УДК 51(076.2)

Развитие математического мышления учащихся при подготовке к тестированию

Кленовская И.С.

Белорусский национальный технический университет

Известно, что применение тестов при проведении вступительных испытаний имеет целью отбор наиболее подготовленных для обучения абитуриентов, на нем проверяются не только их знания, но и способность к обучению в высшей школе. Тестирование проверяет не только владение определенными набором математических умений, но и умение анализировать ситуацию, рассуждать, делать выводы, проверять правильность полученного результата, применять знания в нестандартной ситуации.

Не случайно редкий вариант теста обходится без задачи с параметрами. Решение уравнений, неравенств, задач с параметрами открывает перед учащимися значительное число эвристических приемов общего характера, ценных для математического развития личности, применимых в исследованиях и на другом математическом материале. Это касается и идеи симметрии аналитических выражений, и применения свойств функции в неожиданных ситуациях, в том числе нестандартных для школьной математики применениях средств математического анализа.

В статье рассмотрены особенности решения тригонометрических уравнений и неравенств с параметром, которые обладают свойством алгебраической симметрии, т. е. не меняют своего вида при замене переменных местами, изменения их знаков и т.п.

При решении таких примеров выделяют два этапа:

- 1) используя условия единственности решения и свойство симметрии выражения, находятся необходимые условия на параметры задачи;
- 2) проверяется достаточность. Для этого делается подстановка параметров и для каждого проверяется выполнение условия задачи. ПРИМЕР 1. Найти все значения параметра α , при которых уравнение $x^2 2\alpha \sin(\cos x) + \alpha^2 = 0$ имеет единственное решение. Решение. Заметим, что $y = x^2$ и $y = \sin(\cos x)$ четные функции. Следовательно, левая часть четная функция.

Значит, если x_0 - решение уравнения, то и $(-x_0)$ - также решение. Если x_0 - единственное решение уравнения, то, необходимо, чтобы $x_0 = 0$.

Найдем возможные значения параметра α , учитывая, что- бы $x_0=0$ было корнем уравнения

$$0^2 - 2\alpha \sin(\cos 0) + \alpha^2 = 0 \Leftrightarrow \alpha = 0, \alpha = 2\sin 1$$
.

Проверим, удовлетворяют ли отобранные α условию задачи.

1)
$$\alpha = 0 \Rightarrow x^2 = 0 \Rightarrow x = 0$$
. 2) $\alpha = 2\sin 1$,

уравнение примет вид

$$x^2 - 2\sin 1\sin(\cos x) + 4\sin^2 1 = 0 \Leftrightarrow x^2 + 4\sin^2 1 = 4\sin 1\cdot\sin(\cos x)$$

Очевидно, что $4\sin^2 1 \ge 4\sin 1\cdot\sin(\cos x)$ и

$$x^2 + 4\sin^2 1 \ge 4\sin^2 1.$$

Последнее уравнение равносильно системе

$$\begin{cases} x^2 + 4\sin^2 1 = 4\sin^2 1, \\ 4\sin 1 \cdot \sin(\cos x) = 4\sin^2 1. \end{cases} \Leftrightarrow \begin{cases} x = 0, \\ \sin(\cos x) = 1. \end{cases} \Leftrightarrow x = 0.$$

Other: $\alpha = 0$, $\alpha = 2\sin 1$.

Часто, чтобы увидеть симметрию, надо преобразовать выражение.

ПРИМЕР 2. Найти все значения параметра lpha , при которых не-

равенство
$$\cos x - 2\sqrt{x^2 + 9} \le -\frac{x^2 + 9}{\alpha + \cos x} - \alpha$$
 имеет единствен-

ное решение.

Решение. Перепишем неравенство в виде

$$\frac{(\alpha + \cos x)^2 - 2(\alpha + \cos x)\sqrt{x^2 + 9} + (x^2 + 9)}{\alpha + \cos x} \le 0.$$

$$\frac{(\alpha + \cos x - \sqrt{x^2 + 9})^2}{\alpha + \cos x} \le 0.$$
Функция $y = \frac{(\alpha + \cos x - \sqrt{x^2 + 9})^2}{\alpha + \cos x}$ - четная.

Значит, если x_0 - решение неравенства, то и $(-x_0)$ - также решение. Если x_0 - единственное решение, то $x_0=0$.

Найдем возможные значения параметра α .

$$\frac{(\alpha+1-3)^2}{\alpha+1} \le 0 \Leftrightarrow \begin{bmatrix} \alpha=2, \\ \alpha < -1. \end{bmatrix}$$

Проверим достаточность.

1) $\alpha = 2$. Неравенство примет вид

$$(2 + \cos x - \sqrt{x^2 + 9})^2 \le 0 \iff 2 + \cos x - \sqrt{x^2 + 9} = 0$$
.

Перепишем последнее уравнение $2 + \cos x = \sqrt{x^2 + 9}$. Так как для любых значений переменной x выполняются следующие неравенства $2 + \cos x \le 3$ и $\sqrt{x^2 + 9} \ge 3$, то последнее уравнение равносильно системе

$$\begin{cases} 2 + \cos x = 3, \\ \sqrt{x^2 + 9} = 3. \end{cases} \Leftrightarrow \begin{cases} \cos x = 1, \\ x = 0. \end{cases} \Leftrightarrow x = 0.$$

Следовательно, при $\alpha=2$ неравенство имеет единственное решение $x_0=0$.

2)
$$\alpha \prec -1$$
. Неравенство
$$\frac{\left(\alpha + \cos x - \sqrt{x^2 + 9}\right)^2}{\alpha + \cos x} \leq 0 \Leftrightarrow \left(\alpha + \cos x - \sqrt{x^2 + 9}\right)^2 \geq 0,$$

для всех действительных x. Следовательно, достаточность не выполняется.

Ответ: $\alpha = 2$.

Таким образом следует отметить, что применение нестандартных методов решения тригонометрических уравнений и неравенств с параметрами позволяет не только успешно решать тестовые задания данного раздела математики, но и способствует развитию математического мышления и анализа учащихся, что позволит им реализовать свои творческий потенциал при подготовке к тестированию и дальнейшем изучении математики в вузе.