Конструкции георадаров и опыт их применения

Баранчик Д. В., выпускник кафедры «Автомобильные дороги» ФТК БНТУ (Научный руководитель – Ходан Е.П., старший преподаватель) Белорусский национальный технический университет, г. Минск

Георадиолокационное зондирование используется в дорожном хозяйстве при диагностике улиц, инженерно-геологических и инженерно-гидрологических изысканиях для разработки проектов строительства, реконструкции и ремонта улиц населенных пунктов и искусственных сооружений, а также для контроля качества выполненных работ. Оно проводится с использованием аппаратных и программных средств, специальных приборов — георадаров. Для зондирования среды используются георадары непрерывного и импульсного действия

Георадары стали гораздо чаще использоваться в дорожнойстроительной отрасли в таких странах как: США, Канада, Франция, Германия, Швеция, Великобритания, Финляндия, Латвия, Эстония и другие. Они также находиться в процессе внедрения в России и Белоруссии. Рассмотрим какие георадары используют за рубежом и изучим их характеристики.

Георадар «ЛОЗА» имеет массу до 3 кг, потребление энергии - 4 Вт. Технические возможности георадара, по данным разработчиков, приведены в таблице 1.

Таблица 1. Технические возможности георадара

Характеристики	Глубина зондиро-	Разрешение по
однородной среды	вания, м	глубине, м
Сухой песок	Более 50	0,1
Влажный песок	25	0,1
Глина	8	0,1

Главная отличительная черта георадара «ЛОЗА» — это высокий реальный потенциал зондирования (не ниже 120 дБ). По данным

разработчиков, принятые технические решения, используемые в этом георадаре, практически лишены помех, создаваемых аппаратурой, что дает нам оценить результаты сканирования непосредственно при съемке в полевых условиях. В комплектацию этого георадара входит дополнительное оборудование, позволяющее проводить измерения в закрытых помещениях, а также осуществлять подводное зондирование по дну водоема, в том числе и морского.

Данный георадар предназначен для получения геологического строения выбранных под строительство участков; определения физического состояния грунтов, наличия в них раз уплотнений, полостей и т.д.; нахождения подземных сооружений и коммуникаций определения их состояния; определения границ грунтовых и техногенных вод; просвечивания грунтовых массивов под фундаментами сооружений.

Дорожный георадиолокатор «ДРЛ». Отличительная черта данного георадара является воздушная (рупорная) антенна, которая поднята над поверхностью дороги на высоту 0,1-0,3 м. Георадар «ДРЛ», как правило, устанавливается на автомобиле и предназначается для оценки однородности среды, определения границ и толщины слоев дорожной одежды и верхней части земляного полотна. Глубина сканирования определяется центральной частотой антенного блока и составляет от 0,00 до 3,00 м. Питание от бортовой сети автомобиля - 12 В.Основные технические характеристики георадара «ДРЛ» приведены в таблице 2.

Таблица 2. Основные технические характеристики георадара «ДРЛ»

			1 7	1 71
Центральная частота, МГц	Глубина зон- дирования, м	Габаритные размеры, см	Разрешающая способность, м	Масса, кг
2000	До 0,50	600'400'800	0,02-0,03	6
1000	До 1,5	600'400'800	0,04	6
250	До 3 (5*)	950′1000′1000	0,25	12

Радар «ЗОНД-12С», он с помощью сменных антенных модулей обеспечивает возможность зондирования в диапазоне частот от 28 МГц до 2 ГГц. Технические характеристики георадара приведены в таблице 3.

Таблица 3. Технические характеристики георадара

Центральная частота антенного блока, МГц	Габаритные размеры, см	Масса, кг
2000	27′13′13	1,5
1000	30′20′17	4,0
000	43′22′4	2,0
500	69′32′4	4,0
300	98′52′4	10,0
28-150	*	3,0-6,0

Этот георадар используеться для определения уровня грунтовых вод, глубины залегания коренных пород, степени загрязнения почв; в поиске минеральных ископаемых, зарытых в грунт кабелей, проводов, труб и т.п.; в обнаружении пещер и пустот, профилировании дна водоемов и рек; а также в гляциологии; археологии; судебной медицине; горных исследованиях.

Георадар SIR-2000 «просвечивает» грунт на глубину до 20-30 м. Это наиболее быстрый и универсальный из существующих георадаров, позволяющий работать, как и SIR-20 с экранированными (от 100 МГц и выше), так и с неэкранированными (до 100 МГц) антенными блоками, технические характеристики которых приведены в табл. 4.

Таблица 4. Технические характеристики

Модель	Глубина кэ-	Центральная частота, МГц	Габаритные	Масса, кг
	ширования, м	частога, IVII ц	, , ,	
5100	До 0,50	1500	3,8′10′16, 5	1,8
4108	До 1	1000	60′22′1 9	5,0
3101D	До 1	900	8′18′33	2,3
5103	До 3	400	30′30′20	4,6
5106	До 9	200	60′60′30	20
3207AP	До 15	100	25′96′200	28
Suberho-70	До 25	70	120′15′26	4
Suherho-40	До 35	40	200′15′26	5
3200MLF	До 40	16, 20, 35, 40, 80	120-600*	17-25

Полученные в полевых условиях результаты сканирования обрабатываются в камеральных условиях с помощью программы RADAN, позволяющей производить анализ глубины залегания, осуществлять масштабирование и привязку к объектам па местности. По результатам сканирования, но серии параллельных профилей можно получить трехмерное изображение.

Применение георадаров при обследовании автомобильных дорог помогает с достаточной точностью определять толщину каждого из слоев дорожной одежды, уровень грунтовых вод, однородность материалов, зоны локальных отклонений (пустоты, разуплотненные грунты) и многое другое. Так же при обследовании улиц можно определить расположение подземных инженерных коммуникации, что является очень полезной функцией при использовании установки.

Пришло время, когда георадарные установки целесообразно включать в каждый проект строительства, реконструкции и ремонта автомобильных дорог.

Литература

- 1. Обзорная информация «Опыт применения георадарных технологий в дорожном хозяйстве. Обзорная информация» [Электронный ресурс] —Ohranatruda.ru Режим доступа: https://ohranatruda.ru Дата доступа: 27.10.2021
- 2. Обзорная информация [Электронный ресурс]. COMPLEXDOC нормативный документ. Режим доступа: http://www.complexdoc.ru: 19.11.2019.
- 3. ДМД 02191.5.005-2007 «Рекомендации по использованию георадарных технологий для мониторинга автомобильных дорог и искусственных сооружений»
- 4. Георадарные технологии для мониторинговых наблюдений за участками автомобильных дорог [Электронный ресурс]. -Геотех 2003-2015. Режим доступа: http://www.geotech.ru:19.11.2019.
- 5. Георадары, дороги-2002: МатериалыМеждунар. науч.-практ. конф. / Под ред. А.М. Кулижникова. Архангельск: Изд-воАГТУ, 2002