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The modern multi-processor system architectures realize three types of 
parallelism depending on the structure of input data [1]: space parallelism 
on one data set, time parallelism on data flow (sequence of data sets) and 
mixed space-time parallelism. The high-performance parallel computing 
is impossible without the time parallelism that is implemented by means 
of pipelining [2–11]. This paper aims at the analysis of the three types of 
parallelism in task graphs to find efficient implementations of the system 
on a multi-core processor.

In computing, a pipeline is a set of data processing elements (stages) 
connected in series, so that the output of one stage is the input of the next 
stage [9]. The stages of a pipeline operate in a time-sliced fashion. To do 
this, pipeline buffers are inserted in between the stages. The pipeline stage 
time has to be larger than the longest time delay between two neighbor 
stages. A pipelined system requires more resources than the system that 
executes one batch at a time, because any stage cannot reuse the computa-
tional resources of previous stages. Pipelining is a natural technique of the 
development of streaming applications, which organize data as a sequence 
of data sets over all parts of the design. 

Figure 1 shows that the system specification to be implemented as a 
pipeline includes an input data flow, a high-level behavioral description 
to be pipelined, and an output data flow. The following languages and 
intermediate representations have been developed and used for describing 
pipeline specifications and modelling the pipeline at all steps of synthesis 
and optimization [3–6, 8]: the programming language C, data flow graphs 
(DFGs), signal flow graphs (SFGs), transactional specifications, dataflow 
description languages and other notations. The actor-based algorithmic 
language, CAL has been developed for representing pipelined networks 
[12–14].
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Figure 1 – System specification for dataflow implementation on multi-core processor 

A pipelined system is characterized by several parameters such as the 
number of pipeline stages, the pipeline buffers size, the stage cycle time, 
the latency, the data initiation interval, the throughput, etc. The optimiza-
tion can improve the pipeline parameters significantly.

Pipelining is a certain type of transformation of a digital system behav-
ioral specification into a set of partitions that represent pipeline stages and 
execute in time-sliced fashion on the input data flow. Pipelining increases 
the operating frequency and throughput of data-intensive digital systems 
with long critical paths.

Computational pipelines are classified into hardware and software 
pipelined systems. The parallelism in a hardware system exists at the level 
of logical micro and macro elements, while the parallelism in a software 
system exists at the level of algorithms, threads and tasks. There are dif-
ferences between the synthesis techniques that target parallel hardware 
systems and parallel software systems.

The pipeline synthesis problem aims either at minimizing the through-
put given a constraint on the implementation cost, or at minimizing the 
implementation cost given a constraint on the throughput. 

Since a multi-processor system exploits three types of parallelism, one 
of the key problems is to find efficient balancing between the space and 
time parallelism. We recognize three cases of implementing a data flow 
system on a multi-core processor:

1. All cores realize the space parallelism.
2. All cores realize the time parallelism.
3. A part of cores realizes the space parallelism and other cores realize 

the time parallelism.
In the paper, we assume that all cores in a multi-core system have the 

same parameters. The hierarchical memory of the system includes one or 
more local caches for each core, a cache that is shared among all cores, 
and a main memory. The data access time is largest for the main memory, 
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and it is smallest for the local caches. The access time for the shared cache 
is smaller than that of the main memory and is larger than that of the local 
cache. The paper considers asynchronous system implementations [15]. 
This is because the execution time of a task is variable on a multi-core 
processor, which runs a multi-task operating system. The data transfer 
time among cores is also variable in a multi-core system.

In the paper, we represent a high-level behavioral description with the 
task graph model [1]. In a task graph, a vertex is a task and its weight is the 
task execution time on a core. An edge represents a data transfer between 
tasks, and its weight is the data transfer time between cores through the 
main memory. Two tasks assigned to one core have a reduced data trans-
fer time since the data are transferred through the local cache. If the tasks 
are assigned to different cores, and the amount of data transferred from 
one core to another through the shared cache is not high, the data transfer 
time is reduced against the transferring through the main memory.

Time-parallel (pipelined) implementation. It is preferable for a system 
whose behavioral description has a long critical path. Figure 2 depicts 
the pipeline components and their assignment to the processor cores and 
hierarchical memory components. The cores implement the pipeline stag-
es, which operate using local caches. The data transfer between stages 
is carried out through the local and shared caches, and through the main 
memory in case of big data.

Figure 2 – Pipeline implementation on a multi-core system

Let a weighted task graph G = (T, E) represents the system behavioral 
specification. Let T = {t1,…,tn} be a set of graph task-vertices and w(ti) be 
a weight of vertex ti (execution time of the corresponding task). Let L be 
a sum of tasks execution time, w(ti) over all tasks i = 1…n. Let the multi-
core processor has m cores. Then, each core must carry out the load of 
l ≥ L / m during the stage time period, while processing one data set. 
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Our goal is to search for m sub-graphs of the task graph, each assigned 
to a separate core. The computational load of each core must be about the 
same. To reduce the cost of data transfer between cores, the sum of edge 
weights must be minimal over all edges between task-vertices assigned to 
different cores. In this case, the overall size of pipeline buffers is reduced.

Figure 3 depicts an example task graph consisting of n = 10 task-ver-
tices. The overall computational load of the tasks is L = 389 ms. Let the 
processor has two cores (m = 2). Then, the core load per data set should 
be l ≥ 194.5. Figure 3a and Figure 3b depict two decompositions of the 
task graph and two architectures of pipeline for the 2-core processor. To 
estimate the architecture parameters, we assume that the data transfer time 
between pipeline stages is 4 times lower through the local cache over the 
transfer through the main memory: 

Architecture a) 
Stage 0 includes tasks 0, 1, 2, 3 and 4. The overall execution time of 

tasks is 156 ms. 
The data transfer time between the tasks through the local cache is 

22 / 4 = 5.5 ms.
Stage 1 includes tasks 5, 6, 7, 8 and 9. The overall execution time of 

tasks is 233 ms. 
The data transfer time between the tasks through the local cache is 

18 / 4 = 4.5 ms.
The pipeline stage time is max (156 + 5.5, 233 + 4.5) = 237.5 ms.
The data transfer time between the stages is 40 ms.
Architecture b) 
Stage 0 includes tasks 0, 1, 3, 4 and 9. The overall execution time of 

tasks is 182 ms. 
The data transfer time between the tasks through the local cache is 

29 / 4 = 7.25 ms.
Stage 1 includes tasks 2, 5, 6, 7 and 8. The overall execution time of 

tasks is 207 ms. 
The data transfer time between the tasks through the local cache is 

32 / 4 = 8 ms.
The pipeline stage time is max (182 + 7.25, 207 + 8) = 215 ms.
The data transfer time between the stages is 19 ms.

Observing the parameters of two pipeline architectures, we conclude 
that architecture 1 is better against architecture 0 regarding both the stage 
time and data transfer time.
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a) b)

Figure 3 – Task graph pipelining: 
a) architecture 1 of two-stage pipeline with stage time period of 237.5 ms; 
b) architecture 2 of two-stage pipeline with stage time period of 215 ms

Space-parallel implementation. An alternative to the time-parallel 
multi-core implementation is a space-parallel multi-core implementation. 
The selection of the implementation architecture depends on properties of 
the task graph. If the amount of the space parallelism is sufficient for the 
given number of cores, the space-parallel architecture is preferable since 
it does not require any pipeline buffers. Figure 4a depicts a task graph, 
which has large enough amount of space parallelism for two cores. Allo-
cating tasks 0, 1 and 2 to core 0, and tasks 3, 4 and 5 to core 1 (figure 4b) 
balances the cores’ load. The cores process a data set i with the time delay 
of max (129 + 8 / 4, 112 + (7 + 5) / 4) = max (131, 115) = 131 ms, which 
is composed of the tasks execution time and data transfer time through the 
local cache. No need in pipelining in this case.

Mixed time-space-parallel asynchronous implementation. A system 
implementation is time-space-parallel, if the tasks are assigned to cores 
in such a way that some pairs of cores operate in the time-parallel mode, 
some of them operate in the space-parallel mode, and other pairs oper-
ate in the mixed time-space-parallel mode. Figure 5a depicts a task graph 
whose set of tasks is divided into five subsets, each implemented on a sep-
arate core. The task set decomposition aims at balancing the load of cores. 
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a) b)

Figure 4 – Space-parallel system: a) task graph partitioning; b) space-parallel 
implementation on two cores

a) b)
Figure 5 – Mixed time-space-parallel asynchronous system implementation: a) task graph 

partitioning for five-cores; b) space-time-parallel implementation on five cores

Figure 5b shows a five-core time-space-parallel asynchronous thread-
ed implementation architecture. It consumes a sequence of data sets at 
input and produces a response sequence of data sets at output. The load 
of cores on one data set varies from 69 ms to 87 ms. Pair 0 – 2 of cores 
as well as pair 1 – 3 operate in time-parallel (pipelined) mode. There are 
data dependences between the cores 0 and 2, and between 1 and 3, which 
require pipeline buffers inserted in between the cores. The cores commu-
nicate and transfer data asynchronously. While core 2 processes the data 
set i, core 0 processes the data set i + 1. The same concerns cores 1 and 3. 
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Cores 2 and 3 as well as cores 2 and 4 operate in space-parallel mode on 
one or two neighbor data sets, as there are no data dependencies between 
cores 2 and 3 as well as between 2 and 4. Core pairs 0 – 1 and 1 – 4 oper-
ate partially sequentially, partially in space-parallel mode and partially in 
time-parallel mode. For instance, core 0 realizes tasks 0 and 2, and core 
1 realizes tasks 1, 3 and 6, which can communicate in different modes. 
In particular, task 0 of core 0 is executed in parallel with tasks 1 and 3 of 
core 1. Task 2 is executed in series with tasks 1 and 6. Task 2 is executed 
in parallel with task 3. Task 0 can be executed in the time-parallel mode 
with task 6 because the tasks may process different data sets. Cores 3 and 
4 operate partially sequentially and partially in space-parallel mode.

It is interesting to note that while cores 2, 3 and 4 process the i data set, 
cores 0 and 1 may begin processing the i + 1 data set. The throughput of 
the mixed-parallel five-core architecture is more than twice higher over 
the purely pipelined two-core architectures presented in Figure 3.

The task execution times and the data transfer times significantly de-
pend on the input data flow. Changes in input data can infer changes in the 
execution time of tasks and in amount of data transferred from one task to 
another. The weights of vertices and edges of the task graph are modified, 
although the graph structure is the same. In its turn, the optimal allocation 
of tasks to cores and the parameters of the time-space-parallel architecture 
depend on the vertex and edge weights of the task graph. In this case, it 
is reasonable to apply the reconfiguration methodology [14, 16–17] and 
develop techniques for synthesis of reconfigurable space-time-parallel im-
plementations, which can tune to the input data flow.

Conclusion
The parallelism in a hardware system exists at the level of logical mi-

cro and macro elements, while the parallelism in a software system ex-
ists at the level of algorithms, threads and tasks. This difference infers 
different methods of the parallel system synthesis and optimization. The 
paper has given an analysis of three types of parallelism in a software 
system having a data flow at input: space, time and mixed parallelism. 
The goal is to generate efficient implementation on multi-core processor 
from a task-graph model. The preferable usage of a particular parallelism 
type depends on the task graph configuration and the core count. If the 
graph has long critical paths and the number of cores is limited, the sys-
tem implementation should be time-parallel or pipelined. If the graph has 
many independent branches and the number of cores is limited, the system 
implementation should be space-parallel. In other cases, the system im-
plementation is more efficient if it is decomposed into subsystems, which 
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operate pair-wisely in mixed space-time-parallel mode. The throughput of 
such implementations increases over the purely time-parallel and purely 
space-parallel implementations.
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