УДК 629.113

К выбору параметров агрегатов тормозной системы

Кишкевич П.Н., Тарбаев В.В.

Белорусский национальный технический университет

эффективного торможения прицепных средств, следующих в составе автопоезда, необходимо спроектировать гидравлический тормозной привод следящего лействия. Применение тормозного крана со следящим действием в контуре гидропривода тормозов позволит обеспечить необходимое быстродействие тормозных цилиндров прицепа, а также синхронность торможения тягача и прицепа.

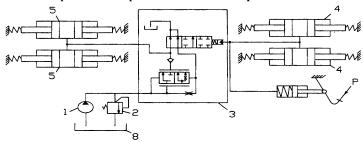


Рис.1.Принципиальная схема гидропривода.

1-насос; 2-предохранительный клапан; 3-тормозной кран; 4-колесные цилиндры тягача; 5-колесные цилиндры прицепа; 6-главный тормозной цилиндр; 7-тормозная педаль; 8-бак

Гидравлический привод (рис. 1) является следящим с отрицательной обратной связью. Из конструктивных соображений выбираются: ma-полная масса транспортного средства, кг; j_P -расчетное замедление автопоезда, м/с²; r_k -радиусы колес, м; h_c -центр масс в нагруженном состоянии, м; a_i -расстояния от передней и задней осей колес соответственно, м.

Определяем нормальные реакции на колесах

$$R = \frac{gm_a}{n(a+b)}(b + \frac{j_p}{g}h_c)$$
,где п-число колес на оси (n=2); g-

ускорение свободного падения, м/c².

Тогда тормозная сила на колесо будет

$$T = \frac{j_p}{g} R, H.$$

Следовательно, тормозной момент на колесе

$$M_P = Tr_K$$
, Hm.

Сила на штоке тормозного цилиндра F (движущая сила) выбирается больше внешней нагрузке F_H (реактивная сила) т.е.

$$F \ge F_H = \frac{M_P}{r_K} + m_n \, \frac{dV_n}{dt} \, \cdot$$

Площадь поршня A_n цилиндра определяется из равновесия сил, действующих на поршень

$$P_1 A_n \eta - P_2 (A_n - \frac{\pi d^2}{4}) = P_1 A_1 \eta - P_2 A_2 = F_H + m_n \dot{V}_n = \frac{M_P}{r_K} + m_n \frac{dV_n}{dt}$$

где P_1 , P_2 -давление в бесштоковой и штоковой полости цилиндра, Па; η -механический КПД цилиндра, принимают η =0,85...0,95; d-диаметр штока, м; $P_{\rm H}$ - сила нагрузки,

приведенная к поршню, H; $A_n = A_1 = \frac{\pi D^2}{4}$, m_n -приведенная

масса к поршню, кг; $\frac{dV_n}{dt}$ -ускорение поршня, м/с².

Сила трения R_o в цилиндре учитывается механическим КПД

$$\eta = 1 - \frac{R_o}{P_1 A_1}$$

Тогда необходимая площадь поршня будет

$$A_{n} = A_{1} = \frac{F_{H} + m_{n} \frac{dV_{n}}{dt} - P_{2} \frac{\pi d^{2}}{4}}{P_{1} \eta - P_{2}} = \frac{\frac{M_{P}}{r_{K}} + m_{n} \frac{dV_{n}}{dt} - P_{2} \frac{\pi d^{2}}{4}}{P_{1} \eta - P_{2}}$$

Определение инерционных и приведенных к поршню сил часто представляет большие затруднения, поэтому для статического расчета вводят коэффициент запаса по нагрузке σ , равный $\sigma = 1,2...1,6$.

$$P_{1}A_{1}\eta - P_{2}A_{2} = \sigma F_{H}$$
, где $A_{2} = A_{n} - \frac{\pi d^{2}}{4}$; $\sigma = 1 + m_{n} \frac{dV_{n}}{dt} / F_{H}$,

В этом случае площадь поршня имеет вид

$$A_{n} = A_{1} = \frac{\sigma \frac{M_{P}}{r_{K}} - P_{2} \frac{\pi d^{2}}{4}}{P_{1} \eta - P_{2}}$$

В литературе [1] приводится, что при максимальном КПД привода, полезная мощность при нагрузке максимальна.

$$P_{1}-P_{2}=\frac{2}{3}(P_{H}-P_{CR})$$
, где P_{H} -давление в нагнетательной магистрали насоса, $P_{H}=16\mathrm{M}\Pi a$; P_{CR} -давление в сливной магистрали, соединяющей тормозной кран с баком.

Для статического расчета принимают $P_{c\pi}$ =0; P_2 =0,05 P_H . При этом допущении значение P_1 =0,72 P_H . При подстановке значений давлений, получим расчетную площадь поршня гидроцилиндра тормоза.

В режиме оттормаживания выражение для определения площади поршня гидроцилиндра запишется в виде

$$P_2(A_n - \frac{\pi d^2}{4})\eta - P_1A_n = \sigma F_H.$$

Чтобы обеспечить рабочее давление P_1 и P_2 в тормозном гидроцилиндре при резком торможении, необходимо выбрать достаточные проходные сечения тормозного крана A_3 и трубопроводов A_7 . [2] С учетом потерь давления в гидролинии рабочее давление в тормозном цилиндре P_1 и P_2 определится

 $P_1 = P_H - \Delta P_3 - \Delta P_7$, $P_2 = \Delta P_7 - \Delta P_3 + \Delta P_{CR}$, где ΔP_3 -потери давления в тормозном кране; ΔP_7 -потери давления в трубопроводе. Эти потери определяются по методике, приведенной в [3]. По полученным значениям потерь давления, определяют проходные сечения тормозного крана и трубопроводов.

Литература

- 1. Метлюк, Н.Ф. Расчет и проектирование гидравлических следящих приводов и их элементов. Мн.: БГПА, 1993.
- 2. Тарбаев, В.В. Реализация механической характеристикижелаемого вида гидропривода с дроссельным регулированием.// Сб. ГГТУ.-2004.-C.23-26.
- 3. Башта, Т.М. и др. Гидравлика, гидромашины и гидроприводы. //М. "Машиностроение", 1982.