Исследование поведения минимальной амплитуды колебаний при изменении режимов резания необходимо для оценки влияния амплитуды на точность и качество обработанных точением с асимметричными колебаниями инструмента поверхностей.

ЛИТЕРАТУРА

- 1. Коновалов, Е.Г. Осциллирующее точение / Е.Г. Коновалов, А.В. Борисенко. Минск, АН БССР, 1960. 32 с.
- 2. Вульф, А.М. Резание металлов / А.М. Вульф. 2-е изд. М.: Машиностроение, 1973. 96 с.

УДК 621.78.001

Шматов А.А., Девойно О.Г.

УПРОЧНЕНИЕ ИНСТРУМЕНТАЛЬНЫХ МАТЕРИАЛОВ В ВОДОДИСПЕРСНЫХ СРЕДАХ

БНТУ, Минск

The structure and properties of tool materials, subjected of the thermo-hydrochemical treatment, are examined in the paper. The process involves (1) the chemical treatment in an special aqueous suspension of nano-sized oxides and (2) subsequent heat treatment. Treatment with optimal regime permits decreasing the friction coefficient of the hard alloy and steel surface in 3.8-8.3 as compared with untreated. Developed technology permit increasing the wear resistance of cutting and stamp tools by the factor of 1.3-4.5 in comparison with traditional its.

Цель настоящей работы состояла в разработке и исследовании нового низкотемпературного процесса упрочнения стального, твердосплавного и алмазного инструментов для повышения их стойкости.

Разработанный процесс термогидрохимической обработки (ТГХО) осуществляли путем проведения двух операций: (а) гидрохимической обработки поверхности инструментальных материалов в вододисперсных составах на базе оксидов

при температуре 90-100 °C в течение 20-60 минут; (б) последующей изотермической выдержки в интервале температур 150-1050 °C в течение 0,5-1 часа.

Результаты исследований. В работе исследованы закономерности формирования структуры поверхности и свойства инструментальных материалов, подвергнутых ТГХО в дисперсных составах на базе оксидов.

Установлено, что процесс ТГХО инструментальных материалов носит двойственный характер упрочнения: (1) на поверхности формируются твердосмазочные покрытия с дискретной наноструктурой, (2) в приповерхностной зоне создаются поля высоких остаточных макронапряжений сжатия (180-470 МПа), сравнимых с уровнем напряжений создаваемых методами пластической деформации (ППД, МГПД, др.).

Проведена оптимизация режимов и составов ТГХО, в результате которой коэффициент трения упрочненной поверхности стали снижается до 8,3 раз, а твердого сплава — до 3,8 раза, по сравнению с исходным состоянием.

Сравнительный анализ триботехнических свойств упрочненной стали и твердого сплава показал, что в условиях сухого трения скольжения и воздушной атмосферы (а) твердосмазочные покрытия, полученные при ТГХО в вододисперсных средах на основе оксидов имеют лучшие антифрикционные свойства, чем в средах на основе карбидов, нитридов и углеродных (в т.ч. алмазных) материалов, (б) оксидосодержащие покрытия, гидрохимически (ГХ) осажденные на стали, превосходят по коэффициенту трения (f=0,07-0,18), известные CVD и PVD покрытия (f=0,1-0,6), (в) увеличение числа дисперсных антифрикционных компонентов в водной среде ведет к снижению коэффициента трения ГХ покрытий.

Исследования кинетики оптимизированного процесса ТГХО показали, что скорость роста оксидосодержащих слоев на стали, полученных при химической обработке составляет 200-250 нм/час, а на твердом сплаве 5-7 мкм/час. При этом

оптимальный размер зерен составляет 30 нм. При последующем нагреве ГХ покрытий размер их зерен с температурой увеличивается, но до 500 °C преобладает наноразмерная структура слоев (рис.1). При нагреве выше 500 °C формируется волокнистая нанокомпозитная структура, которая содержит отдельные полиразмерные кристаллы (размером более 100 нм). Полученные нанокомпозитные покрытия обладают высокой термической стабильностью, сохраняя низкий коэффициент трения (f=0,09) до 1030-1050 °C.

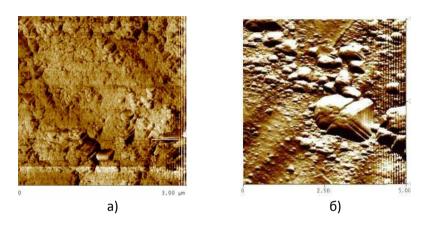


Рисунок 1 — Структура поверхности стали У8 после гидрохимической обработки в течение 1 ч. (а) и последующего нагрева до 1000°C (б) Состав вододисперсной среды — оптимальный на основе TiO₂+MoO₃

Изучено влияние параметров процесса ТГХО на стойкость стального, твердосплавного и алмазного инструментов. Отмечено, что стойкость этих инструментов больше зависит от гидрохимической обработки и меньше от термообработки. При ТГХО наилучшие эксплуатационные свойства инструментов достигаются при максимальной температуре ванны и оптимальных параметрах ее кислотности и времени обработки;

влияние времени и температуры термообработки носит параболическую зависимость.

Таблица 1 – Результаты испытаний инструментов, подвергнутых TГХО

Вид	Инструмен-	Место испытаний	Стой-
инструмента	танальный	инструмента	кость
	материал		инстру-
	-		мента
			K_W
метчики	б.р.	«VUHZ» (Чехия), «Daewoo»	2 – 4.1
	стали*	(Корея), «САЛЮТ», «УМ-	
		ПО», «ПМЗ» (РФ), «БелАЗ»,	
		«MT3»	
ленточные пилы	б.р. стали	«VUHZ»(Чехия)	2.5 - 3 $1.8 - 2.9$
сверла	б.р. стали	«PS»(Словакия), «VUHZ»	1.8 - 2.9
		(Чехия), «Мотовело», «Бе-	
		лАЗ»	
зенкера	б.р. стали	«САЛЮТ», «Искра», ВТЗ	1.8 - 3
		(РФ)	
развертки	б.р. стали	«Мотовело», «БАТЭ»,	1.5 - 2.7
		«АГУ»	
протяжка	б.р. стали	«Мотовело»	2 - 2.5
резцы	б.р. стали	«Мотовело», «БелАЗ»	1.3 - 1.9
долбяки	б.р. стали	«Мотовело»	1.6 - 2.1
фрезы	б.р. стали	«Мотовело», «БелАЗ»,	2 - 4.5
		«MT3»	
ножи для обработ-	б.р. стали	«Skloplast»(Словакия)	1.9 - 2.5
ки			
стекловолокна			
штампы для холод-	штамп.	«ZVL-LSA» (Словакия),	1.8 - 2.5
ного деформирова-	стали**	«БелАЗ»	
R ИН			
сверла для обра-	алмазсо-	«Индмаш»	3 – 4
ботки стекла	держ.***		
шлифовальные	алмазсо-	«БелАЗ», «МПЗ»	1.3 - 2.1
чашки	держ.		
режущие пластины	твердые	«САЛЮТ» (РФ), «БелАЗ»,	1.5 - 3.9
для токарной обра-	сплавы	«Мотовело», «БМЗ», «АГУ»	
ботки			
режущие пластины	твердые	«Мотовело»	1.5 - 2.5
для фрезерования	сплавы		
волоки для	твердые	«БМЗ»	1.5 – 2
металлокорда	сплавы		70

Применение результатов исследований. Результаты производственных испытаний свидетельствуют о том, что ТГХО с использованием оптимальных нанооксидных составов позволяет увеличить стойкость различных видов стального, твердосплавного и алмазного инструментов в 1,3-4,5 раза, по сравнению со стандартным.

Выводы. Процесс термогидрохимической обработки имеет двойственный характер упрочнения: на поверхности инструментального материала осаждается наноструктурированное твердосмазочное покрытие на базе оксидов, а в подслое создается зона высоких напряжений сжатия, сравнимых с уровнем напряжений, создаваемых методами ППД.

В результате оптимизации процесса термогидрохимической обработки коэффициент трения стальной поверхности снизился в 8,3 раза, а твердого сплава — в 3,8 раза, по сравнению с исходным состоянием. Отмечена высокая термическая стабильность нанокомпозитных структур полученных покрытий, которые после нагрева до 1050° С сохраняют низкий коэффициент трения (f = 0.09) при отсутствии смазки.

Разработанный способ термогидрохимической обработки материалов повышает стойкость режущих и штамповых инструментов в 1,3-4,5 раза, по сравнению со стандартными.