УДК 51

Конструктивные задачи стереометрии как средство развития пространственных представлений

Тухолко.Л.Л.

Белорусский национальный технический университет.

Успешное овладение студентами техническими специальностями во многом зависит от уровня развития их пространственных представлений и навыков конструирования геометрических объектов, поэтому при подготовке абитуриентов важно уделить рассмотрению задач стереометрии особое внимание [1].

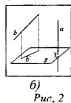
Одним из эффективных средств развития пространственных представлений являются конструктивные задачи, связанные с построением геометрических объектов в пространстве. Решение таких задач способствует развитию навыков моделирования, формированию графической культуры, а так же развитию образного и логического мышления, необходимых составляющих любой познавательной деятельности.

Однако решение конструктивных задач вызывает достаточные трудности, связанные с особенностями пространственного воображения, преодолеть которые можно путём проведения параллели между решением общей, «опорной» задачи, и конкретной, связанной с определённой моделью многогранника, направленной на выявление метрических характеристик этого многогранника. Отметим, что решение конструктивных задач полезно сопровождать пошаговыми иллюстрациями [2].

Опорная задача. Найдите расстояние между скрещивающимися прямыми *а* и *b*.

вающимися прямыми а и *b* (рис. 1, *a*) необходимо построить плоскость проходящую через прямую в параллельно прямой а (рис. 1, б), и расстояние найти любой точки X прямой a

до плоскости α (рис. 1, θ). Заметим, что отрезок XK, определяющий расстояние между скрещивающимися прямыми а и в лежит в плоскости β , которая перпендикулярна прямой a, и, следовательно, плоскости α . Отсюда следует построение.



Построение.

- 1) Плоскость $\beta \perp a$, $a \cap \beta = X$ (puc. 2, a).
- 2) Прямая b' ортогональная проекция прямой b на плоскость β (рис. 2, δ).

3) $XK \perp b'$ ($K \in b'$) — искомое расстояние между скрещивающимися прямыми a и b (puc. 2, a).

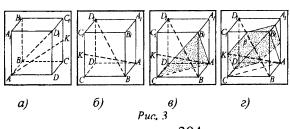
Доказательство. Плоскость $\alpha = (b;b')$ параллельна прямой a (так как содержит проектирующие прямые, параллельные прямой a), отрезок $XK \perp \alpha$ (так как $XK \perp b'$ по построению, XK перпендикулярен проектирующим прямым, так как $XK \subset \beta$, $\beta \perp a$).

Исследование. Задача всегда имеет единственное решение, так как каждое из построений выполнимо единственным образом.

Подробное решение опорной задачи позволяет осуществить повторение известных фактов в контексте нового материала и подготовку к решению содержательных задач.

 $3a\partial a$ ча. Найдите расстояние между диагональю BD_1 куба $ABCDA_1B_1C_1D_1$ и прямой AK, где K – середина ребра CC_1 , длина которого 1см.

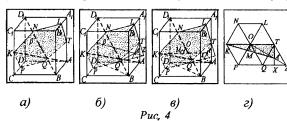
Анализ. Выберем наиболее удачный ракурс для выполнения изображения куба (рис. 3, a, δ). Согласно алгоритму построения необходимо выявить прямую, для которой удобно построить перпендикулярную ей плоскость. Известно, что диагональ BD_I куба перпендикулярна плоскости CAB_I (рис. 3, a), но спроектировать на эту плоскость прямую KA затруднительно, поэтому



проведём плоскость β , параллельную плоскости CAB_I через точку K, и спроек-

тируем на эту плоскость прямую KA (рис. 3, ε).

Решение. 1) Плоскость $\beta||(CAB_1)$, $K \in \beta$. Правильный шестиугольник KPQTLN— сечение куба плоскостью β (рис. 4, a).



2) Отрезок KA' - ортогональная проекция наклонной KA на плоскость β (AA' - высо-

та правильной пирамиды AQTZ (рис. 4, δ , ϵ)).

3) Диагональ $D_1B \cap \beta = O$, $OM \bot KA'$ ($M \in KA'$), OM — искомое расстояние (рис. 4, ε).

4)
$$\Delta KTA' \sim \Delta KMO$$
, следовательно, $\frac{OM}{TA'} = \frac{KO}{KA'}$, отсюда $OM = \frac{TA' \cdot KO}{KA'}$. Здесь $KO = PQ = \frac{1}{2}AC = \frac{1}{2}AB\sqrt{2} = \frac{\sqrt{2}}{2}$ (см), $TA' = \frac{2}{3}TX = \frac{2}{3}TQ\frac{\sqrt{3}}{2} = \frac{\sqrt{2}}{2\sqrt{3}} = \frac{1}{\sqrt{6}}$ (см), $KA' = \sqrt{KT^2 + TA'^2} = \sqrt{\left(\sqrt{2}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2} = \sqrt{\frac{13}{6}}$ (см). В результате $OM = \frac{TA' \cdot KO}{KA'} = \frac{\sqrt{2} \cdot \sqrt{6}}{\sqrt{6} \cdot 2 \cdot \sqrt{13}} = \frac{\sqrt{26}}{26}$ (см).

Представляет интерес разработка системы зацеплённых задач, которые определяют окрестность опорной задачи и позволяют решать вопрос о развитии пространственных представлений учащихся.

- [1] Якиманская И.С. Развитие пространственного мышления школьников. М.: Педагогика, 1980.-240с.
- [2] Шлыкаў У.У. Аб ролі графічнага мадэліравання пры вывучэнні геаметрыі //Народная асвета. 1999. №10. С.121 128.