ε₂ – относительная диэлектрическая проницаемость изоляционного материала.

Найдем усиление напряженности электрического поля в области дефекта изоляционного материала с учетом (1) и (2)

$$K_E = \frac{E_2}{E_1} = \frac{(\varepsilon_1 + \varepsilon_2)\varepsilon_2}{2\varepsilon_1\varepsilon_2} \cong \frac{\varepsilon_2(1 + \varepsilon_2)}{2}.$$
 (3)

Как следует из (3), при изменении ε_2 от 2 до 10 $K_E \cong 3-50$. Следовательно, появление локальных участков повышенной напряженности E_x свидетельствует о нарушении целостности структуры контролируемых изоляционных материалов, причем области локальных полей являются местами структурных дефектов этих материалов.

При контроле устройством диагностики качества структуры изоляционных изделий выносной элемент - твердотельный ПЭП, либо на дискретной МДП-структуре перемещается по поверхности находящегося под положительным потенциалом металлического стержня. Электрическое поле, создаваемое потенциалом стержня, периодически с частотой 1 кГц воздействует на стадии экспонирования на измерительный электрод ИЭ2 в режиме контроля качества структуры изоляционных материалов. На выходе ПЭП по обоим каналам формируется переменное напряжение $U_{\scriptscriptstyle Bblx} = K \cdot E_x$, частотой 1 кГц, где E_x – локальная напряженность электрического поля контролируемого объекта. Напряжение сигнала фильтруется от сетевых и высокочастотных помех сглаженным фильтром, настроенным на рабочую частоту электронного коммутатора. Напряжение сигнала оптимального значения по амплитуде (0,5-1,5 В) формируется в блоке многорежимных усилителей.

Типы и точность выявления дефектов в изоляционных материалах представлены в табл. 1.

Таблица 1

Вид дефекта	Порог	Точность
	чувствительности	выявления места
	дефектов, В/мм	дефекта, мм
Сплошные	0,1-0,4	±0,5
трещины,		
раковины		
Тип	Способ выделения	Расстояние ПЭП от
контролируемого	информации	контролируемой
объекта		поверхности, мм
Изоляционный	Амплитудно-	0,1
материал	частотный	

На базе рассмотренного метода можно синтезировать ряд высокоэффективных устройств для качественного контроля целостности структуры изоляционных материалов и изделий.

Выводы.

 Дефектные участки изоляционных материалов, контактирующих с находящимися под постоянным напряжением металлами, генерируют градиенты напряженности электрического поля.

2. Точный контроль качества структуры диэлектрических материалов и изделий обеспечивает метод, базирующийся на оценке интенсивности электрических полей от находящихся под электрическим потенциалом контролируемых областей.

Литература

1. Сычик, В. А. Измерительные преобразователи излучений на основе полупроводниковых приборных структур / В. А. Сычик. – Мн. : Выш. Школа, 1991. – 179 с.

2. Способ измерения напряженности электрического поля : пат. RU Д010249 / В. А. Сычик, В. А. Воробьев, А. В. Бреднев.

УДК 681.316

МАТРИЧНЫЙ ПРЕОБРАЗОВАТЕЛЬ ТЕПЛОВЫХ ПОЛЕЙ Сычик В.А., Уласюк Н.Н.

Белорусский национальный технический университет Минск, Республика Беларусь

Аннотация. Синтезирован матричный преобразователь тепловых полей, реализованных матрицей фотодиодов, сформированных на полупроводниковом основании. Приведены конструктивные параметры преобразователя, механизм его работы и электрофизические параметры.

Ключевые слова: преобразователь тепловых полей, фотодиод, p-n-переход, омический контакт, матрица фотодиодов.

MATRIX CONVERTER OF THERMAL FIELDS Sychyk V., Ulasiuk M.

Belarusian National Technical University Minsk, Belarus

Abstract. A matrix converter of thermal fields is synthesized, implemented by an array of photodiodes formed on a semiconductor base. The design parameters of the converter, the mechanism of its operation and electrophysical parameters are given.

Key words: thermal field converter, photodiode, p-n junction, ohmic contact, photodiode array.

Адрес для переписки: Сычик В.А., пр-т Рокоссовского, 49-18, г. Минск 220095, Республика Беларусь

Для неразрушающего контроля дефектов структуры электрических агрегатов, базирующегося на оценке интенсивности тепловых полей от нагретых поверхностей агрегатов, необходимо использование в устройствах контроля специальных преобразователей тепловых полей. Для этой цели можно использовать терморезисторы [1], которые, однако, имеют низкую чувствительность, разрешающую способность и высокую инерционность. Более эффективны полупроводниковые фотодиоды [2], обладающие высоким быстродействием, однако они также имеют недостаточную чувствительность и точность оценки интенсивности тепловых излучений.

В качестве первичного преобразователя тепловых полей нами разработан термоохлаждаемый инфрокрасный преобразователь, который обладает высокой чувствительностью и разрешающей способностью.

Структурно термоохлаждаемый преобразователь тепловых полей содержит, как показано на рис. 1, матрицу диодов обратной проводимости, состоящих из верхних и нижних слоев 1, 2. Слой примесного полупроводника, защищенный окисной пленкой, является одновременно и нижним слоем монокристаллического полупроводникового основания, верхний слой которого, представляет собой структуру собственного полупроводника, на который нанесена металлическая пленка.

I – металлический слой; 2 – оптический канал;
3 – сой собственного полупроводника;
4 – просветляющий слой; 5 – полупроводниковое основание; 6 – омический контакт;
7 – слой обратной проводимости;
8 – изоляционный слой

Рисунок 1 – Структура преобразователя фононных излучений (*a*) и зонная диаграмма его полупроводниковой структуры (б)

Нижний слой фотодиода обратной проводимости формируется путем легирования верхних слоев фотодиода акцепторной примесью. В полупроводниковом основании выполнены оптические каналы к фотодиодам. Нижние слои фотодиода и частично его верхние слои отделены друг от друга диэлектрическими окисными областями. На слое примесного полупроводника сформирован омический контакт.

Полупроводниковое основание в устройстве является конструкционной основой и служит в комплексе со слоем металла термохолодильником. Как показали результаты эксперимента, оптимальным для реализации этих функций материалом полупроводникового основания является монокристаллический кремний, который в контакте со слоем металла обеспечивает эффективное охлаждение основания. Так как ток протекающий, через основание, осуществляет инжекцию электронов из металлического слоя в слой 4, его толщина выбирается из условия полного поглощения инжектированными электронами энергии кристаллической решетки собственного полупроводника в течение времени их жизни, а следовательно должна быть не меньше длины свободного пробега электронов и не больше удвоенной ее длины. Кроме того, собственный полупроводниковый слой выбирается широкозонным (для кремния Eg = 1,11 эВ), монокристаллическим и высокоомным с целью получения высокого потенциального барьера между слоем металла и слоем 4 и минимальной концентрации электронов в этом слое. Эти факторы и обуславливают максимально возможное снижение температуры синтезированного устройства, что обеспечивает существенное повышение чувствительности и точности показаний.

Нижний слой полупроводникового основания, который является одновременно и верхним слоем фотодиода, получается легированием кремния донорной примесью. Кремний, легированный примесью, создающей глубокие примесные уровни ($En \ge 0,1$ эВ), является также высокочувствительным материалом в широкой полосе излучений нагретых поверхностей от инфракрасного ($\lambda \sim 6$ мкм, $T \sim 20$ °C) до ультрафиолетового ($\lambda = 0,5$ мкм, $T \ge 2500$ °C). Это то позволяет решить одновременно несколько задач: созлать омический контакт к основанию; обеспечить эффективную инжекцию электронов из металлического слоя в слой 4, что возможно при эффективной рекомбинации электронов за его пределами, и при выполнении условия, что работа выхода собственного полупроводника выше работы выхода металла; получить в слое I глубокие примесные уровни, но не ниже 0,1 эВ, которые обуславливают высокий квантовый выход носителей заряда, что позволяет использовать примесный слой в качестве чувствительных к фононным и фотонным потоком верхних областей фотодиодов матрицы.

Толщина этого слоя определяется максимально возможным числом генерируемых излучением носителей тока и их разделением на р-пперехода фотодиода, обуславливающим высокую чувствительность и точность показаний. Это достигается в случае, когда толщина примесного слоя фотодиода не превышает длину свободного пробега носителей в данном полупроводнике (L). Минимальное значение ее должно быть не ниже 1/2L из-за существенного снижения числа генерируемых носителей. Однако число генерируемых в слое фотодиода носителей тока зависит от скорости поверхностной рекомбинации этих носителей. Последняя существенно зависит от состояния поверхности матрицы, что обуславливает значительное снижение чувствительности и точности. Устранение этого недостатка было достигнуто окислением верхней части полупроводниковых слоев фотодиодов.

Оптимальная толщина окисной пленки, удовлетворяющая данным требованиям, находится в интервале 300–500 А°. Толщина слоя металла обуславливается равномерной инжекцией электронов во все области собственного полупроводника, а также его низкоомностью и в среднем составляет 2 мкм.

Нижние слои фотодиодов обратной проводимости формируются легированием верхних слоев акцепторной примесью, причем оптимальная суммарная толщина обоих p-п-слоев фотодиодов матрицы составляет в среднем 3L.

Толщина окисного слоя соответствует сумме толщины нижнего слоя фотодиода и половине толщины его верхнего слоя. Такая толщина диэлектрика обеспечивает высокую электроизоляцию фотодиодов матрицы между собой и надежное соединение всех верхних слоев фотодиодов со слоем собственного полупроводника.

Оптические каналы, выполненные в полупроводниковом основании, предотвращают попадание фононных либо фотонных потоков от других излучающих поверхностей.

Это существенно повышает чувствительность и точность показаний устройства и его разрушающую способность, вследствие устранения локальных помех на каждом из фотодиодов от сигналов посторонних оптических излучений.

Оптимальная длина оптических каналов, которая позволяет получить максимальное ослабление фононных и фотонных потоков – помех, зависит от диаметра канала \emptyset и составляет, как показатели результаты эксперимента, отношение $\Delta = \ell/\Phi = 100.$

В рабочем состоянии омический контакт полупроводникового слоя подсоединяется к земляной клемме, а к металлическому слою подводится напряжение постоянного тока такой полярности, чтобы осуществлялась инжекция электронов с поверхности металла в слой собственного полупроводника, то есть напряжение отрицательной полярности.

Плотность тока через контакт металлполупроводник определяется выражением

$$J = Js \left[\exp\left(\frac{eU}{KT}\right) - 1 \right], \tag{1}$$

и экспоненциально возрастает с повышением питающего напряжения.

В (1) Js – ток насыщения; e, k, T – соответственно заряд электрона, постоянная Больцмана, температура. В результате отбора энергии инжектированными электронами от кристаллической решетки собственного полупроводника его температура, а следовательно температура фотодиодой матрицы понижается. Величина поглащаемой тепловой энергии определяется зависимостью

$$Qn = \Pi I t, \qquad (2)$$

где П – коэффициент Пельтье, I = J S – ток, протекающий через барьер Шотки сечением S; t – время протекания тока.

Матрица фотодиодов чувствительной стороной, т.е. оптическими каналами, устанавливается возле излучаемой фононный (фотонный) поток нагретой поверхности элемента, температура которого контролируется. Съем информации с фотодиодов устройства осуществляется сканирующим электронным лучом, в цепи которого включено нагрузочное сопротивление. Нагрузочное сопротивление при помощи конденсатора подключается на вход измерительной части устройства, например к его усилительному тракту.

Перед измерением температуры объекта путем подачи напряжения к слою металла осуществляют быстрое (2-5) мин охлаждение устройства в среднем на 20 °С в сравнении с температурой окружающей среды. После термостабилизации устройства осуществляют измерение температуры соответствующих элементов. При контроле температуры нагретых тел на каждый элемент фотодиода матрицы поступает фононный поток Jv, интенсивность которого и энергия их пропорциональны излучаемой температуре. Каждый охлаждаемый фотодиод, представляющий полупроводниковый р-п переход, который обладает емкостью С, накапливает электрический заряд Q = CUx, где $Ux - \phi$ отоэдс, р-п перехода, вследствие разделения генерируемых фотоносителей на р-п переходах. Заряд Q пропорционален интенсивности потока и энергии W = hv падающих фононов (фотонов), т.е. поверхности контролируемого температуре нагретого тела.

Электронный луч, например генерируемый электронной пушкой, сканирует по поверхности

матрицы фотодиодов преобразователя, поочередно замыкая цепь фотодиода. В результате на вход усилителя измерительного устройства поступает сигнал, пропорциональный накопленному на р-п переходе фотодиода заряду т.е. контролируемой температуре. Усиленный сигнал, формируемый преобразователем тепловых полей подается на вход регистрирующего прибора: самописца, осциллографа, видеоконтрольного устройства и т.д., который показывает истинное значение температуры поверхности контролируемого нагретого тела. Основные параметры преобразователя: вольтватная чувствительность S = 1,4 В/Вт, пороговая чувствительность Qпор = 4,58 · 10⁻¹⁰Вт/Гц^{1/2}, инерционность 10⁻⁸с, диапазон контролируемых температур T = 0-1000 °C.

Литература

1. Сафронов, Ю. П. Инфракрасная техника и космос / Ю. П. Сафронов, Ю. Г. Андрианов. – М. : Сов. Радио, 1998. – 376 с.

2. Ветохин, С. С. Одноэлектронные фотоприемники / С. С. Ветохин. – М. : Энергоатомиздат, 1994. – 160 с.

УДК 621.317 ПОЛУПРОВОДНИКОВЫЙ ГАЗОВЫЙ СЕНСОР С НАГРЕВАТЕЛЕМ ИЗ ОКСИДОВ МЕТАЛЛОВ Таратын И.А., Козуля А.А., Рысик А.Н.

Белорусский национальный технический университет

Минск, Республика Беларусь

Аннотация. В данной работе рассматривается конструкция и характеристики газового сенсора, реализованные на кремниевой подложке, с использованием планарной технологии. При измерениях выходного сигнала в качестве нагревательного элемента были использованы оксиды металлов Ш-й группы таблицы Менделеева, которые одновременно являлись газочувствительным слоем. Данная конструкция обеспечивает высокую чувствительность к воздействию оксида азота с концентрацией 2 ppm и оксида углерода с концентрацией 11,8 ppm.

Ключевые слова: полупроводниковые химические сенсоры, оксид азота, газовый сенсор.

SEMICONDUCTOR GAS SENSOR WITH METAL OXIDE HEATER Taratyn I., Kozulya A., Rysik A.

Belarusian National Technical University Minsk, Belarus

Abstract. In this paper, the design and characteristics of a gas sensor implemented on a silicon substrate using planar technology are considered. When measuring the output signal, metal oxides of the III group of the periodic table were used as a heating element, which simultaneously served as a gas-sensitive layer. This design provides high sensitivity to the effects of nitric oxide with a concentration of 2 pm and carbon monoxide with a concentration of 11.8 ppm.

Key words: semiconductor chemical Sensors, nitrogen oxide, gas sensor.

Адрес для переписки: Таратын И.А., пр. Независимости, 65, г. Минск 220113, Республика Беларусь e-mail: tarigal@yandex.ru

Газовый сенсор представляет кристалл кремния размером $1,5 \times 1,5 \times 0,2$ мм на поверхности которого сформирован слой SiO₂ и платиновый резистор, сопротивлением 15 Ом. Кристалл разварен платиновой проволокой, диаметром 20 мкм в 4-х выводной корпус. На поверхности кристалла из раствора сформирован газочувствительный слой, температура формирования которого достигала 700 °С. Для определения температуры кристалла, при которой достигается максимальный выходной сигнал была определена зависимость температуры от мощности, подаваемой на нагревательный элемент из оксида металла Me₂O₃. Полученные результаты представлены на рис. 1.

Температура контролировалась с помощью прибора IP-140.

Рисунок 1 — Зависимость температуры кристалла (T, °C) от мощности нагрева

В данной работе исследовались характеристики 2-х электродного газового сенсора, кон-