УДК 621.165

Построение энергетической характеристики турбины ПТ-35/90 Витебской ТЭЦ

Попова Ю.Б.

Белорусский национальный технический университет

Энергетическая характеристика (ЭХ) промышленнотеплофикационной турбины (ПТ-турбины) представляет собой зависимость расхода теплоты Q_0 от трех основных параметров: электрической мощности N, нагрузок производственного Q_{π} и теплофикационного Q_{τ} отборов. Энергетические характеристики могут быть представлены в графическом и аналитическом видах.

Целью данной работы является разработка методики построения аналитической модели энергетической характеристики турбоагрегата ПТ-35-90/10 Витебской ТЭЦ, на основе исходной графической ЭХ (см. рис. ниже).

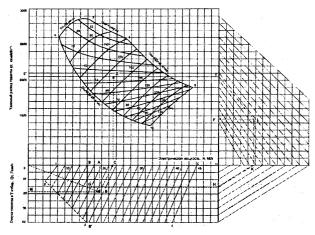


Рис. График зависимости удельного расхода теплоты на выработку электроэнергии от мощности и отпуска теплоты в производственный и теплофикационные отборы (ЭХ турбины ПТ-35-90/10)

Как видно из приведенного выше рисунка, графическая энергетическая характеристика турбины изображена в виде двух квадрантов. Верхний квадрант представляет собой зависимость удельного расхода теплоты от мощности турбины и производственного отбора (при этом теплофикационный отбор выключен). При включении теплофикационного отбора необходимо пользоваться нижним квадрантом и вводить соответствующие Тогда по заданным значениям, Q_n =45Гкал/ч, Q_r =18Гкал/ч, N=19,5МВт, удельный расход теплоты определяется в следующей последовательности. Для заданных значений N и Q_{\perp} (по прямым AB и MB) определяем фиктивное значение электрической мощности с поправкой на включение Т-отбора (по линии ВС). Затем, принимая во внимание производственный отбор и используя линию DC, определяем фиктивный удельный расход теплоты (по линии DE' или DE). Уточненное значение удельного расхода теплоты можно определить по дополнительным построениям: пересечение отрезков ОВ и SS' позволяет получить т. G (отрезок SG в масштабе определяет значение Q_{τ}/N). Из т. G по пути G-H-K-L методом параллельного переноса значение Q_{τ}/N переносится на вспомогательное правое верхнее поле. Из т. Е параллельно вспомогательным линиям снижения удельного расхода теплоты проводим EL. Ордината т. L (т. F) определяет значение удельного расхода теплоты $q_{\rm T}$ для заданных $Q_{\rm R}$, Q_{\star} , N. Расход теплоты Q_0 можно получить по формуле:

$$Q_0 = Q_{\rm ff} + Q_{\rm ff} + q_{\rm ff} \cdot N$$
.

Для построения аналитической модели исходную графическую ЭХ предлагается рассматривать в виде двух поверхностей 1-2-3-4-5 и 6-7-8-9-10. Тогда приведенный ниже алгоритм позволит для любого сочетания нагрузок Q_{π} , Q_{τ} , N определить расход теплоты на турбину в свежем паре, если, данный режим является допустимым.

Алгоритм построения аналитической модели НЭХ:

1. Определить пределы изменений нагрузок: $Q_{\pi} \in [0;110]$ Гкал/ч, $Q_{\pi} \in [0;40]$ Гкал/ч, $N \in [8;46]$ МВт.

- Определить зависимость $Q_{\mathbf{r}}^{\max} = f(N)$:
- если $N \in [5;16]$ MBт аппроксимация линии 2-3;
- если $N \in (16;39,5] {\rm MBT}$ аппроксимация линии 3-4 (в данном случае $O_{\tau}^{\text{max}} = 40 \text{MBt}$ на всем участке);
 - если $N \in (39,5;46]$ MBт аппроксимация линии 4-5.
 - 3.
 - Определить зависимость $N_{\phi} = f(N,Q_{\tau})$. Определить зависимость $Q_{\pi}^{\min} = f(N_{\phi})$:
 - если *N*_ф∈ [8,2;16,8]МВт аппроксимация линии 6-7;
- если $N_{\Phi} \in (16,8;26,8]$ MBт аппроксимация линии 7-8 (в данном случае $Q_n^{\min}=0$ на всем участке);
 - если $N_{\Phi} \in (26,8;45]$ MBт аппроксимация линии 8-9.
 - Определить зависимость $Q_{\pi}^{\text{max}} = f(N_{\phi})$: 5.
 - если $N_{\Phi} \in [8,2;33,6]$ MBт аппроксимация линии 6-10;
 - если $N_{\Phi} \in (33,6;45]$ MBт аппроксимация линии 10-9.
- Определить зависимость $D_0 = f(N_{\oplus}, Q_{\pi})$ для отсечения
- запрещенных режимов при условии, что $D_o \in [70;251]$ т/ч.
 7. Определить зависимость $D_{\text{вх}}^{\text{чСД}} = f(N_{\Phi}, Q_{\pi})$ для отсечения запрещенных режимов при условии, что $D_{\text{вх}}$ = [25;95]т/ч.
- Определить зависимость $q_{\phi} = f(N_{\phi}, Q_{\pi})$, учитывая, что 8. $q_{\phi} \in [1350;2850]$ ккал/(кВт-ч).
- Определить зависимость $\Delta = f(N, Q_T)$. Для рассмотренного выше примера данная зависимость позволит получить расстояние SG.
 - Определить зависимость $q = f(q_{\phi}, \Delta)$. 10.

данного алгоритма осуществлялась Реализация проведения серии аппроксимаций, указанных выше поверхностей и ограничивающих их линий с использованием встроенных функций множественной регрессии автоматизированной системы MathCAD 2000. Также разработано и внедрено программное обеспечение для автоматизации процесса построения энергетической характеристики турбины ПТ-35-90/10 Витебской ТЭЦ в аналитическом виде. Разработанное программное обеспечение позволяет вычислять значение расхода теплоты Q_0 как для заданных значений электрической мощности, производственной и теплофикационной нагрузок, так и для их интервалов.