- 2. Электронный учебник по статистике // StatSoft, Inc. [Электронный ресурс] Режим доступа: http://statsoft.ru/home/textbook/default.htm Дата доступа: 15.03.2022.
- 3. Бокс, Дж., Дженкинс, Γ . Анализ временных рядов, прогноз и управление / Дж. Бокс, Γ . Дженкинс: Пер. с англ. // Под ред. В.Ф. Писаренко. Москва: Мир, 1974. 406 с.

УДК 621.791.052:620.178

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРИСАДОЧНОГО МАТЕРИАЛА (Si, Ni, Co) НА СКЛОННОСТЬ К ОБРАЗОВАНИЮ ГОРЯЧИХ ТРЕЩИН, ПРОЧНОСТЬ И ВЯЗКОСТЬ СВАРНЫХ СОЕДИНЕНИЙ (СТАЛЬ 38ХСЗН4К2МФА)

Голубцова Е.С., Шавель А.Н., Шуманская Л.С. Белорусский национальный технический университет

Выполнен статистический анализ экспериментальных данных по влиянию содержания легирующих элементов — кремния, кобальта, никеля — в присадочном материале на склонность к образованию горячих трещин и характеристики прочности и вязкости металла шва сварных соединений из стали 38ХСЗН4К2МФА, применяемой в авиационной технике. На основе полученных моделей установлено, что содержание кобальта в присадочном материале не должно превышать 1,5%.

Эффективность применения сталей в авиационной технике с прочностью выше 1900 МПа определяется возможностью изготовления из них прочных сварных конструкций.

Обычно сварки высокопрочной стали 38ХС3Н4К2МФА лля применяется серийная проволока ВЛ1-ДГ. Одним из факторов, влияющих на технологическую прочность при сварке и эксплуатационные свойства сварных конструкций, является химический состав металла шва, который среднелегированных высокопрочных достигается В многокомпонентным легированием, которое обеспечивает упрочнение феррита и повышение прокаливаемости. Основными легирующими присадочных материалах сварки элементами для среднелегированных сталей является кремний, марганец, хром, никель [1, 21.

Поскольку сталь $38XC3H4K2M\Phi A$ содержит в своем составе достаточное количество кремния ($Si \approx 3\%$), никеля ($Ni \approx 4\%$)), кобальта ($Co \approx 2\%$), в настоящей работе проведен анализ влияния наличия и содержания этих элементов в присадочном материале типа $32X2\Gamma 2CHBM$

на свойства сварных швов: ударную вязкость, стойкость против образования горячих трещин и прочность сварных соединений.

В качестве параметров оптимизации (характеристик свойств) были выбраны $y_1 = v_{\rm kp}$, мм/мин — стойкость против образования горячих трещин; $y_2 = \sigma_{\rm B}$, МПа — прочность сварного шва; $y_3 = KCU$ — ударная вязкость образцов с U-образным надрезом, Дж/м²; $y_4 = KCV$ — то же с V-образным надрезом, Дж/м².

В качестве факторов были выбраны: x_1 — вид присадки ($x_1 = -1$ — Si; $x_1 = 0$ — Ni и $x_1 = +1$ — Co), а x_2 — их содержание (0,5; 1,0 и 1,5%).

Цель исследования — составление математической модели для определния оптимальной присадки с целью получения наилучших значений вышеуказанных характеристик.

Для проведения анализа был выбран двухфакторный план 3×3 [3], где 3 — три уровня первого фактора (Si, Ni, Co) и три уровня их содержания (0,5; 1,0 и 1,5%) по результатам проведенных опытов. Ошибку воспроизводимости опытов определяли как 5% от среднего значения параметра оптимизации. Во избежание влияния систематических ошибок и источников неоднородностей, опыты проводили в случайном (рандомизированном порядке).

Матрица плана и результаты испытаний приведены в табл. 1.

Таблица 1 — Матрица плана 3×3 и результаты испытаний

Taomina i Marpina inana 5.5 n pesymbiatisi nensitatini									
N	x_1	x_2	x_1x_2	χ_1^2	χ_2^2	$y_1 = v_{\rm kp}$	$y_2 = \sigma_B$	$y_3 = KCU$	$y_4 = KCV$
1	-	-	+	+	+	3,68	1873	680	320
2	-	0	0	+	0	3,00	1880	480	315
3	-	+	-	+	+	2,50	1870	280	240
4	0	-	0	0	+	3,92	1710	800	400
5	0	0	0	0	0	3,70	1800	720	400
6	0	+	0	0	+	3,46	1872	674	340
7	+	-	-	+	+	3,27	1886	600	286
7	+	0	0	+	+	4,00	1880	590	286
9	+	+	+	+	+	5,00	1875	540	257
	1	2	12 <i>Y</i>	11	22	$0Y_1$	$0Y_2$	$0Y_3$	0Y ₄
	Y	Y	121	Y	Y	011	012	013	014

В этой таблице x_1 и x_2 — кодированные уровни факторов (-1, 0, +1) (для удобства единицы опущена); (1 Y), (2 Y), (12 Y), т.д. —сумма произведений столбца OY_j (j — номер показателя) на столбцы соответствующего фактора. Например, для $y_1 = v_{\rm kp}(0Y)_1 = 3,68 + 3,00 + 2,50 + 3,92 + 3,70 + 3,46 + 3,27 + 4,00 + 5,00 = 32,53$; (1 Y) $_1 = -3,68 - 3,00 - 2,500 + 3,27 + 4,00 + 5,00 = 3,09$ и т.д.

На следующем этапе рассчитывали коэффициенты уравнений по формулам:

$$b_0 = A_0 \cdot (0Y) - A_{01} \cdot (0Y) - A_{02} \cdot (0Y) \tag{1}$$

$$b_1 = A_1 \cdot (1Y), b_2 = A_2(2Y), b_{12} = A_{12}(12Y)$$
 (2)

$$b_{11} = A_{11}(11Y) - A_{01}(0Y), b_{22} = A_{22}(22Y) - A_{02}(0Y)$$
 (3)

Значения коэффициентов A_0 , A_{01} , $A_{02}...A_{11}$ и A_{22} берутся из таблиц [3]. Для плана 3×3 эти коэффициенты соответственно будут равны:

$$A_0=0,55556,\ A_{01}=A_{02}=0,33333,\ A_1=A_2=0,16667;\ A_{12}=0,25;$$
 $A_{11}=A_{22}=0,50.$ Например, для $y_1=v_{\rm kp}$ $b_0=3,64;$ $b_1=0,52;$ $b_2=0,015;$ $b_{12}=0,73;$ $b_{11}=-0,12;$ $b_{22}=0,075.$

Для проверки статистической значимости коэффициентов нужно рассчитать среднюю квадратическую ошибку этих коэффициентов по формулам:

$$S_{b_0} = \sqrt{A_0} \cdot S_9 \tag{4}$$

$$S_{b_i} = \sqrt{A_i} \cdot S_{\mathfrak{I}} \tag{5}$$

$$S_{b_{ij}} = \sqrt{A_{ij}} \cdot S_{\mathfrak{g}} \tag{6}$$

$$S_{b_{ii}} = \sqrt{A_{ii}} \cdot S_{\mathfrak{I}} \tag{7}$$

Для $y_1=v_{\rm Kp}$ $S_{b_0}=0.134;$ $S_{b_1}=S_{b_2}=0.07344;$ $S_{b_{12}}=0.09;$ $S_{b_{11}}=S_{b_{22}}=0.127.$

Доверительный интервал Δb_i для всех коэффициентов определялся по формулам:

$$\Delta b_0 = \pm t \cdot S_{b_0} \tag{8}$$

$$\Delta b_1 = \Delta b_2 = \pm t \cdot S_{b_1} \tag{9}$$

$$\Delta b_{12} = \pm t \cdot S_{b_{12}} \tag{10}$$

$$\Delta b_{11} = \Delta b_{22} = \pm t \cdot S_{b_{ii}}. \tag{11}$$

Для $y_1=v_{\rm kp}$ $\Delta b_0=0,303;$ $\Delta b_1=\Delta b_2=0,166;$ $\Delta b_{12}=0,204;$ $\Delta b_{11}=\Delta b_{22}=0,287.$

Значение критерия Стьюдента t берется из таблиц [3] при заданном уровне доверия α (обычно $\alpha \approx 0.05$) и степенях свободы f (у нас f = 9).

Таким образом, коэффициенты b_2 , b_{11} и b_{22} оказались незначимы, т.к. их абсолютные значения меньше соответствующих Δb_2 , Δb_{11} .

Заключительным этапом расчетов является проверка адекватности полученных уравнений:

$$y_1 = v_{\text{kp}} = 3,64 + 0,52x_1 + 0,73x_1x_2$$
 (12)

$$y_2 = \sigma_B = 1798 (13)$$

$$y_3 = KCU = 732 + 48x_1 - 97x_2 + 85x_1x_2 - 203x_1^2$$
 (14)

$$y_4 = KCV = 398 - 28x_2 - 96x_1^2 - 87x_2^2$$
 (15)

Для этого находим расчетные значения \hat{y}_1 , \hat{y}_2 , \hat{y}_3 и \hat{y}_4 , подставляя в каждой строке кодированные уровни факторов, затем находим разность

между расчетным значением \hat{y}_i и экспериментальным y_3 ($\Delta y = \hat{y}_u - y_3$), затем возводим эту разность в квадрат (Δy_u^2) и суммируем их, т.е. $\sum_{1}^{N} \Delta y_u$, где u — номер строки плана, N — число опытов.

После этого определяем дисперсию адекватности $S_{\rm ag}^2$ по формуле

$$S_{\rm ad}^2 = \frac{\sum_{u=1}^{N} \Delta y_u^2}{N-m} \tag{16}$$

где m — число значимых коэффициентов уравнения, включая b_0 .

Адекватность моделей проверялась по критерию Фишера F по формуле:

$$F_{\rm p} = \frac{S_{\rm agn}^2}{S_{\rm v}^2} \tag{17}$$

где S_y^2 — дисперсия параметра оптимизации ($S_y^2 = S_3^2$).

Если $F_{\rm p} < F_{\rm kp}$ (табличного) при заданном α и числе степеней свободы $f_1=N-m$ (для числителя) и $f_2=N-1$ (для знаменателя). Табличные значения $F_{\rm kp}$ берутся из таблиц [4]. Например, для $y_3=732+48x_1-97x_2+85x_1x_2-203x_1^2$ $S_{\rm ad}^2=\frac{4072}{9-5}=1018;$ $F_{\rm p}=\frac{1018}{30^2}=1,13< F_{\rm kp}=3,8$ (при $\alpha=0,05;$ $f_1=4;$ $f_2=8$), т.е. модель адекватна.

Заключительным этапом является интерпретация полученных адекватных моделей.

Например, анализ уравнения (12) показывает, что наибольшее влияние на $v_{\rm kp}$ оказывает вид присадки (x_1) , влияние содержания присадки (x_2) проявляется только во взаимодействии x_1x_2 . Максимальная величина $v_{\rm kp}=5,0$ мм/мин будет при $x_1=+1$ и $x_2=+1$, т.е. при использовании в качестве присадки кобальта, содержание которого должно быть 1,5%.

Литература

- 1. Присадочный материал для сварки высокопрочных конструкционных легированных сталей /Л.Л. Старова, В.Г. Ковальчук, М.Т. Борисов и др. // Сварочное производство. 2005. № 9. С. 3—6.
- 2. Сварочные проволоки доя высокопрочных сталей / В.Е. Лазько, Л.Л. Старова, В.Г. Ковальчук и др. // Сварочное производство. —1993. № 10. С. 33—35.
- 3. Вознесенский В.А., Статистические методы планирования эксперимента в технико-экономических исследованиях. М.: Статистика, 1974. 192 с.
- 4. Новик Ф.С., Арсов Я.Б. Оптимизация процессов технологии металлов методами планирования экспериментов. М.: Машиностроение, София: Техника, 1980. 304 с.