пусть \mathbb{C} - множество комплексных чисел $a \widetilde{S} = [-i\infty, -i] \cup [i, +i\infty]$. Множество всех последовательностей $\{b_i\}$, удовлетворяющих условию

$$\sum_{s=0}^{+\infty} \left(2(m+s) + 1 \right) \left(s! / (s+2m)! \right) \left| b_s \right|^2 < +\infty \quad \text{обозначим} \quad \text{через} \quad l_2(m).$$

Бесконечную непрерывную дробь

$$\alpha_{_{0}} + \beta_{_{1}} (\alpha_{_{1}} + \beta_{_{2}} (\alpha_{_{2}} + ...)^{-1})^{-1}$$
 обозначим символом

$$\left[\alpha_{o}; \frac{\beta_{1}}{\alpha_{o}}, \frac{\beta_{2}}{\alpha_{o}}, \ldots\right]$$
. Конечную непрерывную дробь будем

обозначать в виде
$$\left[\alpha_{\scriptscriptstyle o}; \frac{\beta_{\scriptscriptstyle 1}}{\alpha_{\scriptscriptstyle 1}}, \frac{\beta_{\scriptscriptstyle 2}}{\alpha_{\scriptscriptstyle 2}}, ..., \frac{\beta_{\scriptscriptstyle n}}{\alpha_{\scriptscriptstyle n}}\right]$$
.

Решения однородных и неоднородных характеристических уравнений в классе $L_2(-1, 1)$ биективным образом связаны с решениями в классе $l_2(m)$ следующей бесконечной системы линейных алгебраических уравнений:

 $i\varepsilon_{s+1}b_{s+1}(\omega)+i\omega\varsigma_s b_{s-1}(\omega)=\kappa_s b_s(\omega)-\upsilon_s(\omega), b_{-1}(\omega)\equiv 0, s\in N_o$. (1) Здесь $\omega\in \{;\ N_o=\{0,1,2,...\};\ \{\upsilon_s(\omega)\}$ - заданная, а $\{b_s(\omega)\}$ - искомая последовательности; для $\forall s,m\in N_o$ $\varepsilon_s=s, \varepsilon_s=s+2m,$

$$\kappa_{s} = (2(m+s)+1)(1-\Lambda f_{m,s}); \Lambda \in (0,1); f_{s} = \frac{1}{2}\int_{-1}^{1} P_{s}(\mu)\chi(\mu)d\mu; P_{s}(\mu)$$
 -no-

лином Лежандра; $\chi(\mu)$ -неотрицательная функция из класса

$$L_2(-1,1)$$
, которая нормирована условием $\int_{-1}^{1} \chi(\mu) d\mu = 2$. При по-

строении алгоритма решения указанных характеристических уравнений и системы (1) необходимо выявить свойства решений такой системы:

$$\begin{cases} -\kappa_{o}b_{o}(\omega;n) + i\omega\varepsilon_{1}b_{1}(\omega;n) &= -\upsilon_{o}(\omega), \\ i\omega\varepsilon_{1}b_{o}(\omega;n) - \kappa_{1}b_{1}(\omega;n) + i\omega\varepsilon_{2}b_{2}(\omega;n) &= -\upsilon_{1}(\omega), \\ \vdots \\ i\omega\varepsilon_{n-1}b_{n-2}(\omega;n) - \kappa_{n-1}b_{n-1}(\omega;n) + i\omega\varepsilon_{n}b_{n}(\omega;n) &= -\upsilon_{n-1}(\omega), \\ i\omega\varepsilon_{n}b_{n-1}(\omega;n) - \kappa_{n}b_{n}(\omega;n) &= -\upsilon_{n}(\omega), n \in \mathbb{N}. \end{cases}$$

Обозначим через
$$\widetilde{D}_{n+1}(\omega;m) = \frac{1}{(n+1)!} D_{n+1}(\omega;m)$$
, где

 $D_{n+1}(\omega;m)$ - определитель (n+1)-го порядка основной матрицы системы (2). Через $\Re_{m,p,n+1}$ обозначим множество всех нулей полинома $\widetilde{D}_{n+1}(\omega;m)$, где p=p(n+1,m) — порядок этого полинома.

Теорема 1. Если для $\forall s,m\in N_o$ выполняются равенства $\upsilon_s(\omega)\equiv 0$, $\upsilon_s(m)=\varepsilon_{s,s,s}\zeta_{s,s,s}(\kappa_s\kappa_{s+1})^{-1}$, то для \forall $m\in N_o$ необходимым и достаточным условием существования нетривиального решения системы (1) в классе $l_2(m)$ является существование непустого множества \mathfrak{R}_m корней уравнения

$$\mathfrak{I}_{o}(\omega^{2};m) = \left[1; \frac{\nu_{o}(m)\omega^{2}}{1}, \frac{\nu_{1}(m)\omega^{2}}{1}, \ldots\right] = 0$$
 относительно $\Lambda \in (0,1)$,

 $\omega \in \stackrel{\backslash}{S}$. При этом справедливы такие утверждения: 1° для $\forall m \in N_o$ $\Re_m \subset (-i,i) \setminus \{0\}$; 2° бесконечная непрерывная дробь $(\Im_o(\omega^2;m))^{-1}$ - аналитическая функция в области $\stackrel{\backslash}{\mathbb{N}} \Re_m \cup \widetilde{S}$), причем во всех точках, принадлежащих \Re_m , она имеет полюса 1-го порядка; 3° для $\forall n \in N$ функции $(\kappa_o \Im_o(\omega^2;m))^{-1} \Psi_n(\omega;m)$,

где
$$\Psi_{n}(\omega;m)=(i\omega)^{n}\prod_{r=1}^{n}\varsigma_{r}(\kappa_{r}\Im_{r}(\omega^{2};m))^{-1}$$
 и

$$\mathfrak{I}_{r}(\omega^{2};m)=[1;rac{v_{r}(m)\omega^{2}}{1},rac{v_{r+1}(m)\omega^{2}}{1},...]$$
, аналитичны в области $\mathbb{N}(\mathfrak{R}_{m}\cup\widetilde{S})$ и имеют полюса 1-го порядка в любой точке, принадлежащей \mathfrak{R}_{m} ; $\mathfrak{4}^{o}$ $\mathfrak{R}_{o}\neq\varnothing$; $\mathfrak{5}^{o}$ если $\mathfrak{R}_{m}\neq\varnothing$, $k_{l}(m)\in(0,\ l)$ и $(ik_{l}(m))\in\mathfrak{R}_{m}$, то $(-ik_{l}(m))\in\mathfrak{R}_{m}$ $(l\in N;\ l-$ номер положительного корня уравнения $\mathfrak{I}_{o}(\omega^{2};m)=0$; корни нумеруются в порядке их возрастания); $\mathfrak{6}^{o}$ если $\mathfrak{R}_{m}\neq\varnothing$, то для \forall $(ik_{l}(m))\in\mathfrak{R}_{m}$ справедливо равенство $\frac{d\left[\kappa_{o}\mathfrak{I}_{o}(\omega^{2};m)\right]}{d\omega}=\frac{i}{k_{l}(m)}\left[\kappa_{o}+\sum_{n=1}^{+\infty}\kappa_{n}\Psi_{n}^{2}(ik_{l}(m))\prod_{r=1}^{n}\frac{\mathcal{E}_{r}}{\mathcal{E}_{r}}\right]$, причем

его правая часть - ограниченное число, отличное от нуля.

С использованием метода математической индукции можно выявить свойства коэффициентолв полиномов $\widetilde{D}_{r,1}(\omega;m)$, знание которых позволяет с учетом формы системы (2) доказать верность следующей теоремы.

Теорема 2. Если выполнены условия теоремы 1, то имеют место такие утверждения: $1^{o}\,\mathfrak{R}_{\scriptscriptstyle m;p,n+1}=\{\pm ik_{\scriptscriptstyle l}(m;\;\;p;n+1)\,|\,l=\overline{1,n^*},\,n^*=(p/2);\,k_{\scriptscriptstyle l}=(m;p;n+1)\in R_{\scriptscriptstyle l}\}\,;$ $2^{o}\,$ для $\forall r\in\,$ $N\,$ верна рекуррентная формула $\widetilde{D}_{r+1}(\omega;m)=-\widetilde{\kappa}_{\scriptscriptstyle r}\,D_{\scriptscriptstyle r}(\omega;m)+\omega^2\widetilde{\varepsilon}_{\scriptscriptstyle r}\widetilde{\varsigma}_{\scriptscriptstyle r}\,\widetilde{D}_{r-1}(\omega;m)\,,$ где $\widetilde{\varepsilon}_{\scriptscriptstyle r}=1,\widetilde{\varsigma}_{\scriptscriptstyle r}=(1+r)^{-1}\varsigma_{\scriptscriptstyle r},\widetilde{\kappa}_{\scriptscriptstyle r}=(1+r)^{-1}\kappa_{\scriptscriptstyle r},\,$ $\widetilde{\kappa}_{\scriptscriptstyle o}=\kappa_{\scriptscriptstyle o}\,,\,$ $\widetilde{D}_{\scriptscriptstyle o}(\omega;m)\equiv 1,$

 $\widetilde{D}_{_{1}}(\omega;m)=-\kappa_{_{o}}; \ 3^{\circ}$ для $\forall n\in N$ полиномы $D_{_{n+1}}(\omega;m)$ имеют нули только первого порядка, причем число этих нулей четно $(2\leq p\leq n+1)$; 4° множество $\mathfrak{R}_{_{m;p;n+1}}$ равно множеству всех нулей конечной непрерывной дроби $\mathfrak{I}_{_{o;n}}(\omega;m)=$

$$= \left[1; \frac{\nu_o(m)\omega^2}{1}, \frac{\nu_1(m)\omega^2}{1}, ..., \frac{\nu_n(m)\omega^2}{1}\right]; \ 5^{\circ} \ \text{для} \ \forall r \in \mathbb{N} \ \widetilde{D}_r(0; m) = \\ = (-1)^r \prod_{s=1}^r \widetilde{\kappa}_{s-1}; \quad 6^{\circ} \quad \text{если} \quad \mathfrak{R}_m \neq \emptyset, \text{то} \quad \text{для} \quad \forall ik_s(m) \in \mathfrak{R}_m, \\ \text{выполняются равенство} \quad \widetilde{D}_{n+1}(ik_s(m); m) = \left(k_s(m)^{n+1} \Psi_{n+1}(ik_s(m)), \right. \\ \text{причем} \quad \exists \quad n_o \in \mathbb{N}, \quad \text{что} \quad \text{для} \quad \text{любых конечных} \quad n \geq n_o \\ \widetilde{D}_{n+1}(ik_s(m); m) \neq 0; \qquad 7^{\circ} \quad \quad \text{для} \quad \forall ik_s(m) \in \mathfrak{R}_m \neq \emptyset$$

 $\widetilde{D}_{n+1}(ik_s(m);m) \neq 0;$ 7° для $\forall ik_s(m) \in \mathfrak{R}_m \neq \emptyset$ $\lim_{n \to \infty} \widetilde{D}_n(ik_s(m);m) = 0;$ 8° для $\forall n \in N$ система полиномов $\widetilde{D}_{n+1}(ik;m), \ \widetilde{D}_n(ik;m), \dots, \ \widetilde{D}_1(ik;m), \ \widetilde{D}_o(ik;m)$ является системой полиномов Штурма для уравнения $\widetilde{D}_{n+1}(ik;m) = 0$ по отношению $K \ k \in \mathfrak{R}_+$.

Теорема 3. Пусть выполнены допущения теоремы 1. Тогда для $\forall m \in N_o$ и $\forall l \in N$ числовая последовательность $\{k_l(m; 2l; 2l),$

 $k_i(m;2l;2l+1),\ k_i(m;2l+2;2l+2),\ k_i(m;2l+2;2l+3),\ k_i(m;2l+4;2l+4),\ldots\}$ является монотонно убывающей, причем для $\forall l\in N$ существует предел $\lim_{n\to\infty}k_i(m;p(r,m);r)=k_i^*(m)$ и $k_i^*(m)>0$.

Обозначим через $\Re_m^*(\beta)$ и $\Re_m^*(\beta)$ соответственно множества всех чисел $k_i(m)$ и $k_i^*(m)$, которые принадлежат интервалу $(0, \beta)$, гдс $\beta \in (0, 1)$.

Теорема 4. Допустим, что верны предположения теоремы 1. Тогда для $\forall m \in N_o$ и $\forall \beta \in (0, 1)$ множества $\mathfrak{R}_m^+(\beta)$ и $\mathfrak{R}_m^-(\beta)$ равны друг другу.

Литература

- 1. Масленников М.В. Проблема Милна с анизотропным рассеянием. Труды математического института АН СССР. 1968. Т.97.
- 2. Гермогенова Т.А., Шулая Д.А. О характеристическом уравнении теории переноса излучения // Докл. АН СССР. 1976. Т.231, № 4. С.841-844.
- 3. Роговцов Н.Н. О решении характеристического уравнения теории переноса излучения в замкнутой форме// Труды международной конференции, посвященной 90-ю академика Ф.Д. Гахова (Беларусь, Минск, февраль 16-20, 1996): Краевые задачи, специальные функции и дробное исчисление. Минск. 1996. С.305-312.

УДК 515.552

Теорема Пифагора в п-мерном пространстве

Соколова Н.М.

Белорусский национальный технический университет

В свое время Пифагор предсказал, что полное воплощение идеи о значении геометрических форм, человечество познает в эпоху Водолея, которая наступила вместе третьим тысячелетием.

Знаменитая теорема Пифагора на плоскости — это частный, но основополагающий случай обобщения теоремы на n-мерные евклидовы пространства.

Принятая теорема Пифагора в многомерном пространстве — это всего лишь квадрат длины вектора, квадрат полилинейной формы. Геометрическая иллюстрация — конфигурационная структура на плоскости: каждая гипотенуза становится катетом на следующем шаге, к квадрату катета прибавляется квадрат очередной координаты. По числу ненулевых координат определяется валентность полилинейной формы, но не размерность пространства.

Для формулировки обобщенной теоремы рассмотрим бином степени.