К вопросу выбора критической скорости воздуха при вертикальном пневмотранспорте

Петренко С. М.

Белорусский национальный технический университет

Критическая скорость $\mathcal{G}_{\kappa p}$ воздуха, при которой обеспечивается направленное перемещение транспортируемого материала с минимальными потерями давления dP/dL на единицу длины трубопровода, определяется из опыта как приведенная (отнесенная к площади поперечного сечения трубопровода) скорость \mathcal{G} для конкретных режимных параметров вертикального пневмотранспорта.

Из анализа условий силового взаимодействия в движущемся объеме аэросмеси следует, что для реализации вертикального пневмотранспорта материала в направлении против силы тяжести сила $F_{\rm BS}$ аэродинамического взаимодействия между воздушной и твердой фазами, отнесенная к единице массы, должна превышать вес столба материала в пневмотранспортном трубопроводе, т.е. $F_{\rm BS} >$ g, или $(v-v_{_M})^2/v_{_S}^2 > 1$, где v, $v_{_M}$ и $v_{_S}$ - действительные (с учетом стеснения поперечного сечения трубопровода транспортируемым материалом) скорости воздуха, материала и витания частиц. При переходе к расходным параметрам это условие обеспечения вертикального пневмотранспорта сыпучего материала с массовой производительностью $Q_{_M}$ для некоторой выбранной приведенной скорости $\mathcal G$ воздуха имеет вид:

$$\left(\frac{9}{1-c} - \frac{4Q_{\rm M}}{c\rho_{\rm M}\pi D^2}\right)^2 \rangle \vartheta_{\rm sn}^2 (1-c)^6 (1-\left(\frac{d}{D}\right)^2)^2, \quad (1)$$

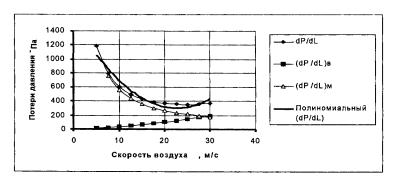
где ${\cal G}_{sn}$ — приведенная скорость витания частиц материала, c - объемная концентрация материала в пневмотранспортном трубопроводе, d и $\rho_{_{\cal M}}$ — эквивалентный диаметр и плотность час-

тиц материала, D – диаметр пневмотранспортного трубопровода.

При известных размерно-плотностных и аэродинамических характеристиках (d, ρ_{μ} , $\theta_{\rm sn}$) материала и диаметре трубопровода D из (1) можно определить для заданного массового расхода Q_{μ} и принятой приведенной скорости ${\mathcal G}$ воздуха объемную концентрацию $c_o = c_{\min}$, минимально необходимую для того, чтобы за счет стеснения поперечного сечения трубопровода частицами транспортируемого материала действительная скорость воздуха $v = 9/(1-c_o)$ превысила потребную для обеспечения $Q_{\scriptscriptstyle{\mathsf{M}}}$ действительную скорость материала $v_{_{M}} = 4Q_{_{M}}/(c_{_{0}}\rho_{_{M}}\pi D^{2})$ и квадрат их разности стал больше скорости действительной $v_{c} = \mathcal{G}_{cn} (1 - c_{o})^{3} (1 - (d/D)^{2})$. Минимальное потребное значение приведенной скорости воздуха ограничено значением $c_a pprox 0,6$, соответствующим состоянию плотной упаковки частиц материала в трубопроводе.

С увеличением приведенной скорости $\mathcal G$ воздуха значения c_o и действительной скорости воздуха v, а также коэффициента λ м сопротивления транспортируемого материала уменьшаются, а значения действительной скорости материала $v_{_{\mathcal M}}$ и действительной скорости $v_{_{\mathcal S}}$ витания частиц увеличиваются. Соответственно с ростом $\mathcal G$ возрастает составляющая потерь давления на перемещение воздуха

$$(dP/dL)_{s} = (1-c_{o})g\rho_{s} + (1-c_{o})\lambda_{s}\rho_{s}v^{2}/2D,$$


где ρ_s и λ_s - плотность и коэффициент сопротивления воздушной фазы, и уменьшается составляющая потерь давления на перемещение материала

$$(dP/dL)_{M} = c_{o}g\rho_{M} + c_{o}\lambda_{M}\rho_{M}v_{M}^{2}/2D.$$

В результате с возрастанием $\mathcal G$ происходит перераспределение вклада в суммарные потери давления составляющих потерь давления $(dP/dL)_{\mathtt{B}}$ и $(dP/dL)_{\mathtt{M}}$, и зависимость суммарных потерь давления $dP/dL = (dP/dL)_{\mathtt{B}} + (dP/dL)_{\mathtt{M}} = f(\mathcal G)$ имеет минимум, соответствующий расчетному значению критической скорости $\mathcal G_{\mathtt{KD}}$.

Результаты определения $\mathcal{G}_{\kappa p}$ для образца дробленого торфа с d=5,5 мм, $\rho_{_{\mathcal{M}}}=935$ кг/м³, $\mathcal{G}_{sn}=10,8$ м/с при диаметре трубопровода D =0,053 м и $Q_{_{\mathcal{M}}}=0,55$ кг/с на основании полученной расчетом полиноминальной зависимости

 $dP/dL = 2,4489 \ \mathcal{G}^2 + 110,63 \ \mathcal{G} + 1551,4$ представлены на рисунке.

Наиболее существенное влияние на определяемое по предложенной методике значение $\mathcal{G}_{\kappa p}$ оказывает точность оценки приведенной скорости витания частиц транспортируемого материала — с увеличением \mathcal{G}_{sn} при прочих равных условиях минимум кривой $\mathrm{dP/dL} = \mathrm{f}(\mathcal{G})$ смещается вправо.