УДК 004.65

СОЗДАНИЕ СОБСТВЕННОЙ БАЗЫ ДАННЫХ НА РҮТНОЙ ДЛЯ НАХОЖДЕНИЯ ИСХОДНОЙ ИНФОРМАЦИИ ПО МАРКАМ ПРОВОДОВ CREATING YOUR OWN DATABASE ON PYTHON TO FIND ORIGINAL INFORMATION ON WIRE BRANDS

К.А. Марчук

Научный руководитель – Е.М. Гецман, старший преподаватель Белорусский национальный технический университет, г. Минск

K. Marchuk

Supervisor – E. Hetsman, Senior Lecturer Belarusian national technical university, Minsk

Аннотация: создание свое базы данных на Python, для ускорения процесса поиска нужной информации из справочников и книг.

Abstract: creating your own database in Python, to speed up the process of finding the necessary information from reference books and books.

Ключевые слова: СУБД, SQL, базы данных.

Keywords: DBMS, SQL, databases.

Введение

В действительности, при поиске информации для решения задач многие сталкиваются с необходимостью использовать справочную литературу, что отнимает много времени, а было бы неплохо иметь всю необходимую информацию в виде определенной таблицы, к которой можно было бы своевременно обратится и получить всю информацию либо же интересуемую. Решение данной проблемы состоит в создании отдельной собственной базы данных. В современном мире насчитывается большое количество средств, хранения информации. Одним предназначенных ДЛЯ распространенных способов являются базы данных, для работы с которыми используются различные системы управления. Данный способ хранения предполагает, что все данные четко структурированы и занесены в специальные таблицы. Они, в свою очередь, состоят из столбцов-атрибутов определенного типа данных [1]. В данной работе демонстрируются возможности Python при создании собственной базы данных при помощи библиотеки sqlite3.

Основная часть

Электрические кабели и провода – основа энергетической систем. Решения нахождения предусматривает данных (технических типовых задач характеристик) из справочной литературы по конкретной марке провода либо кабеля, что в свою очередь затрачивает много времени. В качестве примера создадим упрощенную таблицу электрических характеристик провода марки АС co значением удельного активного разных сечений реактивного сопротивления. Данный код служит для заполнения базы данных вручную.

```
import sqlite3
with sqlite3.connect('server.db') as data: #создаем базу
    sql = data.cursor()#обращаемся к экземпляру класса Cursor
    # создаем таблицу провод
    sql.execute("""CREATE TABLE IF NOT EXISTS provod(
    mark TEXT,
    ro TEXT.
    x0 TEXT
    ) """)
    data.commit() # сохраняем изменение
    # Получаем исходные данные
   mark = input('Марка провода:')
   r0 = input ("Сопротивление активное:")
    x0 = input ("Сопротивление реактивное:")
    #SQL запрос (получаем марку провода)
    sql.execute(f"SELECT mark FROM provod WHERE mark = '{mark}'")
    if sql.fetchone() is None:
        sql.execute(f"INSERT INTO provod VALUES (?,?,?)", (mark,r0,x0))#добавляем данные, если выполняется условие
        data.commit()
       print("Зарегестрировано")
       print("Такая запись уже есть")
```

Рисунок 1 – Код для создания своей базы данных проводов для ЛЭП

В результате выполнения программы в директории проекта появилась база данных server.db, содержащая таблицу provod, которая и содержит информацию о электрических характеристиках проводов марки АС разных сечений со значением удельного активного и реактивного сопротивления. (рис.2).

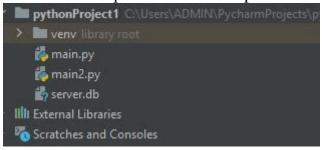


Рисунок 2 – База данных в директории

Для того чтобы считать базу данных следует воспользоваться следующим кодом (рис.3):

```
import sqlite3
with sqlite3.connect('server.db') as data:
    sql = data.cursor() # обращаемся к экземпляру класса Cursor
    for i in sql.execute("SELECT * FROM provod"): # считаем всю базу данных
        print(i)
```

Рисунок 3 – Код для считывания всей базы данных

В результате выполнения кода на (рис.3), получим информацию о электрических характеристиках проводов марки АС, которая и была предварительно занесена (рис.4):

```
('AC - 70/11', '0.46', '0.276')
('AC - 95/16', '0.33', '0.234')
```

Рисунок 4 – Данные из консоли

Полученную информацию можно сохранить в блокнот, Microsoft (MS)

Excel или MS Word и в дальнейшем вывести на печать. Допустим необходимо найти исходную информацию (электрические характеристики) по проводу марки AC 90/11, а база данных может хранить в себе массу информации

и без сортировки или фильтров потребуется больше времени на поиск необходимой информации, нежели со справочником. С помощью кода (рис.5) следует взять с созданной базы данных только конкретную информацию.

```
import sqlite3
with sqlite3.connect('server.db') as data:
    sql = data.cursor() # обращаемся к экземпляру класса Cursor

mark = input('Mapka провода:')

sql.execute(f"SELECT mark FROM provod WHERE mark = '{mark}'")
if sql.fetchone() is None:
    print("HE зарегестрировано")
else:
    for i in sql.execute(f"SELECT mark,r0,x0 FROM provod WHERE mark = '{mark}'"):
        print(i)
```

Рисунок 5 – Код для считывания нужной информации

Заключение

В данной работе были продемонстрированы возможности Python для работы с базами данных при помощи библиотеки sqlite3, при этом их можно использовать не только для хранения данных из справочников и технической документации, но и для хранения информации личного характера, предварительно зашифрованной. Использование информации с базы данных куда удобнее, чем использование информации с блокнота, так как нет нужды вносить параметры в блокнот используя справочник, так как информация уже занесена и ее необходимо лишь достать.

Литература

- 1. SQLite // [электронный ресурс] Режим доступа: https://lecturesdb.readthedocs.io/databases/sqlite.html. Дата доступа: 22.10.2021.
- 2. SQL команды [Электронный ресурс] Режим доступа: https://zametkinapolyah.ru/zametki-o-mysql/chast-2-2-pervoe-znakomstvo-s-sqlite3-sozdanie-baz-dannyx-sqlite3-rasshirenie-fajlov-baz-dannyx-v-sqlite3.html. Дата доступа: 22.10.2021.