Внутренний эффект в фуллеритах

Кужир П. Г., Петренко С. И.

Белорусский национальный технический университет

К числу наиболее перспективных материалов, используемых в качестве эффективных электронно-оптических устройств, относятся фуллериты. Чистые фуллериты и их смеси с другими веществами являются полупроводниками с шириной запрещенной зоны 1,50 — 1,95 эВ. Это означает, что при облучении обычным видимым светом их электрическое сопротивление уменьшается. При этом квантовый выход по отношению к образованию электронно-дырочных пар составляет 0,9.

Цель данной работы - экспериментальное определение ширины запрещенной зоны ΔE фуллерита C_{60} , снятие вольтамперных характеристик этого фоторезистора при разной освещенности и определение его спектральной чувствительности. Если энергия фотонов равна или больше ширины запрещенной зоны ($h\nu \geq \Delta E$), электроны могут быть переброшены из валентной зоны в зону проводимости, что приведет к появлению добавочных электронов и дырок. Такое поглощение полупроводником кванта оптического излучения называется собственным. Зависимость коэффициента поглощения а от энергии hv или длины волны λ падающего света называется спектром поглощения. Собственная полоса поглощения простирается от очень малых длин волн и имеет четко выраженную границу λ_0 . Эта граница $\lambda_0 = hc/\Delta E$ соответствует минимальной энергии фотона, который может перевести электрон из валентной зоны в зону проводимости. Спектральная зависимость собственной проводимости σ_{th} отличается от кривой $\alpha = f(\lambda)$. Но положение максимума $\sigma_{\phi \, max}$ для случая собственного поглощения достаточно точно определяет край собственного поглощения λ_0 . Определив положение максимума кривой $\sigma_{\phi \, max}$, с помощью соотношения $hc/\lambda_0 = hv_0 = \Delta E$ рассчитываем ширину запрещенной зоны, а сняв световую характеристику, определяем спектральную чувствительность фоторезистора по формуле $\gamma = dI/d\Phi$.