
22

UDC 004.4-004.9

COMBINATORIAL PROBLEM OF ALLOCATING
EXPERTS TO PROGRAMMER TEAMS

Prihozhy A. A.
Belarusian National Technical University, Minsk, Belarus,

prihozhy@yahoo.com

In the rapidly developing information technology industries, organi-
zations and companies need to assemble teams of growing complexity to
tackle problems on a larger scale than ever before. Agile is a set of values
and principles of developing software and finding solutions over joint ef-
forts of development teams and customers [1, 2]. Agent-based evolution-
ary optimization methods [3] aim at performing the management of teams.
In the literature, the process of allocating tasks in agile software develop-
ment teams has not received much attention. In [4], the authors describe
the process of task allocation as including three mechanisms of workflow
across teams: team-independent, team-dependent, and hybrid workflow;
and five types of task allocation strategies: manager-driven, team-driven,
individual-driven, manager-assisted and team-assisted. In [5], the authors
emphasize the relevance of the team in the agile methodologies: a success-
ful agile software development team has to be made up of competent de-
velopers. Competency is the ability of a developer to perform a job prop-
erly. It is a combination of knowledge, skills and attitudes used to improve
performance. In [6–8] the authors proposed platforms that increase team’s
productivity and efficiency at every level, for various tasks and projects.
In [9], a method for formalizing and evaluating the competency of in-
dividual programmers and entire programmer teams was proposed. The
method evaluates the expertise of a programmer team taking into account
the requirements for a particular project, including the constraints on aver-
age competency of programmers, the competency of best representatives
on each technology; threshold competency of a programmer and a team.
Since the programmer allocation problem is combinatorial, the goal of
works [10–12] was to develop a genetic-algorithm-based meta-heuristic
approach for finding acceptable solutions of large-size problems.

23

Table 1 – Sections of programmer competency matrix
Computer Science Software Engineering

0. data structures 3. source code version control
1. algorithms 4. build automation
2. systems programming 5. automated testing

Programming

6. problem decomposition
7. systems decomposition Experience
8. communication 21. languages with professional experience
9. code organization within a file 22. platforms with professional experience
10. code organization across files 23. years of professional experience
11. source tree organization 24. domain knowledge
12. code readability
13. defensive coding Knowledge
14. error handling 25. tool knowledge
15. IDE 26. languages exposed to
16. API 27. codebase knowledge
17. frameworks 28. knowledge of upcoming technologies
18. requirements 29. platform internals
19. scripting 30. books
20. database 31. blogs

This paper formulates a combinatorial problem of allocating a set of
experts of programming languages, technologies and tools in the maxi-
mum number of programmer teams, assuming that each expert is assigned
to one team. Expert is a programmer who has high level of competency
and skills in at least one technology.

Let C = {c1,…, cm} be a set of 32 topics (listed in Table 1) Joseph Sijin
proposed in [13] in order to create the programmer competency matrix
and estimate the expertise of candidates to participating in IT projects. He
formulated requirements to the programmer competency level on each of
the topics and introduced a metric of four predefined levels L0, L1, L2 and
L3. Let a certain IT project specifies requirements to competence over 12
topics described in Table 2: at least one member of each team that works

24

(2)

on the project must have an expertise level larger than L1 for each of the
competency topics. Such a member is considered as an expert regarding
the corresponding competence within the project. The project requires that
each team would include at least one expert on each competency. Pro-
grammers of required count who has lower competence level are allowed
to be added to the project teams as well. However, a team is considered as
unworkable if it has no expert on each competence topic.

Let P = {p1,…pn} be a set of programmers who have expressed his (her)
desire to work on the project, have evaluated his (her) expertise level on
each of the competency topics, C and filled in a questionnaire. As a result,
a variable Level(p, c), pϵP and cϵC, describes the competency level of
programmer p on topic c. Table 3 reports Level(p, c) for 12 programmers
and 12 competency topics. Observing the table rows and columns, we can
conclude that the level of competency varies from L0 to L3. Considering
individual experts as entities having advanced knowledge, experience and
ability is crucial for the allocation of multi-skilled human resources to
research and development projects. Observing Table 3 we conclude that
each programmer has the expertise level of L2 and higher for at least one
competency topic, therefore all 12 programmers are qualified as experts,
which can constitute a core of working teams.

Let set C of competence topics be a universe. Let Sp = {c | cϵC and
Level(p, c) ≥ L2} for each pϵP be a set of competences in which program-
mer p is an expert:. A collection S = {S1,…,Sn} of sets of competences
represents n experts. We describe the collection with a matrix ∆[n×m].
Element δij of the matrix equals 1 if expert i has competence j at the re-
quired level, and equals 0 otherwise. Table 4 describes matrix ∆ of the
collection of competences for 12 experts at the constraint: level ≥ L2. The
right column of the table reports the number of competences each expert
has. The bottom row reports for each competence the number of experts
who obtain the competence.

Let Ω be a set of feasible allocations of experts to a set T of workable
teams, assuming that the number of teams can vary in a wide range. Our
objective is to solve the following problem:

(1)||max T
T Ω∈

subject to
TTallforCS i

Tp
p

i

∈=
∈


25

The following equation estimates an upper bound of the team count
regarding the constraint on the competency level:

() 







= ∑

∈
∈ Pp

pcCc
Tupper δmin|| (3)

If Tmax is an accurate solution of problem (1), then Tmax ≤ upper(|T|).
According to Table 4 there are four experts who have the competence
indexed by 0 of the L3 level, therefore equality upper(|T|) = 4 holds. It
means the maximum number of teams Tmax does not exceed four.

Given the universe, C and the collection, S of n sets, whose union equals
the universe, the set cover problem is to identify the smallest sub-collec-
tion of S whose union equals the universe. Solving the problem gives a
minimum subset T1 = Set_Min_Cover (C, S) of experts, which cover all
competences of

Table 2 – Twelve competencies selected for setting up a project
Subsection Level Requirement

1. data
structures

L0 Doesn’t know the difference between Array and
LinkedList

L1 Able to explain and use Arrays, LinkedLists, Dictio-
naries etc in practical programming tasks

L2 Knows space and time tradeoffs of the basic data
structures, Arrays vs LinkedLists etc.

L3 Knowledge of advanced data structures like B-trees,
binomial and fibonacci heaps, tries etc.

2. algorithms L0 Unable to find the average of numbers in an array

L1 Basic sorting, searching and data structure traversal
and retrieval algorithms

L2 Tree, Graph, simple greedy and divide and conquer
algorithms etc.

L3 Able to code dynamic solutions, good knowledge of
graph and numerical algorithms etc.

26

6. problem
decomposi-
tion

L0 Only straight line code with copy paste for reuse

L1 Able to break up problem into multiple functions

L2 Able to come up with reusable functions/objects that
solve the overall problem

L3 Use of appropriate data structures and algorithms that
encapsulate aspects of the problem

9. code
organization
within a file

L0 No evidence of organization within a file

L1 Methods are grouped logically or by accessibility

L2 Code is grouped into regions and well commented
with references to other source files

L3 File has license header, summary, well commented,
consistent white space usage

11. source
tree organiza-
tion

L0 Everything in one folder
L1 Basic separation of code into logical folders
L2 No circular dependencies, binaries, libs, docs, builds

all organized into folders

L3 Physical layout of source tree matches logical hierar-
chy and organization

15. IDE L0 Mostly uses IDE for text editing
L1 Knows their way around the interface, able to effec-

tively use the IDE using menus
L2 Knows keyboard shortcuts for most used operations
L3 Has written custom macros

16. API L0 Needs to look up the documentation frequently
L1 Has the most frequently used APIs in memory
L2 Vast and In-depth knowledge of the API

L3 Has written libraries that sit on top of the API to sim-
plify frequently used tasks

Table 2 continued

27

21. languages
with
professional
experience

L0 Imperative or Object Oriented

L1 Imperative, Object-Oriented and declarative (SQL),
weak vs strong typing etc.

L2 Functional, added bonus if they understand lazy eval-
uation, currying, continuations

L3 Concurrent (Erlang, Oz) and Logic (Prolog)
22. platforms
with
professional
experience

L0 1
L1 2-3
L2 4-5
L3 6+

23. years of
professional
experience

L0 1
L1 2-5
L2 6-9
L3 10+

25. tool
knowledge

L0 Limited to primary IDE (VS.Net, Eclipse etc.

L1 Knows about some alternatives to popular and stan-
dard tools

L2 Good knowledge of editors, debuggers, IDEs, open
source alternatives etc. etc.

L3 Has actually written tools and scripts, added bonus if
they’ve been published

30. books L0 Unleashed series, 21 days series, 24 hour series, dum-
mies series…

L1 Code Complete, Don’t Make me Think, Mastering
Regular Expressions

L2 Design Patterns, Peopleware, Programming Pearls,
Algorithm Design Manual etc.

L3 Structure and Interpretation of Computer Programs,
Concepts Techniques, Models of Computer Pro-
gramming, Art of Computer Programming, Database
systems etc.

Table 2 continued

28

Table 3 – Competence level of twelve programmers (case study)
Pro-

gram-
mer

Competence
Σ

0 1 2 3 4 5 6 7 8 9 10 11

0 L1 L3 L2 L0 L3 L0 L2 L0 L2 L0 L1 L0 L14

1 L3 L1 L2 L0 L1 L1 L3 L2 L3 L3 L0 L3 L22

2 L3 L2 L3 L3 L0 L1 L1 L0 L0 L2 L3 L3 L21

3 L3 L0 L3 L3 L3 L2 L2 L3 L0 L3 L0 L2 L24

4 L1 L2 L1 L0 L2 L3 L0 L2 L0 L3 L3 L2 L19

5 L1 L3 L1 L3 L3 L3 L0 L2 L1 L3 L0 L2 L22

6 L0 L2 L1 L0 L0 L2 L3 L0 L1 L2 L1 L0 L12

7 L3 L3 L3 L2 L0 L1 L3 L1 L3 L2 L1 L1 L23

8 L1 L3 L0 L0 L0 L0 L2 L1 L1 L3 L3 L0 L14

9 L1 L1 L0 L2 L2 L3 L3 L2 L3 L1 L1 L2 L21

10 L1 L1 L0 L2 L0 L1 L3 L0 L1 L3 L2 L2 L16

11 L L2 L2 L0 L0 L2 L2 L1 L2 L1 L2 L2 L17

Σ L19 L23 L18 L15 L14 L19 L24 L14 L17 L26 L17 L19 L225

Table 4 – Matrix ∆ of collection of competences at constraint compe-
tence ≥ L2 (case study)

Programmer
Competence

Σ
0 1 2 3 4 5 6 7 8 9 10 11

0 0 1 1 0 1 0 1 0 1 0 0 0 5

1 1 0 1 0 0 0 1 1 1 1 0 1 7

2 1 1 1 1 0 0 0 0 0 1 1 1 7

3 1 0 1 1 1 1 1 1 0 1 0 1 9

4 0 1 0 0 1 1 0 1 0 1 1 1 7

5 0 1 0 1 1 1 0 1 0 1 0 1 7

6 0 1 0 0 0 1 1 0 0 1 0 0 4

7 1 1 1 1 0 0 1 0 1 1 0 0 7

8 0 1 0 0 0 0 1 0 0 1 1 0 4

9 0 0 0 1 1 1 1 1 1 0 0 1 7

10 0 0 0 1 0 0 1 0 0 1 1 1 5

11 0 1 1 0 0 1 1 0 1 0 1 1 7

Σ 4 8 6 6 5 6 9 5 5 9 5 8

29

Level L2 and higher. Subset T1 2282S represents a core of a team. The
team may be extended by adding programmers of lower competence level.
Removing from collection S the sets which correspond to experts of T1
gives a reduced collection S = S \ {Sp}, pϵT1. We ask the question if a new
workable team can be formed from experts that remain in S. To answer the
question, we solve the set cover problem again and form a second team
T2 = Set_Min_Cover (C, S). If a covering solution exists, the T2 team that
is composed of experts who cover all competences is created, otherwise T2
is empty and the process of forming the teams is over.

Algorithm 1 allocates experts to teams. The number of teams is ini-
tially unknown. The algorithm generates teams until the remaining set of
experts is not able to meet the constraint on the competency level over
all competences. If at least one competence is not covered, the experts
cannot form a workable team. When the execution of Algorithm 1 is over,
T represents the resulting set of created teams and R represents a set of
experts, which have not been included in the workable teams. Initially
T = Ø and R = S. Boolean variable Next_Team controls the loop of gener-
ating the teams. Variable Team is a new team of smallest size generated by
the procedure Set_Min_Cover (C, R). The procedure solves the set min-
imum cover problem and selects a minimum number of experts for the
given constraint on competences. If the procedure has failed to generate a
team, the set, Team is empty, and Next_Team is assigned false. Otherwise,
the nonempty Team is added to set T, and collection R of competence sets
is reduced by subtracting the sub-collection that corresponds to the ex-
perts of Team. When the loop execution is over, teams T1,…,Tk are formed
and the remaining collection R represents experts which cannot cover all
competences of C. For this reason, the experts are included in a reserve
team.

Table 5 – Stepwise allocation of experts to teams by Algorithm 1 (case
study)

Team Expert
Competences

0 1 2 3 4 5 6 7 8 9 10 11

Iteration 1

T1

3 1 0 1 1 1 1 1 1 0 1 0 1

11 0 1 1 0 0 1 1 0 1 0 1 1

Iteration 2

T2

2 1 1 1 1 0 0 0 0 0 1 1 1

9 0 0 0 1 1 1 1 1 1 0 0 1

30

Iteration 3

T3

4 0 1 0 0 1 1 0 1 0 1 1 1

7 1 1 1 1 0 0 1 0 1 1 0 0

Iteration 4

T4

1 1 0 1 0 0 0 1 1 1 1 0 1

5 0 1 0 1 1 1 0 1 0 1 0 1

10 0 0 0 1 0 0 1 0 0 1 1 1

Iteration 5

Re-
serve

0 0 1 1 0 1 0 1 0 1 0 0 0

6 0 1 0 0 0 1 1 0 0 1 0 0

8 0 1 0 0 0 0 1 0 0 1 1 0

Table 5 describes the stepwise allocation of twelve experts to four
workable teams the Algorithm 1 has generated in five loop iterations. The
workable teams are as follows: T1 = {3, 11}, T2 = {2, 9}, T3 = {4, 7} and
T4 = {1, 5, 10}. It is easy to see that each workable team covers all twelve
competences of set C. The remaining experts are included in team Re-
serve = {0, 6, 8}. This team does not cover competences 0, 3, 7, and 11.
Therefore, it is unworkable.

In [14], Richard Karp proved that the set cover problem belongs to
the NP-complete combinatorial problems. Therefore, Algorithm 1, which
reduces the problem of allocating experts in teams to multiple solving the
set cover problem, has the computational complexity that is at least the
same as the set cover problem. It should be noted, that Algorithm 1 may
find no exact solution in general case [15].

Conclusion
The paper has formulated a combinatorial problem of allocating ex-

perts to maximum number of programmer teams. It has evaluated the
expert competences over the programmer competency matrix by taking
into account project requirements. The proposed algorithm of solving the
problem iteratively generates programmer teams with a minimum number
of experts, thus trying to create the maximum number of teams. To mini-
mize the number of experts in a team, the algorithm exploits the set cover
problem, which is NP-complete. The example illustrates the formulated
problem and proposed algorithm.

Table 5 continued

31

REFERENCES
1. Joshi, S. Agile Development - Working with Agile in a Distributed

Team Environment / S. Joshi // MSDN Magazine, 2012, Vol. 27, No. 1,
pp. 1–6.

2. Collier, K. W., Agile Analytics: A Value-Driven Approach to Business
Intelligence and Data Warehousing. – Pearson Education, 2012. – 74 p.

3. Müller, J. P., Rao, A. S., Singh, M. P. A Teams: An Agent Architec-
ture for Optimization and Decision-Support, Proceedings 5th Internation-
al Workshop, ATAL’98 Paris, France, July 4–7, 1998, pp. 261–276.

4. Masood Z., Hoda R., Blincoe K. (2017) Exploring Workflow Mech-
anisms and Task Allocation Strategies in Agile Software Teams. In: Bau-
meister H., Lichter H., Riebisch M. (eds) Agile Processes in Software
Engineering and Extreme Programming. XP 2017. Lecture Notes in
Business Information Processing, vol 283. Springer, Cham. https://doi.
org/10.1007/978-3-319-57633-6_19.

5. R. Britto, P. S. Neto, R. Rabelo, W. Ayala and T. Soares, “A hy-
brid approach to solve the agile team allocation problem,” 2012 IEEE
Congress on Evolutionary Computation, 2012, pp. 1–8, doi: 10.1109/
CEC.2012.6252999.

6. Wrike [Электронный ресурс] – Режим доступа: https://www.
wrike.com/, – Загл. с экрана – Яз. англ. Дата доступа – 28.10.2021.

7. Flow [Электронный ресурс] – Режим доступа: https://www.
getflow.com/, – Загл. с экрана – Яз. англ. Дата доступа – 28.10.2021

8. Gutiérrez, J. H., Astudillo, C. A., Ballesteros-Pérez, P., Mora-Melià,
D. and Candia-Véjar, A. (2016) The multiple team formation problem us-
ing sociometry. Computers and Operations Research, 75. pp. 150–162.
ISSN 0305-0548 doi: https://doi.org/10.1016/j.cor.2016.05.012.

9. Прихожий А. А., Ждановский А. М. Метод оценки квалификации
и оптимизация состава профессиональных групп программистов.
«Системный анализ и прикладная информатика». 2018; (2): 4–11.
https://doi.org/10.21122/2309-4923-2018-2-4–11.

10. Прихожий, А. Эвристический генетический алгоритм
оптимизации вычислительных конвейеров / А. А. Прихожий,
А. М. Ждановский, О. Н. Карасик, М. Маттавелли // Доклады БГУИР,
2017, № 1, с. 34–41.

11. Prihozhy, A. Genetic algorithm of optimizing the size, staff and
number of professional teams of programmers / A. Prihozhy, A. Zhda-
nouski // Open Semantic Technologies for Intelligent Systems: Research
Paper Collection, Issue 3. – Minsk, BSUIR, 2019. – P. 305–310.

32

12. Prihozhy A. A., Zhdanouski A. M. Genetic algorithm of optimiz-
ing the qualification of programmer teams. «System analysis and applied
information science». 2020;(4):31–38. https://doi.org/10.21122/2309-
4923-2020-4-31–38.

13. Sijin, J. Perspectives on Software, Technology and Business: Pro-
grammer Competency Matrix / J. Sijin // [Electronic resource]. – Mode of
access: https://sijinjoseph.com/programmer-competency-matrix/. – Date
of access: 28.10.2021.

14. Karp, R. M. (1972). “Reducibility Among Combinatorial Prob-
lems”. In R. E. Miller; J. W. Thatcher (eds.). Complexity of Computer
Computations. New York: Plenum. pp. 85–103.

15. Prihozhy, A. A. Asynchronous scheduling and allocation /
A. A. Prihozhy / Proceedings Design, Automation and Test in Europe.
Paris, France. – IEEE, 1998, pp. 963–964.

