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FOREWORD 

 

This educational and methodical complex on structural mechanics is 

intended for students of construction specialties of higher educational 

institutions and universities. It corresponds to the curriculum for the 

training of civil engineers with a specialization in Industrial and Civil 

Engineering. The content of the material proposed for study is designed 

for a course of lectures and practical classes of approximately 180 

classroom hours, of which approximately 80 hours in the first semester 

(part 1) and 100 hours in the second semester (part 2). 

The first part of the complex is devoted to the presentation of 

traditional methods for calculating statically determinate and statically 

indeterminate rod or bar systems. Attention is drawn to the need to 

perform checks at all stages of the calculations in order to obtain reliable 

results, the ways of automating the calculations are indicated. 

More detailed information related to the analysis features of such rod 

and bar systems can also be found in the English-language publication on 

structural mechanics [1]. 

The course of lectures in the first part of the complex is accompanied 

by two types of graphic materials: drawing Figures and Illustrations. Each 

type of graphic materials has its own independent numbering, which 

contains the number of the topic and the number of the material in order. 

The Figures show traditional drawings of design schemes of structures 

and their elements. The Illustrations show photographs of real structures 

that correspond to the topic under consideration. All illustrations in the 

complex can be found on the Internet. 
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THEME 1. 

GENERAL CONVENTIONS AND CONCEPTS OF STRUCTURAL 

MECHANICS 

 

1.1. Tasks and Methods of Structural Mechanics 

 

Structural mechanics as a science develops the theory of creating 

engineering structures and methods for calculating their strength, rigidity 

and stability under a variety of static and dynamic loads and other 

influences. Strength analysis involves the determination of internal forces 

in all elements of a structure. Based on the found internal forces, the 

strength and stability of each element of the structure, as well as the 

strength and stability of the entire structure as a whole, are checked. The 

rigidity of the structure is estimated by determining the displacements 

(linear and angular) of its characteristic points, sections, elements and 

comparing the found displacements values with the normalized values. 

In the training curriculum for civil engineers, structural mechanics 

immediately follows such a discipline as resistance of materials. The 

resistance of materials studies the behavior under load of individual 

elements: bars, beams, columns, plates. The structural mechanics study 

the response of entire complex structures composed of bars, plates, and 

solids, as well as connecting and supporting devices (nodes, links, 

constraints, etc.). 

The main tasks of structural mechanics are: 

• Study of the laws of structures formation. 

• Development of methods for analyzing the internal forces in the 

elements and parts of structures due to various external influences and 

loads. 

• Development of methods for determining displacements and 

deformations. 

• Study of stability conditions of structures equilibrium in a deformed 

state. 

• Study of the structures interaction with the environment. 

• Study of changes in the stress-strain state of structures during their long-

term operation. 

In practical terms, the so-called direct task of structural mechanics is 

most fully developed: determination of the stress-strain state of a 
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structure under given loads and other influences. It is assumed that the 

design scheme of the structure, the properties of the materials and the 

dimensions of its elements are also given. This main task of structural 

mechanics is sometimes called the verification calculation of the 

structure. 

In the calculations of buildings and engineering structures, the 

hypothesis of continuity of materials, the hypothesis of their homogeneity 

and isotropy, the hypothesis of direct proportionality between stresses 

and strains are used. Deformations and displacements of structural 

elements are assumed to be small, which allows the analysis of most 

structures using an undeformed design scheme. 

To solve the problems, structural mechanics develops and applies 

theoretical and experimental methods. Theoretical methods use the 

achievements of theoretical mechanics, higher and computational 

mathematics, computer science and programming. Experimental methods 

are based on testing samples, models and real structures. 

Though at the initial stage of its development structural mechanics 

was based mainly on graphical methods for solving its problems, then 

with the development of computer technology analytical solutions have 

become more and more applied. Moreover, instead of numerous 

particular methods and techniques that made it possible to avoid solving 

systems of joint equations, nowadays in structural mechanics, general 

universal methods (analytical and numerical) have come to the fore, 

allowing engineers to analyze complex structures as entire deformable 

systems. The solution of systems of joint linear algebraic equations with 

hundreds of thousands of unknowns has ceased to be a stumbling block. 

Computer technology has allowed not only to solve, but also to compose 

systems of equations of high orders, and most importantly, to review the 

obtained results, displaying them on the monitor screen in a graphical 

form familiar to an engineer. 

Structural mechanics is a constantly developing applied science. New 

mathematical models of the real materials behavior during their 

deformation are being developed. The loading conditions of structures 

and the values of loads are being specified. Thermal and other effects are 

being taken into account. Nonlinear methods for analyzing structures in a 

deformed state are increasingly being used. Methods of synthesis and 

design optimization of structures are being developed. The connection of 

structural mechanics with the design of structures, with the technology of 
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their manufacture and construction, is becoming increasingly close. It all 

leads to the creation of more solid, economical, reliable and durable 

buildings and structures. 

 

1.2. Design Scheme of the Structure. The Concept and Elements 

 

When analyzing structures, engineers usually do not deal with the real 

structure itself, but with its design scheme. The choice of a design 

scheme is a very important and responsible process. The design scheme 

should reflect the actual response of the structure, as close as possible, 

and, if possible, facilitate both the calculation process itself and the 

analysis process of the calculation results. In this respect it is essential to 

have extensive experience in the calculation of structures, to have a good 

idea of the analyzed structure behavior. It is necessary to know and to be 

able to predict the impact of the individual elements on the response of 

the entire construction. 

Depending on the geometric dimensions in structural mechanics, the 

following main structural elements are distinguished: rods or bars, shells, 

plates, solids, thin-walled bars. Structural elements may also include 

connecting devices (nodes, links, and other connections) and supporting 

or limiting devices (supports or constraints). 

Spatial structural elements, in which one size (length) significantly 

exceeds the other two, are called bar elements.  

Spatial elements, one size (thickness) of which is much smaller than 

the other two sizes, are called shells, if they are bounded by two curved 

surfaces or plates if they are bounded by two planes.  

On the design schemes of the structures, the bars are replaced by their 

axial lines (straight line, curve line or polyline), and the plates and shells 

are replaced by their median surfaces (plane or curved). 

Solid bodies are elements of the structure or the environment in which 

all three sizes are of the same order (sometimes unlimited), for example: 

foundations, dams, retaining walls, and soil and rock massifs. 

Bars are called thin-walled if they have all main dimensions of 

different orders: the thickness is significantly less than the cross-sectional 

dimensions, and the dimensions of the cross-section are much smaller 

than the length. 
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Separate elements that form the structure are combined into a united 

system through nodal connections, or simply nodes. Nodes are also 

considered as idealized. Usually they are divided into nodes that connect 

the elements by ideal hinges without friction and the nodes that are 

absolutely rigid. 

 

 

Illustration 1.1. Carcass of an industrial building: 

columns, crane beams, roof trusses, lathing. 

 

An ideal hinged node (or simply a hinge) is considered as a device 

that allows only mutual rotation of the connected elements relative to 

each other. At the design schemes, the hinge is indicated by a small 

circle. 

Hinged joint transfers only concentrated force from element to 

element. This force is usually decomposed into two components. When 

two rectilinear elements lying on one straight line are articulated by hinge 

(Figure 1.1, a), the internal force in the joint is decomposed into 

longitudinal N and transverse Q components. When the elements are 

articulated at an angle (Figure 1.1, b), the interaction force is decomposed 

into vertical V and horizontal H components, or otherwise. There is no 

bending moment in any swivel joint (in any hinge). 
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Figure 1.1 

 

An absolutely rigid connection of elements (rigid node) completely 

eliminates all their mutual displacements. Special designations for rigid 

nodes are not usually introduced (Figure 1.2, a). Sometimes a rigid node 

is designated as a small square (Figure 1.2, b). Three internal forces act in 

a rigid node, for example, the vertical component V, the horizontal 

component H and the bending moment M (Figure 1.2, c). 

 

 
Figure 1.2 

 

Sometimes such division of nodes into perfectly hinged and ideally 

rigid is not true. Then the nodes are considered as compliant or elastic, 

allowing mutual displacements of the connected elements (for example, 

rotation) proportional to the internal forces acting in the node. On design 

schemes, elastic nodes are being depicted with additional elements: 

deformable (Figure 1.3, a) and/or absolutely rigid (Figure 1.3, b) and 

others. Internal forces in elastic nodes depend on the mutual displacement 

of the connected elements. For example, the value of the bending moment 

(Figure 1.3, c) in an elastic node (Figure 1.3, a, b) depends on the mutual 

rotation angle of the connected bars. 

A structure is attached to the ground (to the foundation) or to other 

structures with the help of supports. There are the following main types 

of disign schemes for supports of plane (two-dimensional) structures: 

hinged movable supports (roller supports), hinged immovable supports 

(pin supports), absolutely rigid supports (build-in or fixed supports), 
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movable rigid supports and floating rigid supports. The latter eliminates 

only rotation. 

 

 
Figure 1.3 

 

The hinged movable support limits only one linear movement in a 

given direction. Structurally, such a support can be made in the form of a 

cylindrical roller. The roller is freely moving along the supporting surface 

(Figure 1.4, a). A single reactive force arises in such support. The action 

line of the reactive force passes through the points of contact of the roller 

with the supporting surfaces of the foundation and structure. If the 

displacements of the real structure are small enough, then the roller can 

be replaced with a swinging rod (Figure 1.4, b, c). In the design schemes, 

the hinged movable support is depicted in the form of one rectilinear 

support rod with hinges at the ends (Figure 1.4, c). In such support, the 

direction of the reactive force coincides with the direction of the support 

rod, i.e. with the direction of the prohibited displacement. 

 

 
Figure 1.4 

 

If large displacements of the support point are possible in the 

structure, then the design diagram of the articulated movable support is 

depicted in the form of a slide-block pivotally connected to the structure 

and freely sliding on the supporting surface (Figure 1.5, a), or freely 

rolling on it on rollers (Figure 1.5, b). The structure cannot move in the 

direction perpendicular to the supporting surface. A single reactive force 
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normal to the supporting surface acts on the structure from the side of 

such roller support. 

Even if the reaction of a roller support, which is depicted in the form 

of an inclined support rod, is decomposed into two components (Figure 

1.5, c), then only one of them will be unknown. The second is clearly 

expressed through the first. 

 

 
Figure 1.5 

 

An immovable hinged support (Figure 1.6) completely eliminates all 

linear displacements and allows free rotation only about the axis of the 

support hinge. In this support, only a reactive force arises, the action line 

of which passes through the center (axis) of the pinned support. Since the 

direction of the action line of this reaction is unknown, to define this 

reaction it is decomposed into two unknown components, usually vertical 

and horizontal. Therefore, it is possible to assume that the hinged 

immovable support (Figures 1.6, a, b) is equivalent to two support rods 

intersecting on the axis of the support hinge (Figures 1.6, c, d). 

 

 
Figure 1.6 

 

An absolutely rigid support (Figure 1.7, a), does not allow either linear 

or angular movements. Three reactions arise in such fixed support: two 

reactive forces (two components of the total reactive force of an unknown 

direction) and a reactive moment. The absolutely rigid support is 

equivalent to three support rods (Figure 1.7, b). 

Rigid movable (non-hinged) supports leave freedom for one linear 

displacement (Figure 1.7, c, e). Naturally, the reactive force component in 
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the rigid movable supports in the direction of free linear movement is 

absent. There a reactive moment remains and a reactive force 

perpendicular to the free linear displacement remains, i.e., two support 

reactions. Such rigid movable supports are equivalent to two support rods 

(Figures 1.7, d, f). 

 

 
 

Figure 1.7 

 

Floating rigid supports (Figure 1.8) eliminate only angular 

displacements. Only one reactive moment arises in a floating support. 

Floating support can be designated by a special device (Figure 1.8, a), or 

simply by a square (Figure 1.8, b), specifying its properties. 

 

 
Figure 1.8 

 

Modern methods of structural mechanics, modern computer 

technology and modern design and computing systems for the analysis of 

structures allow you to calculate almost any design scheme. 

For the same framework, it is possible to choose several design 

schemes. Preliminary design of cross section parameters of structural 

elements can be performed on a calculator according to a simplified 

calculation scheme. The final calculation should be performed in 

accordance with more complex and accurate design schemes using 

computers and modern software. 

Here is an example of choosing a design scheme for truss structure. 

Under certain conditions, a system of rods with ideal frictionless hinged 

joints on each end can be adopted as a design scheme for its analysis 
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(Figure 1.9). In this case the analysis of internal forces in its elements is 

easily performed on a calculator with the use of equilibrium equations 

only.  

In fact truss structures can be made of bent-welded rectangular or tube 

profiles with welded nodes or in monolithic reinforced concrete, then 

their analysis will require a more accurate design scheme with rigid nodal 

joints (Figure 1.10). 

 

 
                                Figure 1.9                                                 Figure 1.10 

 

Such design scheme is already statically indeterminate many times. Its 

analysis is possible when taking into account additional deformation 

equations and is reduced to solving a system of joint linear algebraic 

equations of a sufficiently high order. It will require the use of computer 

software. 

 

1.3. Classification of Design Schemes of Structures 

 

Classification of structures can be performed, in terms of their 

analysis, according to various criteria. 

 

1.3.1. Plane and Spatial Structures. 

A structure is called plane, or two-dimensional, if: 

a) the geometric axis of all its elements that make up the structure lie 

in the same plane, 

b) in all cross sections of each element one of the main axes of inertia 

lies in the same plane, 

c) the lines of action of all the loads applied to the structure also lie in 

the same plane. 

If at least one of these conditions is not fulfilled, then the structure is 

spatial. 

All real structures are spatial. But in order to simplify their analysis, 

they are divided into a number of plane systems. Such dismemberment is 

not always possible. Therefore, some structures have to be considered as 

 

Рис. 1.9 Рис. 1.10 
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spatial. This book is devoted to the analysis and calculation of 

predominantly plane systems. 

 

1.3.2. Bars Systems, Thin-walled Spatial Systems and Massifs 

Systems (Solid Bodies). 

 

Structures which are consisted of rectilinear or curvilinear bars or rods 

are called bar systems.  

Structures composed of shells and plates are called thin-walled and are 

usually spatial. 

 

 

Illustration 1.2. Hanging shell of negative Gaussian curvature 

on an arched support contour 

 

Massifs systems mean structures consisting of solid bodies, for 

example: foundations, dams, retaining walls, as well as soil and rock 

massifs themselves. Massive systems can be considered both in three-

dimensional and in two-dimensional space. 

Traditionally, structural mechanics deals with the study of mainly bar 

systems. But modern computer software allows you to analyze spatial 

thin-walled and massifs systems, using almost the same methods as for 

bar systems.  
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Illustration 1.3. Plate-bar system with rigid nodes, 

working in conjunction with soil massif 

 

1.3.3. Structures with Hinged or Rigid Nodal  

Connections of Elements 

 

A bar system composed of rods with ideal frictionless hinge joints 

only on each end of each rod is called a hinge-rod system or a truss 

(Figure 1.9).The bar system, in which the elements are connected, 

basically absolutely rigidly, is called a frame (Figure 1.10, Figure 1.11). 

In the same structure, both hinged and rigid joints of elements can be 

used. Sometimes this method of joining is called combined. As example 

it is the beam with a polygonal complex tie (Figure 1.12). The 

simultaneous use of rigid and articulated joints takes place in the design 



19 
 

schemes of many other types of structures, for example: in a three-hinged 

frame (Figure 1.13),  in a two-span two-tier frame with a central 

pendulum column and with a pivotally supported upper crossbar (Figure 

1.14).  

 
  

          Figure 1.11                                             Figure 1.12 

 

 
 

                    Figure 1.13                                                            Figure 1.14 

 

1.3.4. Geometrically Changeable and Unchangeable 

Systems. Instantaneously Changeable and 

Instantaneously Rigid Systems 

If a structural system allows a change in its geometry (shape 

distortion) due to the mutual displacement of the elements without their 

deformation or destruction, then the following system is called 

geometrically changeable (Figure 1.15). If a change in the shape 

(geometry) of a system is possible only due to deformation or destruction 

of its elements, then the following system is geometrically unchangeable 

(Figure 1.16). 

 

.  

                         Figure 1.15                                                   Figure 1.16 

 

Рис. 1.11 Рис. 1.12  
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The classification of structures by kinematic characteristics is of great 

importance, since, as a rule, geometrically unchangeable systems can be 

used as structures. Only some hanging systems of a variable type made of 

flexible elements or cables are an exception.  

With an arbitrary change in the sizes of the elements and/or a change 

in the mutual arrangement of the nodes of the system, it is possible to 

obtain its special (singular) shape, the kinematic properties of which will 

differ from the properties of adjacent forms. For example, a two-rod 

geometrically unchangeable system (Figure 1.16), when changing the 

lengths of its elements, can take a special form in which both rods will lie 

on one straight line (Figure 1.17). 

In this special case, the intermediate joint will be free to move vertically. 

However, the vertical movement of the intermediate joint can only be 

infinitesimal, since the rods are assumed to be completely non-deformable, 

i.e. absolutely rigid. All adjacent forms in which the rods do not lie on one 

straight line will be geometrically unchangeable. Special forms in which the 

system allows infinitely small movements are called instantaneously 

changeable. When a system is removed from an instantaneously changeable 

configuration, it becomes geometrically unchangeable. 

Systems whose configurations are instantaneously changeable (Figure 

1.17) or close to those (Figure 1.18), as a rule, are not used as structures, 

since they have heightened deformability. 

 

 
 

                             Figure 1.17                                               Figure 1.18 

 

On the other hand, in a geometrically changeable system (Figure 1.19), 

one can choose the lengths of its elements so that, for example, all its nodes 

are located on one straight line (Figure 1.20). This will be a special form of a 

geometrically changeable system, which is called instantaneously rigid. In 

adjacent forms, the considered geometrically changeable system allows large 

kinematic movements without deformations of its elements (Figure 1.19). 

The same system in a special form (Figure 1.20) under the condition of 

absolute inextensibility of the rods allows only infinitesimal displacements. 

Thus, both geometrically unchangeable and geometrically changeable 

systems can have special, singular forms. 
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Under real conditions, when elements of structures are made of 

deformable materials, singular forms are characterized by finite 

displacements of nodes, the values of which are an order of magnitude 

higher than the elongations of elements. Consequently, instantaneously 

changeable systems are characterized by heightened deformability 

compared to geometrically unchanged systems, and instantaneously rigid 

systems are characterized by heightened stiffness compared to 

geometrically changeable systems. 

 

 
                             Figure 1.19                                   Figure 1.20 

 

Instantaneously rigid systems are widely used in pre-stressed 

suspension and cable-stayed systems 

 

1.3.5. Thrust and Free Thrust Systems 

If in a structure a load of one direction causes support reactions of the 

same direction, then such a structure is called free of thrust or simply 

non-thrusting. All other structures can be attributed to thrusting systems. 

The thrust of a structure is support reactions normal to the load action 

direction. 

A classic example of non-thrusting systems is beams: a simply 

supported rectilinear beam (Figure 1.21), a simply supported curvilinear 

beam (Figure 1.22) and other beam-type systems (Figures 1.9, 1.10, 

1.12). The double-hinged arch (Figure 1.23) and the three-hinged frame 

(Figure 1.24), the same as many others, are thrusting systems. 

 
                        Figure 1.21                                                    Figure 1.22 
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                                     Figure 1.23                                      Figure 1.24 

 

Therefore non-thrusting systems are often called as beam systems. 

And thrusting systems are called as arch systems. 

 

1.3.6. Statically Determinate and Indeterminate Systems 

In a statically determinate system, all internal forces can be found 

using only equilibrium equations (static equations). 

If there is a need to use the equations of deformations to determine the 

support reactions or at least part of the internal forces, then such a system 

is called statically indeterminate 

A statically indeterminate system has an excess of nodal and other 

connections or links than is necessary for its geometric immutability. A 

statically indeterminate system can have preliminary stress (initial 

internal forces, i.e., forces without load due to thermal effects, 

displacement of supports, inaccurate assembly, etc.). In a statically 

determinate system, initial internal forces are impossible without external 

loads. 

 

1.3.7. Linearly and Nonlinearly Deformable Systems 

If the relations between the load applied to the structure and the 

internal forces and displacements caused by it obeys the law of direct 

proportionality, then such a structure is called linearly deformable, or 

simply linear. In a linearly deformable system, deformations and 

displacements are supposed to be small. Their influence on the 

distribution of internal forces is neglected. The geometry of the deformed 

structure is assumed to coincide with the geometry of the original 

undeformed structure. The equilibrium equations are relative to the 

original, undeformed design scheme. The stress-strain state of a linear 
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system is described by linear differential or linear algebraic equations. 

 

llustration 1.4. Space system in the form of statically indeterminate arches 

with a beam over structure 

 

 

 

 

llustration 1.5. Non-thrusting multi-span statically indeterminate 

beam with variable cross section 
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However, if the deformations and displacements caused by external 

influences in a structure are significant, then the relations between the 

loads, the internal forces and displacements become non-linear. Such a 

structure is called nonlinearly deformable, or non-linear. 

Non-linearity due to a change in the geometry of the design scheme of 

the structure is called geometric non-linearity. The calculation of large-

span and high-rise structures is usually carried out taking into account 

geometric nonlinearity. All geometrically changeable, instantaneously 

changeable and instantaneously rigid systems (suspension coverings and 

roofs, suspension bridges, cable and cable-stayed networks and systems) 

are geometrically non-linear. 

The nonlinearity associated with the deviation of the law of 

deformation of the building material from the law of direct 

proportionality, Hooke's law, is called physical nonlinearity. 

  

1.4. Plane Bar System Degree of Freedom 

 

The degree of freedom of a body or system of bodies is the number of 

independent geometric parameters that determine the position of a body or 

system of bodies when they move on a plane or in space. 

The position on the plane of a movable (free) material point of infinitesimal 

dimensions (hinge node) is characterized by its two coordinates relative to an 

arbitrary fixed reference system located in the same plane (Figure 1.25). 

Consequently, the point (hinge node) has two degrees of freedom on the plane. 

 
Figure 1.25 

 

A separate body (bar) or a knowingly geometrically unchangeable 

system of bodies (bars system) or its part, which can move on a plane as a 

whole, without changing its geometric shape, is called a disk. 

The position of the moving (free) plane body (disk) on the plane is 

characterized by three independent parameters, for example: the abscissa 

x and the ordinate y of a point A and the angle of some straight line AB 

belongs to the disk (Figure 1.26). Thus, when moving on a plane the disk 
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Illustration 1.6. Minsk-Arena. Bottom view of the coating 

 

 

 
 

Illustration 1.7. Minsk-Arena. Design diagram of nonlinearly deformable  

radial cable trusses and support rings 
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has three degrees of freedom. A rigid node on a plane, even of 

sufficiently small dimensions, in contrast to the articulated node, should 

be considered as a disk. Therefore, a rigid node on a plane has three 

degrees of freedom. 

 

 
 

Figure 1.26 

 

In space, a free solid is considered as a spatial block and has six 

degrees of freedom: three coordinates of any of its points and three angles 

of rotation of any of its lines with respect to the axes of the fixed spatial 

coordinate system. 

In this section only plane systems are considered. 

 

1.4.1. Classification of Plane Systems Connections 

Any device that reduces the degree of freedom of a body or system of 

bodies by one is called a simple connection or a simple link or a single 

constraint. If the device constrains several degrees of freedom, then it is 

considered as a complex (multiple) connection, equivalent to several 

simple ones. 

Each connection has both kinematic and static characteristics. 

The kinematic characteristic determines the types of motion of one 

disk relative to another, which are constrained by the connection, the 

number of degrees of freedom that this connection eliminates. The static 

characteristic determines the number and types of reactions that occur in 

the corresponding connection. 

Thus, any structure can be considered as a system of disks connected 

by links, both among themselves and with a supporting surface (ground). 

The earth (supporting surface) can also be considered as a disk. Most 

often, an immovable coordinate system is associated with the ground, and 
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the degree of freedom of the system under study is determined relative to 

the earth. 

In kinematic analysis, disks and connections are assumed to be non-

deformable, absolutely rigid. 

Let’s consider the design schemes of connections used in structural 

mechanics. 

A movable hinged support is equivalent to one simple link. A disk, 

which is attached to the ground (supporting surface) with a movable 

hinged support, loses one degree of freedom. A system of a disk and a 

support rod has two degrees of freedom (Figure 1.27). 

A single hinged rod connecting two disks can also be considered as a 

simple link. A system of two disks connected by one hinged rod loses one 

degree of freedom (Figure 1.28). The total degree of freedom of such a 

system is five, as opposed to six degrees of freedom for two free disks. 

 

 
 

                Figure 1.27                                             Figure 1.28 

 

A single hinge (indicated by a circle on the design diagrams) is equivalent 

to two simple links. Connecting two disks, one hinge reduces their total degree 

of freedom, equal to six, to four. The position of two disks connected by the 

hinge is characterized by two coordinates x and y of point A and two angles  

and  fixing the position of lines AB and BC (Figure 1.29, a). The earth 

(supporting surface) can be considered as an immovable disk. A movable disk, 

when it is attached by a hinge to the ground (to a fixed supporting surface), 

loses two degrees of freedom. The position of this disk is characterized by only 

one angle of rotation relative to the axis of the hinge (Figure 1.29, b). Such a 

device can be considered as an immovable hinged support, equivalent to two 

simple support rods (Figure 1.29, c). An immovable hinged support eliminates 

two degrees of freedom. 
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Figure 1.29 

 

A system of three disks connected by two hinges (Figure 1.30, a) has 

five degrees of freedom. Two hinges eliminated four degrees of freedom. 

In this system, the intermediate disk can also be considered as a simple 

connection (compare with the system in Figure 1.28). 

In kinematic analysis, any rod (bar) can be considered as a disk, and 

any disk can be replaced by a bar. 

Often two hinges connecting three disks come together and merge, as 

if into one hinge on a common axis (Figure 1.30, b). Such a complex 

hinge is equivalent to two simple hinges, or four simple links. 

 

 
Figure 1.30 

 

In the general case, the multiplicity of the following complex hinge is 

one point less than the number of disks (rods) connected on one axis. In 

other words, the relation is true: 

 
1H D  , 

where H  is the multiplicity of the complex hinge, D  is the number of 

disks connected by the complex hinge on one axis. 
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Examples of simple hinges are shown in Figure 1.31, a. Figure 1.31, b 

shows multiple hinges. 

If two disks (rods) are monolithically (or by welding) combined into 

one disk, then such a joint is called a rigid connection, or a rigid node. 

 

 
 

Figure 1.31 

 

Rigid nodes can also be simple (Figure 1.32, a), or multiple (Figure 1.32, 

b). The multiplicity of rigid nodes is determined by the formula: 

 

1R D  , 

where R  is the number (multiplicity) of simple rigid nodes, D  is the 

number of disks that are monolithically connected in one node. A simple 

rigid connection eliminates three degrees of freedom. It is equivalent to 

three simple links. 

 
Figure 1.32 

 

A rigid (build-in) support that eliminates the ability of the disk (bar) to 

move relative to the supporting surface, like a rigid node, is also equivalent to 

three simple links (Figure 1.7, a, b). 
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If necessary, rigid nodes allow breaking one disk (bar) into an arbitrary 

number of component bars (disks) (Figure 1.33). 

 

 
 

Figure 1.33 

 

If a system of disks connected by links can change the geometric 

shape given to it or move relative to the supporting surface, then it is a 

mechanism, that is, it is geometrically variable, and cannot (with rare 

exceptions) act as a structure. 

The goal of kinematic analysis is precisely to find out: 

•whether structural systems are capable of perceiving the load 

transferred to them without a significant change in their geometric shape, 

•what should be the ratio between the number of disks and the number 

of constraints (links) imposed, 

•what is the complexity of the calculation to determine the reactions, 

internal forces and displacements in the structure. 

 

1.4.2 Degree of Freedom (Degree of Variability) of Plane 

Systems. Formulas for Calculating 

 

Based on the concepts introduced above, it is easy to determine the 

degree of freedom W of any planar system composed of D disks connected 

to each other and the supporting surface by R simple rigid nodes, H simple 

hinges, and Lo simple support links. 

If the system consists only of free, unconnected disks, then its degree of 

freedom will be equal to 3D. Each simple rigid joint introduced eliminates 

three degrees of freedom, each simple hinge - two, and each simple support 

link - one degree of freedom. Therefore, the total degree of freedom of the 

system is equal to the difference: 

 

03 3 2W D R H L    .                            (1.1) 

 

For the correct application of the obtained formula, it should be 

remembered that R, H and Lo mean the total number of, respectively, 

simple (single) rigid nodes, simple (single) hinged nodes and simple 
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support links. In this case, it is necessary to ensure that each disk and 

each connection (each device) are counted only once. In other words, if, 

for example, the hinge connection of one of the disks to the ground is 

taken into account as a simple hinge, then this support device can no 

longer be included in the number of simple support links as a hinged 

immovable support equivalent to two support links. 

The degree of freedom of a plane system, separated from supports (not 

having support connections), i.e., in the mounting or transport state, 

consists of the degree of freedom of it as a rigid whole, equal to three (on 

the plane) and the degree of variability of V of its elements relative to 

each other ( internal mutability). Thus, we can write 

 

3W V  , 

where from 

 

3V W  . 

 

Substituting the expression W in the last formula, provided that there 

are no support rods in the system, we obtain the final formula for 

calculating the degree of variability of the bars system disconnected from 

the supports 

 

3 3 2 3V D R H    .                               (1.2) 

 

If the degree of freedom (or degree of variability) of the system is 

positive (greater than zero) 

 

0 (or 0)W V  , 

 

then the system is geometrically changeable. In its structure, to ensure 

geometric immutability, W (or V) links are missing. 

For example, a suspension system (Figure 1.34) is composed of four 

rods connected by three hinges and is supported by two hinged 

immovable supports (in total 4 support rods). Its degree of freedom is 

equal to 

 

03 2 3 4 2 3 4 2W D H L         . 
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Figure 1.34 

 

Therefore, it is geometrically changeable. Its structure lacks two links to 

ensure geometric immutability. 

If the degree of freedom (or degree of variability) of the system is 

negative (less than zero) W < 0 (or V <0), then the system contains an 

excessive number of links from the point of view of geometric immutability.  

A two-span two-tier frame (Figure 1.35, a) consists of eight disk 

(bars). The bars are connected by two simple hinges, three double rigid 

nodes (six single, simple) and are supported by three absolutely rigid 

supports. Its degree of freedom is equal to 

 

03 3 2 3 8 3 6 2 2 9 7W D R H L             . 

 

In terms of geometric immutability, this frame contains seven extra 

links. 

The same frame can be considered as composed of only two disks 

connected by two hinges (Figure 1.35, b). One of the disks has three rigid 

supports (9 simple support rods). Consequently, we get the same result: 

 

03 3 2 3 2 3 0 2 2 9 7W D R H L              

 

The negative degree of freedom of the system equal to the number of 

redundant connections determines the degree of static indeterminacy of 

the system. Therefore, the degree of static indeterminacy of the system 

can be calculated by the formula: 

 

03 2 3W R H L D       ,                         (1.3) 

 

where   is the number of extra links (redundant links). 
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Figure 1.35 

 

If the degree of freedom of the system is zero 

 

0W  , 

 

then the system has the number of connections necessary for geometric 

immutability and immobility and can be statically determinate. 

Such a system is shown in figure 1.36. It consists of 9 disks (bars). It 

has no rigid nodes. The disks are connected by 12 simple hinges (the 

multiplicity of hinged nodes is shown in the figure). Three supporting 

rods link it to the supporting surface. Its degree of freedom is equal to 

 

03 3 2 3 9 0 2 12 3 0W D R H L           . 

 
а) 
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The same result can be obtained in a different way, assuming that the 

system is composed of 11 bars. It is assumed that both half-beams are 

formed by each of two bars soldered rigidly in quarters of a span. 

Consequently, two additional rigid nodes appear. The number of hinges and 

supporting rods has not changed. There are other options for calculating the 

degree of freedom of a given system. 

 

 
 

Figure 1.36 

 

If the degree of variability of the system is zero 

 

0V  , 

 

then the system has the number of bonds necessary for internal geometric 

immutability and can be internally statically determinate. For example, 

the degree of variability of a single-slope truss without supports (Figure 

1.37) is zero:  

 

3 3 2 3 3 13 0 2 18 3 0V D R H           . 

 

The system contains the necessary number of links that are internally 

geometrically unchanged and statically determinate. But externally, 

relative to the earth, the system is mobile; it lacks at least three support 

connections to give it immobility. A greater number of superimposed 

support connections will turn it into an externally statically indeterminate 

system. 

The calculation of the degree of freedom or the degree of variability 

for plane truss can also be performed using a more convenient formula. 

In the truss, the hinged nodes can be considered as material points 

having two degrees of freedom on the plane. The truss rods, as well as the 

support rods, can be considered as simple links. 
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Figure 1.37 

 

If the nodes of the truss were not connected by rods, then the system 

of N free nodes would have 2N degrees of freedom. The truss rods 

connecting the nodes and the support rods, each as a simple link, 

eliminate one degree of freedom. Therefore, the degree of freedom of the 

plane truss can be calculated by the formula 

 

2W N B L   ,                                    (1.4) 

 

where N  – the number of truss nodes as material points, 

B  – the number of rods of the truss, 

L  – the number of support rods (simple links). 

Accordingly, the degree of variability of the truss disconnected from the 

supports will be equal to  

 

2 3V N B   .                                     (1.5) 

 

So for a farm without supports (Figure 1.37) we have 

 

2 8 13 3 0V      . 

 

Thus, the use of the above formulas to calculate the degree of freedom 

or the degree of variability of plane bars systems provides the necessary 

analytical criteria for geometric immutability or variability, static 

definability or indeterminacy. 

Unfortunately, these analytical criteria are necessary, but not 

sufficient.  
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1.5. Geometrically Unchangeable Systems. Principles of the 

Formation 

 

The above formulas for calculating the degree of freedom (degree of 

variability) of bars systems provide only a formal assessment of the 

kinematic properties of the systems under study, which is not always true. 

For the final conclusion about the geometric immutability and static 

definability of the bar system, an analysis of its structure, an analysis of 

the principles by which it is assembled is necessary. Only systems of the 

correct structure will be truly geometrically unchangeable. 

For example, a system being partially statically indeterminate and 

partially geometrically variable (Figure 1.38) refers to systems of 

irregular structure, although its total degree of freedom is zero. The 

system shown in Figure 1.39 also has a zero degree of freedom, but in 

fact it is instantaneously changeable, since it has infinitely small mobility. 

Its structure is also irregular. An instantaneously rigid system (Figure 

1.40) formally has one degree of freedom, but in fact it has two degrees 

of freedom. In addition, it can have initial efforts (for example, from 

cooling its elements), as once a statically indeterminate system. 

 
                  Figure 1.38                      Figure 1.39                        Figure 1.40 

 

For systems of irregular structure, the concepts of the degree of freedom 

or the degree of variability, calculated by the formulas derived above, 

become indefinite, meaningless. 

Let us consider the main methods for the formation of obviously 

geometrically unchangeable bar systems. 

1. The dyad method. The degree of freedom of the system (disk) will not 

be changed if you attach (disconnect) the hinge node using two hinged rods 

not lying on one straight line (Figure 1.41). Disks and any other subsystems 

that are known to be statically definable and geometrically unchangeable 

(Figure 1.42) can act as such rods. 

2. The triangles method. Three disks 1, 2 and 3 connected by three hinges 

A, B and C, not lying on one straight line (Figure 1.43), form a new internally 

 

W=0 W=0 

W=1 
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geometrically unchangeable system (disk). The total number of extra links, if 

they are in the source disks, is not changed. The total degree of freedom of the 

three discs is reduced by six units. 

 

 
 

                       Figure 1.41                                                  Figure 1.42 

 

3. The method of hinge and simple link, equivalent to the method of 

triangles. Two disks 1 and 2, connected by a common hinge C and one rod 

AB, provided that the straight line AB (or its extension) does not pass through 

the hinge C, form a new single disk (Figure 1.44). At the same time, the total 

number of extra links in the source disks does not change, and their total 

degree of freedom is reduced by three units. 
 

 
 

Figure 1.43                               Figure 1.44 
 

4. The three links method. Two disks are connected by three hinged 

rods (Figure 1.45), lying on straight lines that are not intersected at one 

point and are not parallel to all three at once, form a united system (new 

disk). In the new system, the total number of excess links, if they were in 

the original disks, does not change, and the total degree of freedom is 

reduced by three units. 

Generally speaking, the considered methods of forming a single 

system of several components are applicable to any system with 
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redundant links (statically indeterminate disks), and to systems with 

missing links (mechanisms). 
 

 
 

Figure 1.45 
 

In order for a united system to be formed according to the considered 

laws to be geometrically unchangeable and statically determinate, it is 

necessary and sufficient for its components, each separately, to be 

geometrically unchangeable and statically determinate. Moreover, each 

disk can be considered as a rod and each rod can be considered as a disk. 

Then the considered methods of formation of obviously geometrically 

unchangeable and statically determinate systems can be reduced to two 

main methods. 

1. The triangles method: three disks (rods) connected by three hinges 

that do not lie on one straight line form a deliberately geometrically 

unchangeable (internally) and statically determinate system (new disk) 

(Figures 1.43, 1.44). 

2. The three connections method: two disks connected by three hinged 

rods whose axes do not intersect at one point (three parallel rods can be 

considered intersecting at infinity), form a new disk (Figure 1.45). 

Certainly, the considered methods of formation, assembling (or 

dismantling, disassembling) of obviously geometrically unchangeable 

and statically determinate systems can be applied not only individually, 

but also in their arbitrary combination, sometimes replacing each other. 

So, a three-hinged arch with a tie-bar (Figure 1.46) can be considered 

as formed: 

• By the dyad method. Firstly the support hinge A is unmovably attached 

to the ground using the two hinged support rods. Secondly the support hinge 

B is fixed by the third support rod and the bar AB. Finally, the hinge C is 

made immovable by means of two half-arches. 

• By the triangle method. The support rods of the support A, together with 

the ground, form the first triangle and the first single disk. The resulting disk, 

the beam AB and the support rod of the support B form a new single disk. 

Finally, the disc AB and the semi-arches AC and BC form the resulting 

triangle disc ABC. 
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• The combination of the three connections method and the method of 

dyads (or triangles). Beam AB is connected to the ground by three simple 

links (support rods). The hinged node C is attached to the resulting system by 

the dyad method (or a triangle ABC is formed). 
 

 
Figure 1.46 

 

Kinematic analysis of already created system can be carried out in the 

reverse order, i.e., by dismantling. If, as a result of discarding nodes and bars 

(disks) connected according to the rules considered above, there remains a 

known geometrically unchangeable and statically determinable subsystem, 

or only one supporting surface, then the original system is geometrically 

unchangeable and statically determinable. 

Using the analysis of the structure (analysis of the order of formation) of 

the system, it is easy to establish in which part of the system there are 

redundant links and in which part of the system they are lacking. Thus, 

systems of irregular structure and systems with degenerate configurations 

can be revealed. 

Any system in a degenerate configuration, instantly changeable or 

instantly rigid, can be considered both statically indefinable and 

geometrically changeable. The structure of such systems lacks connections in 

one direction and at the same time there are redundant connections in other 

directions. 

It is the presence of superfluous links that gives the degenerate system the 

properties of a statically indeterminate system, namely: the ability to have 

initial internal forces in the absence of load. And this property leads to a 

static criterion for instantaneous variability or instantaneous rigidity. 

1. If in a system with a zero degree of freedom (W = 0), i.e. in a system 

formally geometrically unchangeable and statically determinate, there may 

be initial internal forces (forces due to prestressing), then such a system is 

instantaneously changeable or partially statically indeterminate, and partially 
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geometrically changeable. In the latter case, it is necessary to conduct a 

kinematic analysis of the system by fragments. 

2. If in a system with a positive degree of freedom (W > 0), i.e. in a 

system formally geometrically changeable, there may be initial internal 

forces (prestressing forces), then such a system is instantaneously rigid or has 

statically indeterminate fragments in its composition. 

The connections in such systems, from the point of view of geometric 

changeability and mobility, are not arranged correctly. 

For example, in an instantaneously changeable system (Figure 1.47), the 

node C is fastened from horizontal displacement by the bar AC. The bar BC 

also eliminates the horizontal displacement of the node C and is redundant. 

At the same time, there is no any link in the system that would eliminate the 

vertical displacement of the node C. However, such an offset can only be 

infinitesimal: as soon as the node C moves off the line AB, the dyad bars AC 

and BC will no longer lie on one straight line and further displacement of the 

C node will become impossible without deformation of the AC and BC bars. 

From a static point of view, in this system initial forces without load are 

possible, for example, due to cooling or displacements of supports. 

 

Figure 1.47 
 

In the cable truss (Figure 1.40) in the middle panels, from the point of view 

of its formation by the method of triangles, two diagonal bars are clearly 

absent. Therefore, this truss must have two degrees of freedom. At the same 

time, it has four support bars, one of which (horizontal) is superfluous. Total 

degree of freedom W = 1. But precisely because of the presence of this extra 

connection (one of the horizontal support bars) in a given geometrically 

changeable system, only infinitely small displacements are possible. From a 

static point of view, this system at W=1>0 also allows preliminary tension. 

This means that this system is instantaneously rigid. 

A disk connected to the support surface by three support rods formally 

should have a zero degree of freedom. But if the three support rods converge in 

one support hinge (Figure 1.48), the system will remain geometrically 
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changeable (there is freedom of rotation about the axis of the support hinge), 

while the hinged immovable support has an extra (for a plane case) support 

rod. 

 
 

Figure 1.48 
 

The hinge-rod disc DFB (Figure 1.49), formed by the method of 

triangles, is connected to the fixed points A and C by the L-shaped rods 

AD and CF and is supported by hinged movable support B with the 

vertical support rod, i.e. it is connected to the supporting surface by three 

rods-discs ( 0W  ). But the lines on which the ends of these three rods-

disks lie intersect at one point O, which is the center of instant rotation. 

Initial efforts are possible in the system due to jacking up of the central 

support. Therefore, this system is instantaneously changeable. 

Examples of some other systems of irregular structure are shown in 

Figure 1.50 (the system is geometrically variable, though 2W   ) and in 

Figure 1.51 (a system with a statically indeterminate fragment is 

instantaneously changeable at 3W   ). 

 

 
 

                               Figure 1.49                  Figure 1.50            Figure 1.51  
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1.6. Matrices in Problems of Structural Mechanics 

 

When carrying out calculations based on computer technology, 

discrete schemes of structures and matrix calculus methods are used in 

structural mechanics. The loads acting on the structure are represented in 

the form of a load vector (matrix-column), the components of which are 

the values of the specified loads, numbered in a certain order. The 

calculation results will be presented not in the form of diagrams of 

internal forces or displacements, but in the form of force vectors and 

displacement vectors, in which the values of internal forces in specific 

sections and the values of displacements of specific points in given 

specific directions will be listed. 

So the loads applied to a simple beam (Figure 1.52) can be 

represented by a third-order vector 

 

1 1 2 3[ ]TF q F M , 

 

and the loads applied to the beam truss (Figure 1.53), by a fifth-order 

vector  

 

1 1 2 5[ ... ]TF F F F . 

 

 
 

       Figure 1.52                                                         Figure 1.53 

 

To find bending moments in five characteristic sections of the beam 

(Figure 1.52) and internal forces in thirteen rods of the truss (Figure 1.53) 

from the given loads, it is enough to construct, respectively, the influence 

matrix of bending moments 
ML   for the beam and the influence matrix of 

longitudinal forces 
NL  for the truss, the rods of which must be numbered 

beforehand. Then use the matrix formulas 
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1 2,M NM L F N L F  , 

 

where 

 

1 11 12 13

2 21 22 23

51 52 535

,
... ... ......

M

M m m m

M m m m
M L

m m mM

   
   
    
   
   

  

, 

 

11 12 151

21 22 252

13,1 13,2 13,513

...

...
,

... ... ... ......

...

N

n n nN

n n nN
N L

n n nN

  
  
   
  
  
    

. 

 

The element 
ikm   of the influence matrix of bending moments is a 

bending moment in a characteristic beam section number i, caused by a 

unit load number k. The element 
ikn  of the influence matrix of the 

longitudinal forces is the force in the rod number i of the truss from a unit 

value of the external force 1kF  . 

Using a suitably constructed an influence matrix of displacements D, 

we can find the vector    of displacements of given points in given 

directions due to external forces given by the vector F : 

 

DF  , 

 

where  

 

1 11 1 1

1

...

... , ... ... ... , ...

...

F k

nF n nk n

F

D F

F

 

 

     
     

   
     
          

. 
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The symbol 
nF  denotes the displacement of a point (section) number 

n in the direction of the force 1nF    applied at this point, caused by a 

given load. The element 
nk  of the influence matrix of displacements D is 

equal to the displacement of a point (section) number n in the direction of 

the force 1nF   caused by the force 1kF  , and is called the unit 

displacement. 

Thus, the use of influence matrices is based on the principle of 

independence of the action of forces, the principle of superposition. 

According to this principle, the total effect of several forces is equal to the 

sum of the effects of each force individually. At the first stage, the 

calculation is reduced to the calculation of internal forces and displacements 

from a single external forces and the construction of influence matrices. At 

the second stage, using the matrix formulas forces and displacements from 

any combination of loads are calculated with the help of computer. 

The displacement influence matrix D is also called the flexibility 

(compliance) matrix. The flexibility matrix allows you to express 

displacements through external forces. The square flexibility matrix can be 

inverted and a new matrix R, which is called the stiffness matrix, can be 

obtained: 

 
1R D . 

 

The stiffness matrix allows you to express external forces through the 

displacements of points to which these forces are applied 

 

F R  . 

  

Without going into detail we note that the flexibility and stiffness 

matrices are widely used in the analyses of statically indeterminate 

systems, as well as in the dynamics and stability of structures. On the 

basis of matrix calculus, modern design and computing complexes have 

been created for analyzing structures using computers. 
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THEME 2. 

STATICALLY DETERMINATE SYSTEMS. 

MAIN CHARACTERISTICS.  

ANALYSIS METHODS UNDER FIXED LOADS 

 
2.1. Concept of Statically Determinate Systems. 

Main Characteristics 

 
One of the main tasks of structural mechanics is to determinate the 

internal forces in the elements of a structure. The methods for their 

determination depend on those assumptions that are accepted for calculation. 

The division of systems into statically determinate and statically 

indeterminate depends on these assumptions. According to some 

assumptions, the same design scheme is considered to be statically 

determinate, while the others describe it as statically indeterminate. 

With a strict formulation of the calculation problem, it is necessary to 

define the internal forces taking into account the deformable state of the 

structure. In this case, as a rule, all systems are statically indeterminate. 

In a real linearly deformable system, deformations and displacements are 

small. Their influence on the distribution of internal forces is neglected. The 

calculation is carried out according to the so-called undeformed design 

scheme. It is assumed that the geometry of the deformed structure coincides 

with the geometry of the original undeformed structure. 

 

Statically determinate systems are those systems in which all 

internal forces can be determined only from equilibrium equations. 

 

The main properties of statically determinate systems are the 

following: 

1. A statically determinate system has no redundant constraints 

(links), i.e. 0W  . When at least one link is removed; the statically 

determinate system becomes a geometrically changeable system. 

2. Internal forces in statically determinate systems are independent of 

the elastic properties of the material and the dimensions of the cross 

sections of the elements. 
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3. Changes of temperature, settlements of supports, slight deviations 

in the lengths of the elements do not lead to of additional forces to occur 

in a statically determinate system. 

4. A given load in a statically determinate system corresponds to one 

single possible picture of the distribution of internal forces. 

5. The self-balanced load applied to the local part of the system causes 

an appearance of internal forces in the elements of that part only. In the 

remaining elements of the system, the internal forces will be zero (Figure 

2.1). 

 

 

  
Figure 2.1 

 
2.2. Sections Method 

 

A bending moment  M , longitudinal   N  and transverse  Q  forces, 

which are internal forces in a cross section of an element of a plane system, 



47 
 

can be integrally expressed through normal    and tangential    stresses 

(Figure 2.2).  

The sign of the bending moment M depends on the sign of curvature of 

the bended bar and the selected direction of the axes of the external fixed 

coordinate system (Figure 2.3). If the axis is directed in the opposite 

direction, then the curvature sign, and hence the moment sign, will be 

reversed. 

 

 

 
 

Figure 2.2 

 

 
Figure 2.3 
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When constructing bending moment diagrams, the positive ordinate of 

the moment is drawn in the direction of convexity of the bended axis, i.e. the 

diagram of moments is plotted on the stretched fibers of the element. 

The transverse force is considered positive if it tends to rotate the cut off 

part of the bar clockwise (Figure 2.4, a). The bar parts separated by the cross 

section are spaced apart in Figure 2.4. 

Longitudinal force is considered positive if it causes stretching of the bar 

(Figure 2.4, b). 

 

 
Figure 2.4 

 

To determine the internal forces M , Q  and N , equilibrium equations 

are used, which can be written in one of three forms: 

1. The sum of the projections of all the forces on each of the two 

coordinate axes and the sum of their moments relative to any point 1C  

lying in the plane of the forces must be equal to zero: 

 

  0X ,   0Y ,   0
1CM . 

 

2. The sums of the moments of all forces relative to any two centers

1C , 2C  and the sum of the forces projections onto any axis X  not 

perpendicular to the line 21 CC  should be equal to zero:  

 

 

  0X ,   0
1CM ,   0

2CM . 
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3. The sums of the moments of all forces relative to any three centers 1C , 

2C  and 3C , not lying on one straight line, should be equal to zero: 

 

  0
1CM ,   0

2CM ,   0
3CM . 

 

The ways of using these equations to determine the internal forces 

depend on a given system structure. 

When using the way of simple sections, at first, the studied system is 

divided into two independent parts by the section in which the internal 

forces must be determined, and then the action of one part by the other is 

replaced by the desired internal forces. To determine them, the 

equilibrium equations are compiled (in any of the forms listed above). 

Then these equations are solved, provided, that the support reactions of 

the studied system are calculated in advance. For example, determining 

the efforts in the frame cross-section k (Figure 2.5, a), we can consider 

the equilibrium of the right-hand part of the frame (Figure 2.5, b) and 

make equations: 

 
 

3 0
right

kX F N    ; 

 
 

2 0
right

B kY V F Q     ; 

 

02312  kBk MhFbFbVM . 

 

Having solved them, we define the efforts kN , 
kQ  and kM . A positive 

sign of the found force indicates that the given direction of the force is 

valid. 

When choosing the form of the equilibrium equations should strive to 

ensure that the problem is solved in a most simply way: each equation, if 

possible, should contain only one unknown force.  

Using the methods of forming geometrically unchangeable systems (see 

Theme 1), the rigid connection of the left and the right parts of the frame, for 

example, in the cross-section k (Figure 2.5, a) can be represented in a 
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discrete view, i.e. in the form of some simple links. With a certain positions 

of links in the cross-section, the force in a single link (link reaction) will be 

equal to the corresponding internal force, i.e. 
kN , kQ  or 

kM . 

Possible variants of the links location in the cross-section k  are shown 

in figures 2.6, a, …, c.  The efforts in the links that correspond to the 

required internal forces are also indicated there. 

 

 
Figure 2.5 

 

In this way, any rigid cross-section of a solid rod can be considered as a 

rigid node connecting two parts of a structure. Such a rigid node can always 

be approximated by three simple links. This approximation is used for 

determining internal forces by static and kinematic methods, for constructing 

influence lines for internal forces, and for other problems. 

A variation of the static method for determining efforts is the way of 

dividing the system under study into many separate fragments. 

Composing equilibrium equations for each of them, taking into account, 

of course, internal forces (they are unknown) in the cross-sections 

separating fragments, we obtain for a statically determinate system a 

complete system of equations, the solution of which gives values of 

unknowns. 

We divide, for example, the frame (Figure 2.7, a) into three fragments, 

shown in Figure 2.7, b. The total number of unknowns is nine: four 

support reactions, three unknowns in cross section D  and two in cross 

sectionC . For each of the three fragments (disks), we can create three 

independent equations in any of the previously listed forms. Solving a 
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joint system of linear equations of the 9th order will enable us to find all 

the unknowns. 

 

 
 

Figure 2.6 

 

Further expansion of this method of calculating efforts is associated 

with the division of a given system into separate elements and nodes. 

Read about it in the textbook (theme 15). 
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Figure 2.7 

 

2.3. Links Replacement Method 

 

Consider the application of this method to the calculation of the truss, 

shown in Figure 2.8 a.  

The truss is statically determinate. Its structure can be represented in 

the form of three disks (triangles 3-5–6, 4–6–7 and rod 1–2), pairwise 

connected by two links. Since the intersection points of rods 1–3 and 2–5, 

2–4, and 1–7 and node 6 (poles of mutual rotation of the disks) do not lie 

on one straight line, the truss is not instantaneously changeable structure. 

A truss cannot be calculated by nodes isolation method, without 

solving the system of equilibrium equations for all nodes. It is also 

impossible to apply the method of simple sections, since there is no 

section dividing the system into two parts, in which there will be no more 

than three unknown forces. 

The essence of the links replacing method is that one of the links of a given 

system is removed, and its action is replaced by an unknown force. In order for 

the system to remain geometrically unchangeable, another link is introduced 

into it. With a good arrangement of this connection, the new system (it is called 

a replacing system) is simpler to analyze. Static equivalence of the given and 

replacing systems will be observed when X  becomes equal to the true force in 

the selected rod. In this case, the reaction in the introduced additional link will 

be equal to zero. Zero effort in an additional connection is a condition for 

writing an equation from which the force X  is determined. 

Let consider at an example. In a given truss (Figure 2.8, a), we will 

remove rod 1–2, and its effect on nodes 1 and 2 will be replaced by forces
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1X . We introduce an additional link (support) in the sixth node. The 

replacing system obtained by such transformations is shown in Figure 

2.8, b. The efforts in its rods are easily determined by the nodes isolation 

method. 

Performing its calculation, we use the forces superposition principle. First 

we find the forces in the rods when loading the system with a given external 

load (Figure 2.8, c). We will denote them
FkiN ,

. The force in the additional 

support connection - FR1  (index 1 means the number of the additional 

connection, the index F  indicates the cause of the force). For the sizes 

adopted in Figure 2.11,a, we obtain 1 0.4023FR F  . 

Let us calculate the replacing system for the action 11 X  (Figure 2.8, 

d). The efforts in the rods will be denoted 1,kiN  . The force in the additional 

connection - 11r  (the first index, as before, is the number of the additional 

connection; the second indicates the reason that caused the effort). In the case 

under consideration this reaction is equal to 11 0.1380r  . 

Since the total reaction of the additional support is equal to zero, we can 

write the equation 
 

11 1 1 0Fr X R  ,                                    (2.1) 
 

from which we find  

1
1

11

2.915FR
X F

r
    . 

 

If it turned out that 011 r , then this would be a sign that the given 

truss is instantaneously changeable structure. 

Subsequent calculation of the truss can be performed by nodes 

isolation method, or, if all FkiN , , 1,kiN   are known, the forces in the 

rods of a given truss can be calculated by the formula  

 

11,, XNNN kiFkiki   . 
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Figure 2.8 

 

Let us consider another example. A multi-span beam (Figure 2.9, a) is 

easily calculated by the simple section method. However, in order to 

better understand the essence of the links replacement method, we will 

show its calculation with this method. 

In the given beam, we remove the support connections at the points B

and D . Their action on the beam is replaced by forces 1X  and 2X . Let us 

introduce additional moment links at the points A and C , i.e. close the 
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hinges. The replacement system obtained by these transformations is 

shown in Figure 2.9, b or, in a more familiar image form, in Figure 2.9, c.  

Let us construct the bending moment diagrams in the replacing beam 

caused by given load (Figure 2.9, d), unit force 1X  (Figure 2.9, e) and unit 

force 2X  (Figure 2.9, f). The values of the moments in additional constraints 

caused by these loads are shown in the figures.  

From the conditions of static equivalence of the given and replacing beams 

it follows that the forces (moments) in the first and second additional links 

must be equal to zero. Defining them according to the principle of 

independence of the action of forces, we obtain the following system of 

equations: 
 









.0

;0

2222121

1212111

F

F

RXrXr

RXrXr
                         (2.2) 

 

Let us write the equations in numerical form: 
 









.0104

;08094

2

21

X

XX
 

 

Solving them, we find 1 14.375X kN , 2 2.5X kN . 

The diagram of moments for a given beam is constructed by the 

expression 
 

2211 XMXMMM F  . 
 

It is shown in Figure 2.9, g. 

It is clear that in general, the number of deleted and additional links 

can be large. 
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Figure 2.9 

 

Let us write the system of equations (2.2) in matrix form: 
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0
2

1

2

1

2221

1211



























F

F

R

R

X

X

rr

rr
, or  .0 FRXL


        (2.3) 

 

The solution of system (2.3), written in the form 
 

FRLX


1 ,                                     (2.4) 

possible if only the determinant of the matrix L  is not equal to zero: 
 

0Det L  . 
 

Therefore, if the determinant is equal to zero: 
 

0Det L  , 
 

it serves as a sign of instantaneously changeability of a given system. 

 

2.4. Kinematic method 

 

The kinematic method is based on the principle of virtual 

displacements, which allows to obtain the necessary conditions for the 

equilibrium of the system. 

Virtual displacements of a system are any combinations of 

infinitesimal displacements of points of a system allowed by its 

connections. Virtual displacements, unlike real ones, do not depend on 

the given external actions. They are determined only by the type of 

system itself and the type of connections superimposed on the system; 

these are purely geometric concepts. 

We assume that during the transition of the system from the real state 

to the new one, caused by virtual displacements, the external and internal 

forces do not change. 

The work of external and internal forces performed on virtual 

displacements is called the virtual work. Taking into account the 

introduced remarks, this work is defined as the work of constant forces on 

virtual displacements. 

The principle of virtual displacements establishes the general 

condition for the equilibrium of the deformed system. It is formulated as 

follows if the system is in equilibrium under the action of external forces 
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applied to it, then for any infinitely small virtual displacements of the 

points of this system, the sum of the works of its external and internal 

forces is zero. Let us show a formal record of this principle in the form: 

 
( )( )
int 0
virtvirtW A  ,                              (2.5) 

 

Where ( )virtW  – virtual work of external forces,  

      
( )
int
virt

A   – virtual work of internal forces. 

Introducing the concept of the degree of freedom of the rod system 

(Sec. 1.4), we assumed that its rods are absolutely solid, non-deformable. 

Given this assumption, and also taking into account the concept of virtual 

displacements, it should be noted that in the initial state for a statically 

determinate system (W = 0) it is impossible to specify virtual 

displacements. How is then to apply the principle of virtual displacements 

to the calculation of such systems? 

To use this principle in the problems of calculating statically determinate 

systems, the main axiom of the mechanics of non-free material bodies are 

applied - the principle of removing constraints (links). Let us remove any 

constraint (support, or from among those shown in Figure 2.6) and apply to the 

system, in addition to the given external forces, the force S that could occur in 

the removed constraint. Such a system will be a mechanism with one degree of 

freedom (W = 1) and, therefore, allows a possible new position, determined by 

one parameter. Its equilibrium state is possible only if the unknown force S in 

the remote constraint is equal to the true value. 

Let us provide the principle of virtual displacements to the mechanism 

received. The work of internal forces along the entire length of non-deformable 

elements is zero. Considering the effort in the removed constrain as an external 

force, the equation of virtual works of all forces can be written as: 

 
( ) 0virt

i i k kW S F    ,                             (2.6) 

 

where 
iS  – is the required effort in connection i , 

i  – is displacement in 

its direction; 

kF  – k - th generalized force, k  – displacement in the direction of 

the force kF . 
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If the direction of the force and the corresponding displacement 

coincide, then the work is positive. 

Since the calculation is carried out according to an undeformed scheme, 

in the system with one degree of freedom, all displacements i  and k  

are expressed in terms of one parameter. Having divided each term of 

equation (2.5) by this parameter, we solve it relatively
iS . 

For example, determining the reaction BV  in the support B  of a two-

span statically determinate beam (Figure 2.10, a), we remove the support 

rod at a point B  and apply an unknown force BV  at this point. The position 

of the mechanism with one degree of freedom is determined by one 

parameter. To such parameter, we take the rotation angle   of the beam 

AB  (Figure 2.10, b). Since , by the definition, is an infinitesimal angle, 

then l21 , lB 4 , l52 , l53 . 

 

 
 

Figure 2.10 

 

The equation of works (2.5) can be written as: 

 
( )

1 5 34 2 5 5 0virt
BW V l F l F l F l          
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The solution gives 17.5BV kN . 

When determining the force in the rod 1–2 of the truss beam (Figure 

2.11, a), the sequence of actions remains the same as in the previous 

example. By removing the rod 1–2 in the given beam we get the 

mechanism. Virtual displacements of the mechanism will be set as 

follows. Keeping point C stationary, move support B vertically. In this 

case, the bar CB rotates by an infinitesimal angle   (Figure 2.11, b). 

Considering the known support reaction as an external force, we compose 

the equation of virtual work. 

 

 
 

Figure 2.11 

 

From the equation of virtual work 

 

022
2

1
4221    qVN B  
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we find 3521 N  kN. 

 

 

2.5. Statically Determinate Multi-Span Beams and Compound 

Frames. Main Characteristics 

 

Statically determinate multi-span beams are a collection of simple 

beams connected to each other at the ends by hinges, as a rule, not 

coinciding with the supports. 

Before starting the calculation of a multi-span beam, it is necessary to 

control its geometric changeability. 

Kinematic analysis of multi-span beams is performed according to the 

rules outlined in Theme 1. After checking the degree of freedom 

according to formula (1.1), you should analyze the interaction scheme of 

simple beams in a multi-span structure (analyze the structure of the 

system). To do this, mentally divide t-he multi-span beam (Figure 2.12, a) 

through the hinges and analyze each simple beam for changeability. The 

beam AB is fixed by three correctly located support rods (links); this 

beam is unchangeable.  It may be called the main beam or primary ones. 

Then, the state of the beam adjacent to it on the right side is 

considered. This beam CD has its own vertical support link at point D. 

The hinge, which connects the beams at point C, can be replaced by two 

support links. We draw (Figure 2.12, b) the position of the beam CD 

above the main one (gravity is transmitted from upper beam to lower 

one). A beam CD will be called an auxiliary beam or secondary one. 

Considering in the same way, we show the position of the upper auxiliary 

beam EF. The design scheme shown in Figure 2.12, b is called interaction 

scheme. 

Interaction schemes for multi-span beams can be varied. As an 

example, figure 2.12, d shows the interaction scheme for a multi-span 

beam in figure 2.12, c. There are two main beams AB and DE. Beams BC 

and FG are auxiliary. 

Using the interaction schemes, the sequence for calculating a multi-

span beam is established. First, the uppermost auxiliary beams are 

calculated, then below located beams are analyzed taking into account the 
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interaction forces (pressure from the upper beams is transmitted to the 

lower beams). 

 
 

Figure 2.12 

 

 

E x a m p l e. We perform a kinematic analysis and show the sequence 

of plotting the bending moments and transverse forces  diagrams in a 

three-span statically determinate beam (Figure 2.13, a). The position of 

the design cross-sections on the beam is shown. 

The degree of freedom of the beam is calculated by the formula: 

 

 03 2 3 4 2 3 6 0.W D H S          
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Breaking the beam by cross-sections 7, 10 and 12, we notice that the 

considered beam has two main parts: a simply supported beam AB (its 

length from section 1 to section 7 is 14.6 meters) and a cantilever beam (5 

meters long from section 12 to a rigid fixed support at point E). The 

cantilever beam is rigidly fixed; there are three constraints at the right end 

of this beam. The horizontal beam AB is unmovable due to its binding 

(using non-deformable rods in the longitudinal direction at the segment 7-

15) to rigid fixed support E. Considering that the beam (it can be called 

an insert) in the section 10-12 does not have its own support, we form the 

interaction scheme corresponding to figure 2.13, b. 

Having determined the support reactions and the necessary efforts in 

the uppermost beam (on the interaction scheme), taking into account the 

interaction forces, it is necessary to transfer the pressure to the lower 

beams and continue their calculation. An illustration of the sequence of 

calculation of separate beams is on figure 2.13, c. 

The internal forces diagrams for separate beams, which are being 

located horizontally in accordance with the position of the beams on a 

given scheme, form the internal forces diagrams for a multi-span beam 

(Figure 2.13, d, e). 

 

E x a m p l e. For statically determinate compound frame (Figure 

2.14, a) it is required to perform a kinematic analysis and to build the 

internal forces diagrams. 

We perform kinematic analysis of the frame. Degree of freedom: 

 

03 2 3 3 2 2 5 0.W D H S          

 

We check the correctness of the frame structure and find its main and 

secondary parts. To do this we cut the design scheme (Figure 2.14, a) 

through the hinges which are connecting the disks, and analyze the 

mobility of each part. Having executed section only through the hinge K, 

we notice that each part of the frame (both left and right) is a 

geometrically changeable system. If we execute section only through the 

hinge F, then the left part of the frame will be geometrically 

unchangeable, unmovable: it will be a three-hinged frame with correctly 

located links (constraints). It will be the main part of the system.  
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Figure 2.13 

 



65 
 

The right frame part will be also unchangeable, since it has its own 

support rod at point C, and at point F it is connected to the fixed frame by 

means of a hinge. The support rod at point C does not pass through the 

hinge F. The right part of the frame is auxiliary or secondary. 

Then, a sequence of calculations is performed. It is characteristic of 

multi-span statically determinate beams. 

Determining support reactions for the auxiliary frame: 

 

7.6 18 7.6 3.8 0; 68.4 .F C CM H H kN        

100 0; 100 .F FY V V kN     

 

Determining support reactions for the main frame: 

 

5.04 3.1 68.4 1.24 100 6.3 0;

6.2 3.8 46 3.1 1.55 100 9.4 68.4 7.6 0;

56.80 ; 138.23 .

right

K B B

A B B

B B

M H V

M V H

H kN V kN

        

           

 



  

 

8.84 3.1 46 3.1 1.55 0;

3.8 6.2 46 3.1 4.65 100 3.2 68.4 3.8 0;

11.60 ; 104.37 .

left

K A A

B A A

A A

M H V

M H V

H kN V kN

       

           

 





 
 

 

Verifying the calculated support reactions for the main frame: 

 

.01001.34623.13837.1041001.346

;04.6880.5660.114.68









BA

BA

VVY

HHX
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Figure 2.14 

 

Figure 2.15 shows the diagrams of bending moment ( M ), shear (Q ) 

and longitudinal ( N ) forces. 

Checking the balance of rigid nodes. 

Figure 2.15, g shows the forces in the rods in sections adjacent to the 

node. 

We compose the equilibrium equations of all forces (in this case, only 

internal) acting on the node. 
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  ;3719.0sin;9285.0cos;0sin60.92cos53.4960.11;0X  

0; 104.37 49.53 sin 92.60 cos 0;Y         

 

We write the equilibrium equations of the forces shown in figure 2.15, 

h. 

 

0; 56.80 68.40 31.19 sin 24.97 cos 0;X          

0; 138.23 100 31.19 cos 24.97 sin 0;Y          

0; 104.14 215.86 320 0.nodeM      

 

To check the balance of the frame as a whole, it is necessary to find 

support reactions and compose the required equilibrium equations. 

Practical actions are as follows: the frame elements are cut off from the 

supports; in the cross-sections of the elements the internal forces are 

shown, the numerical values of which are taken from the constructed 

diagrams; equilibrium equations are written in any of the previously 

listed forms. 

In the considered example, after cutting the frame from the support 

(the picture is not shown), we are restricted by two equations: 

 

0; 18 7.6 11.60 68.40 56.80 0;X         

0; 4.6 3.1 100 104.37 138.23 0.Y         
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Figure 2.15 
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THEME 3. 

DETERMINATION OF EFFORTS FROM MOVING LOADS 

 
3.1. Concept of Moving Load. Concept of Influence Lines 

This theme discusses methods for calculating beam systems on the 

action of moving loads. 

Moving are the loads that can move along the structure without 

changing the direction of action. A moving load is a load from 

automobile and railway transport, bridge cranes, etc. There is a wide 

variety of such loads. The pressure from such loads on the beam (or other 

structure) may be transmitted in the form of concentrated forces or may 

be distributed over some area (or length, in the case of plane systems). 

 

 
 

Illustration 3.1. Auto traffics on the city bridge 

 

To develop a general theory of calculation for all types of moving 

loads is a difficult task. The simplest elementary moving load is the 

concentrated unit force F = 1. Based on the knowledge about the 

influence of this force on any factor, it is possible to obtain a solution for 

any number of concentrated forces and loads distributed according to any 

law using the principle of independence of the forces action. 
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Figure 3.1 

 

When the force F = 1 moves along the beam (Figure 3.1), the 

displacements of all its points are observed. For example, if the force is 

located at x = 1.5 m, then the displacements of the characteristic points of 

the beam (their coordinates are recorded in the left-hand column of Table 

3.1) will be equal to the values indicated in the table for x = 1.5 m. Based 

on these values, you can construct the diagram of vertical displacements 

of the beam points. It is shown in Figure 3.2. The diagrams of the beam 

displacements at other positions of force can be constructed by 

corresponding values of the displacements of characteristic points using 

the data in Table 3.1. 
Table 3.1 

 

The 

coordinate of 

the point on 

the beam 

The position of the force F = 1 on the beam 

х=1.5 m х=3.0 m х=4.5 m х=7.5 m 

х=0.0 m 0 0 0 0 

х=1.5 m -2.53 -3.09 -1.97 2.11 

х=3.0 m -3.09 -4.50 -3.09 3.38 

х=4.5 m -1.97 -3.09 -2.53 2.95 

х=6.0 m 0 0 0 0 

х=7.5 m 2.11 3.38 2.95 -5.63 

Note: 1. Apply a common factor 1/EI for all displacements. 
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Figure 3.2. The diagram of 

vertical displacements of the 

beam points due to F = 1, located 

at the point x = 1.5 m. 

 

Figure 3.3. Influence line for the 

vertical displacement of one beam 

point with the coordinate x = 7.5 

m. 

 

Using the displacement values in the last row of the table, we 

construct a displacements graph of the point at the end of the beam (x = 

7.5 m) for all possible positions of the force F = 1 (Figure 3.3). Such a 

graph is called influence line for the displacement of the beam point with 

the coordinate x = 7.5 m. Carrying out similar considerations, it is 

possible to construct influence lines for internal forces (M, Q, N), which 

are stresses in some cross-sections of the beam, etc. 

Definition. Influence line is a graph which shows variation of some 

particular factor (force, displacement, etc.) in the given cross-section 

of a structural element in terms of position of unit concentrated 

dimensionless force of a constant direction. 

Note the differences in the concepts of “Influence line for an effort” 

and “Diagram of efforts”. 

The efforts diagram is a graph of some type efforts in all cross-

sections of the structure loaded by fixed load. Influence line for the effort 

shows the effort in only one, fixed cross-section of the structure loaded 

by the moving force equal one. 
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Illustration 3.2. Bridge testing with auto train 

 

3.2. Static Method of Constructing  

Influence Lines for Internal Forces 

 

 The previously described method of constructing influence lines 

requires a large number of beam calculations. The way in which the 

factor under investigation (in the previous example, displacement) is 

written as a function of the unit force position is more practical. This 

dependence can be obtained from the equations of equilibrium of a solid 

(equations of statics). The corresponding method of constructing 

influence lines is called static method. 

 

3.2.1. Influence Lines for Support Reactions in a Simple Beam 

 

 We show construction of influence lines for efforts in a one-span 

beam (Figure 3.4 a). 

We take the origin of the coordinate axes at point A. The X axis is 

directed along the axis of the beam, the Y axis is directed up. The 

position of the force F = 1 is determined by the x coordinate. On the Y 

axis we will plot the value of the investigated factor. 
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Writing the equation of the moments of all forces relative to point 

B, we obtain an expression that sets the dependence of the support 

reaction on the position of the force: 

0; ( ) 0;B AM V l F l x     

                                  
( )

A

F l x
V

l


                                     (3.1) 

 

Showing  this relation graphically, we obtain the influence line for 

support reaction AV  (Figure 3.4, b).  

Expression (1.1) is the equation of a straight line. To draw a line on a 

plane, it is enough to know the position of two points through which it 

passes. Find them, taking F = 1. 

For x = 0 (the force is located above the support A) it follows from 

formula (3.1) that 1AV ; for lx   (the force is located above the 

support В) we obtain 0AV . 

A straight line drawn through these two points represents the required 

influence line for support reaction (Figure 3.4, b). 

In this example and in all subsequent ones positive ordinates of 

influence lines are drawn upward (in the direction of Y-axis). 

We define the dimension of ordinates of the influence line for support 

reaction. If we take F = 1 in expression (1.1), then the right side of the 

equation can be written as follows: 

 

l

xl )( 
                                                (3.2) 

 

Comparing the record in the right-hand side of equation (3.1) and the 

right-hand side in the form (3.2) means dividing the left and right sides of 

equation (3.1) by F. In this case, equation (3.1) is transformed to 

 

                                             
l

xl

F

VA 
                                             (3.3) 
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Figure 3.4 
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Recording on the left of the equal sign indicates the dimension of the 

ordinates of the influence line for support reaction as a derivative of the 

dimensions of force factors. The dimension of the support reaction AV  

and the force is F — kN. Consequently, the ordinates of influence line for 

support reaction have no dimension, they are dimensionless. 

Analyzing these arguments in relation to the dimension of the 

ordinate, we obtain: 

[dimension of the ordinate of influence line for effort] =

 
 

dimension of the

dimension of the

required factor

force
. 

The unit ordinate at point A is the scale of the graph (a segment of any 

length is taken to be equal to one). 

Writing the equation of the moments of all forces relative to point A, 

we obtain the expression for determining the support reaction BV . 

0; 0;A BM V l Fx    

  B

Fx
V

l
                                           (3.4) 

To construct a line, we find the position of two points through 

which it passes. Taking F = 1, we get: 

For x = 0 (the force is located above the support A) it follows 

from formula (3.4) that 0BV  ; 

 for lx   (the force is located above the support В) we obtain 

1BV . 

The influence line for support reaction is shown in Figure 3.4,c. 

 

3.2.2. Influence Lines for Efforts in Cross-Sections 

 between Beam Supports 

 

 Design scheme of the beam is shown in Figure 3.4, a. The section 

k  on the beam is fixed. Internal forces in section k  of a beam depend on 

the position of a moving load F=1. The analytical dependences of the 

efforts in this section depend on the position of the force. It is located to 

the right-hand of section k or to the left-hand. Therefore, when 

determining the force in a cross-section, it is necessary to know where the 

force is located. The equilibrium equations are simpler, if when 
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compiling them, we consider that part of the beam on which there is no 

force. 

First, we construct influence lines for bending moment in the 

section k. 

1. The force F = 1 is located to the right-hand of the section k  

(а   x   2cl  ). 

From the equilibrium equations of the left side of the beam (Figure 3.4, d) 

it follows: 

0; 0; ; ; .left
k A k k A A k

l x l x
M V a M M V a V M a

l l


 
       

 Influence line for kM  on the right side of the beam has the form 

of a straight line. We set for x  the value from the interval (а   x   l ): 

;,
l

ab
a

l

al
Max k 


  

.0,  kMlx  

The straight line constructed at these points is extended to the 

console, the length of which equals 2c  (Figure 3.4, f). Hatching (vertical) 

is performed on the operating range (а   x   2cl  ). 

 2. The force F = 1 is located to the left-hand of the section k  (-с1

  x   а). 

From the equilibrium equations of the right side of the beam (Figure 3.4, 

d) it follows: 

0; 0; ; ; .right
k B k k B B k

x x
M V b M M V b V M b

l l
        

 We construct a straight line. 

;0,0  kMx  

;,
l

ab
Max k 

 
The straight line constructed at these points is extended to the 

console, the length of which equals 1c . (Figure 3.4, е). Hatching 

(vertical) is performed on the operating range (- 1c    x  a). 
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[dimension of the ordinate of inf. line for bending moment] = 
 
 

kNm
m

kN
 . 

Remark:  

1. The formula aVM Ak   can be read as follows: inf. line kM  

= (inf. line AV ) a . 

2. Analysis of the form of the inf. line kM  shows that on the 

verticals passing through the support points, the inclined 

lines cut off segments equal to the distances from the 

supports to the section k .  

3. The top of the line of influence is located under the cross-

section k . 

We construct influence lines for shear force in the section k. 

1. The force F = 1 is located to the right-hand of the section k  

(а   x   l ). 

From the equilibrium equations of the left side of the beam (Figure 3.4, d) 

it follows: 

0; 0; ; .left
A k k A k

l x
Y V Q Q V Q

l



      

Influence line for kQ  on the site of the position of the force can 

be constructed using inf. line AV , or by the position of the points 

through which the line passes.  

2. The force F = 1 is located to the left-hand of the section k  (0 

  x   а). 

From the equilibrium equations of the right side of the beam (Figure 3.4, 

d) it follows: 

0; 0; ; .right
B k k B k

x
Y V Q Q V Q

l
         

 Influence line for support reaction is shown in Figure 3.4, g. 

[dimension of the ordinate of inf. line for shear force] = 
 
 

kN

kN
 — 

ordinates are dimensionless. 
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3.2.3. Influence Lines for Efforts in the Cantilever  

Beam Sections 

 

The design scheme of the beam is shown in Figure 3.5, a. 

Construct influence lines for bending moment and shear force in the 

section k. 

We take the origin of the coordinate axes in the section k. 

 

1. The force F = 1 is located to the right-hand of the section k  

(0   x   b ). 

From the equilibrium equations of the right side of the beam (Figure 3.5, 

b) it follows: 

 

0; 0; ; .right
k k k kM M Fx M Fx M x         

0; 0; ; 1.right
k k kY Q F Q F Q       

 

For x = 0 (the force is located in cross-section k) ;1,0  kk QM  

при bx   (the force is located above at the end of the console)  

.1,  kk QlM  

 2. The force F = 1 is located to the left-hand of the section k  (-a 

  x   0). The right side of the beam (Figure 3.5, c) is not loaded, 

therefore .0,0  kk QM  

Influence lines for efforts is shown in Figures 3.5, d, e. 

Let us once again draw attention to the interconnection of the concepts 

“influence line for effort” and “diagram of efforts”. Figure 3.5 e shows 

the diagram of bending moments due to the force F = 1, appended at the 

end of the console. The ordinate on the diagram in cross-section k  is 

equal to the ordinate of the influence line kM  at the end of the console 

(Figure 3.5, e). 
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Figure 3.5 
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3.3. Kinematic Method for Constructing Influence Lines 

for Internal Forces 

 

The kinematic method of constructing influence lines is based on the 

principle of virtual displacements (Section 2.4), according to which for 

a system that is in equilibrium under the action of external forces applied 

to it, the sum of the work of its external and internal forces on any 

infinitesimal displacements is zero. 

Consider the design scheme of a simple beam (Figure 3.6, a). 

 

 
Figure 3.6 

We construct influence line for support reaction BV . 

We eliminate the right support, replacing its action with a reaction 

BV  (Figure 3.6, b). The resulting system has become a mechanism. For 

the possible displacements take displacement caused by the rotation of 

the beam around the point А at an angle φ  (Figure 3.6, b). We write 
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down the sum of the forces acting on the system on the considered 

infinitesimal displacements: 

.0)(  BBVxF  

From this equation we get: 

B

B

xF
V






)(
.                                        (3.5) 

Different positions of the force F = 1 lead to a change in the value of the 

corresponding displacement )(x . In this case, all possible values of )(x  

along the length of the beam show a diagram of the vertical displacements 

of the beam points. The denominator in the formula (3.5) is a constant. B  

is a scale factor. Assuming B  is equal to unity, we get: 

 )(xVB  .                                      (3.6) 

Consequently, the outline of the influence line coincides with the 

diagram of the vertical displacements of the points of the beam (Figure 

3.6, c). 

From the ordinate ratios in Figure 3.6,b we get 
l

xx

B




 )(
, which, for 

F = 1, corresponds to the expression (3.4) obtained by the static method. 

Construct influence lines for bending moment in the section k. 

The design scheme of the beam is shown in Figure 3.7, a. We 

eliminate the constraint in the cross-section k through which the moment 

is transmitted (we set the hinge), replacing its action with the moment 

KM  (Figure 3.7, b). The figure shows the interaction forces of the left 

and right parts of the beam. We will set the possible displacements to the 

obtained mechanism in the direction of the moments KM  action, taking 

the angle of mutual rotation of the end cross-sections equal to unity. The 

ordinates between the initial position of the beam and the new (broken) 

form a diagram of the beam displacement (Figure 3.7, b).  

The virtual work of external and internal forces on the taken beam 

displacements is equal to zero: 

.01)(  KMxF  
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At F = 1 we get δ( )KM x , that corresponds to the above conclusion:  

influence line KM  (Figure 3.7, d) coincides with the diagram of the 

vertical displacements of the beam points. 

Using the notation given in Figure 3.7,a, shows that it is exactly 

coincides with the influence line previously constructed by a static 

method (Figure 3.4, e). 

Possible displacements, in fact, are infinitesimal. Therefore, when 

analyzing the relations in Figure 3.7, you can use simplifications of the 

form: 

.; 2211  tgtg
 

 

From the data in Figure 3.7, c, provided that 1 2φ +φ 1   , we 

obtain: 

 

.;;; 111121
l

ab
a

l

b
blbbl k   

.;;; 222212
l

ab
b

l

a
alaal k   

  

The ordinate of influence line in cross-section k is equal to the 

ordinate obtained by the static method (Figure 3.4, f). 

Let us construct the influence lines for shear force in the section k 

(Figure 3. 8, а). 

We eliminate the constraint in this cross-section, in which a shear 

force can arise. The connection of the left and right parts of the beam 

after this is carried out by means of two horizontally arranged links 

through which longitudinal forces and bending moments can be 

transmitted. On the newly formed design scheme, we show in the cross-

section the positive directions of the shear forces for both parts of the 

beam (Figure 3.8, b). Giving the unity value for mutual displacement of 

the beam ends along the directions of the shear forces, we obtain a 

diagram of the beam's displacements (Figure 3.8, c), the outline of which 

completely corresponds to influence line for shear force (Figure 3.8, d). 
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Figure 3.7 
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Figure 3.8 

  

3.4. Determination of the Effort from Fixed Load 

Using Influence Lines 

 

 By the definition, each of the ordinates of the inf. line for S 

represents the value of the effort S when the acting force F = 1 is located 

on the beam above this ordinate. If a unit force is not located above the 

ordinate, but a force whose value is equal F is located there, then the 

effort caused by its action will be F times more, i.e. the effort will be 
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equal to the product of the force F and the ordinate of the influence line 

for the effort under this force: FyS  . 

 
Figure 3.9  

 

If n concentrated vertical forces act on the beam (Figure 3.9), then 

the force S, based on the principle of superposition, should be calculated 

by the formula: 

 

   i

ni

i

inn yFyFyFyFS 





1

2211 ...                   (3.7) 

  

In this expression, the value of the looking downward force is taken 

with the plus sign, , the value of the looking upward force is taken with 

the minus sign. 

Consider the action on the beam of a load distributed according to an 

arbitrary law )(xq , (Figure 3.10, a). On this beam, we select a section of 

infinitely small length dx . The concentrated force replacing the 

distributed load on this section is equal to .)( dxxqdF   (Figure 3.10, a). 

The elementary effort dS  from the action of the force dF  is: 

 

.)()( dxxyxqdFydS   
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Figure 3.10 

 

 Integrating this expression along the length of the loading 

section, we find: 

 

                     
b

a

dxxyxqS )()(                                      (3.8) 

  

If a uniformly distributed load acts on the beam qxq )(  (Figure 

3.10, b), then 

 

       

b

a

b

a

qdxxyqdxxqyS )()( .                         (3.9) 

 

Here   is the area of influence line S corresponding the uniformly 

distributed load's action site. In figure 3.10, b the area   is highlighted 

by hatching. It should be kept in mind that the ordinates of the influence 
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lines located above the axis of the beam are positive, the ordinates of the 

lines of influence located below the axis of the beam are negative. The 

area below the axis is negative. 

Let us consider the action on the beam of a concentrated moment M  

(рисунок 3.11). (Figure 3.11). Replace the moment with a couple of 

forces F  with arm x :
x

MF


 . With the help of the formula (3.7) we 

find: 

         

.limlim)(lim
000 dx

dy
M

x

y
M

x

y

x

yy
Myy

x

M
y

x

M
S

xxx








































     

(3.10) 

 

 
Figure 3.11 

 

The moment directed in a clockwise direction, is considered positive. 

The value of the derivative of the function that describes the outline of 

influence line is calculated at the point of application of the concentrated 

moment. 

On a straight section of the influence line, the calculation of the effort 

S will be a simpler action if the concentrated moment is replaced by a 

pair of forces on any length of this section. 

With the simultaneous action on the beam of all considered force 

factors (concentrated forces, distributed load, concentrated moment), the 
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effort S is calculated by summing the results caused by each factor 

individually based on the principle of superposition. 

 

 
 

Figure 3.12 
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Example. Using influence lines to determine bending moments and 

shear forces in sections 1k , 2k  and 3k  of the beam (Figure 3.12, a) with 

the following data: 

1 2 1 24 ; 10 ; 2 / ; 5 / ; 3 .F kN F kN q kN m q kN m M kNm      The 

cross-section 2k  is infinitely close to the support A on the right-hand, the 

cross-section 3k   is infinitely close to the support A on the left-hand. 

The influence lines for efforts are shown in Figures 3.12, b ... 3.12, e. 

We find the efforts: 

1
4 ( 1) 4 ( 4 / 3) 10 1 10 2 2 ( 1/ 2 1 3) 2 ( 1/ 2 2 4 / 3)

5 1/ 2 2 9 1/ 2 0 1/ 2 2 61 ;

kM

kNm

                   

          

2 3
4 ( 3) 2 ( 1/ 2 3 3) 21 ;k kM M kNm          

 
 

1
4 1/ 3 4 ( 2 / 9) 10 ( 1/ 3) 10 1/ 3 2 (1/ 2 1/ 3 3) 2 ( 1/ 2 2 / 9 2)

5 ( 1/ 2 2 / 3 6 1/ 2 1/ 3 3) 1/ 2 0 1/ 2 ( 2 / 3) 6.833 ;

left
k

Q

kN

                   

             

 

1
4 1/ 3 4 ( 2 / 9) 10 ( 1/ 3) 10 ( 2 / 3) 2 (1/ 2 1/ 3 3) 2 ( 1/ 2 2 / 9 2)

5 ( 1/ 2 2 / 3 6 1/ 2 1/ 3 3) 1/ 2 0 1/ 2 ( 2 / 3) 16.833 ;

right
k

Q

kN

                    

             

 

 

2
4 1/ 3 4 ( 2 / 9) 10 2 / 3 10 1/ 3 2 (1/ 2 1/ 3 3) 2 ( 1/ 2 2 / 9 2)

5 (1/ 2 1 9) 1/ 3 1 1/ 3 0 33.167 ;

kQ

kN

                 

          

3
4 1 2( 1 3) 10 .kQ kN       

 
 

Note. Other factors can be defined similarly if the corresponding 

influence lines are constructed for them. 

Let us turn to Figure 3.3, which shows influence line of the 

vertical displacement of the beam's point with a coordinate 7.5x m . 

Using the displacements given in Table 3.1 for characteristic 

points, we find an approximating polynomial that describes the outline of 

influence line and the first derivative of it: 

.
1

]000768176.00115391.00190617.0130259.059222.1[)( 5432

EI
xxxxxxp   

.
1

]00384088.00461564.00571852.0260519.059222.1[
)( 432

EI
xxxx

dx

xdp
  
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 Consider loading a beam with a uniformly distributed load and a 

concentrated moment at a point 7.5x m  (Figure 3.13). 

 
Figure 3.13 

 

Find the displacement, knowing the outline of influence line and 

the first derivative: 

 
7.5

7.5
0

( )
( ) .vert

x

dy dp x
Z q M q p x dx M

dx dx
      

.
1

46444.4
)(

;
1

5625.9)(
5.7

5.7

0
EIdx

xdp

EI
dxxp

x




  

7.5

9.5625 4.46444 86.6961
10 2 .vert

xZ
EI EI EI

       

 

 

3.5. Influence Lines for Efforts in Case of the  

Nodal Transfer of the Load 

 

Consider the construction design scheme shown in Figure 3.14, a. The 

main bearing element of this scheme is the beam AB. It is called the main 

beam. The main beam bears cross beams. They are presented on the 

design scheme in the form of support rods for short longitudinal beams 

located at the upper level. Short beams are essentially flooring performed 

in the simplest case of planks. The load (force F = 1 is shown on the 

design scheme) applied to the upper short beams is transferred to the 

main beam at specific points, which are called nodes.  

Hence the name follows: nodal transfer of the load. 
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Figure 3.14 

 

Nodal transfer of the load is used frequently in constructions. This 

takes place in arches with a superstructure, when transferring the load to 

the nodes of the trusses through the ribbed slabs of the roof (or floor) and 

in other cases. 

We show features of influence lines construction in case of nodal 

transfer of the load. Firstly, we construct influence line for bending 

moment in the cross-section k  under the assumption that the 

superstructure above the main beam is absent and the force moves 

directly upon the main beam (Figure 3.14, c).  
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The force F = 1 located on the beam bc (Figure 3.14, b) causes the 

reactions 

 

b c

l x x
V and V

l l


   

 

Considering them as the forces of interaction between the beam bc 

and the beam AB, we obtain the loading of the beam AB. By formula 3.7 

we find the moment in the cross-section k : 

 

k b c

l x x
M m m

l l


   . 

 

The equation of the line passing through the points:  

 

.0 ;k b k cx M m x l M m    , 

is obtained.  

Consequently, the location of the force F = 1 on the beam bc 

corresponds to a straight line (it is also called a transfer line) passing 

through the tops with the ordinates 0x  and lx   of the previously 

constructed influence line kM . A similar result will be obtained when the 

force moves upon the other beams of the upper structure: on the section 

of each beam, influence line for effort will be straight. 

So, to construct the influence line for an effort S with the nodal 

transfer of the load, you must: 

-  construct the influence line for an effort S as if the moving unit load 

would be applied directly to the main beam. 

- transfer the nodes on the constructed influence line S and obtain the 

ordinates on it; 

- connect the tops of the ordinates with straight lines. 

Figures 3.14, c, d show the influence lines for kM  and kQ . 
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3.6. Construction of the Influence Lines for Efforts  

in Multi-Span Beams 

 
With the known interactive scheme of a multi-span beam, the 

construction of influence line for effort S starts with the beam to which 

analyzed factor belongs. Plotting is performed by the static or kinematic 

method. Having received the influence line for this beam, we should 

continue the construction for the adjacent upward beam, that is, we 

should consider the position of the force F = 1 on it. The ordinate of 

influence line in the hinge connecting the lower and upper beams is the 

same. The second ordinate on the upper beam is equal to zero and is 

located above the support of this beam, since the force F= 1 is above the 

support, the effort S = 0. Having two known ordinates, we show the 

position of the line along the entire length of the beam. The process of 

constructing is repeated for all upward beams. 

Figure 3.15 shows the influence lines for the efforts in a multi-span 

beam. 

 

 

3.7. Determining the Most Unfavorable Position 

of Moving Loads with Influence Lines 

 

The most unfavorable position of a moving load upon the 

structure is the position in which the considered effort reaches its 

maximum (extreme) value. 

 

3.7.1. Concentrated force action 

 
Consider the case when there is one single concentrated force F 

on the beam (Figure 3.16). Influence line for the effort S is built. For any 

position of the force on the beam, the effort S will be calculated by the 

formula (3.7): yFS  .  The effort will be maximum if the force

constF   is located above the maximum ordinate of influence: 

maxmax FyS  . It is clear that minmin FyS  . 
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Figure 3.15 

 

3.7.2. Action of a Set of Connected Concentrated Loads 

 

The set of connected moving loads, shown in figure 3.17, simulates 

the pressure of train wheels or other transport. The distance between the 

forces does not change when the train moves. All forces are located on a 

certain section of the triangular influence line (Figure 3.17, b). The force 

iF  is located on the left, at a very small distance from the vertex of the 

influence line. 
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The effort S from the shown load is calculated by the formula (3.7):  

 

.......2211 nnii yFyFyFyFS   

 

 
Figure 3.16 

 

When the train moves, all ordinates )(xyy   are variable. 

Consequently, the effort )(xSS   is also variable. We are looking for 

the extremum of the function )(xS . 

The first derivative of S  has the form: 

1 2
1 2 ... ... ( )i n

i n left i right

dy dydy dydS
F F F F R F tg R tg

dx dx dx dx dx
          , 

where      .)(,...21  tgtg
dx

dy
tg

dx

dy

dx

dy

dx

dy ni  

 leftR  — is the resultant of forces located to the left of the force 

iF  (on influence line of length a), 

 rightR  — is the resultant of forces located to the right of 

the vertex of the influence line. 

The function )(xS  is not smooth, when the force iF  is transferred to 

a portion of the right branch of influence line, the first derivative 
dx

dyi
 

changes sign from “plus” to “minus” in form of a break of the first kind. 
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Therefore, you cannot use equality 0
dx

dS
 to calculate the extreme 

value S . 

 

 
Figure 3.17 

 

A note on the change of the first derivative sign means that the 

extreme value S  will be observed when one of the concentrated forces is 

located above the top of the influence line. Suppose this happens when a 

force iF  is located above the vertex of the influence line. Then this force 

is called critical and is denoted as follows: .iкр FF   



97 
 

The condition for determining the critical force is written in the form 

of two inequalities: 

 

       
( ) ;

( ) .

left cr right

left right cr

R F tg R tg

R tg R F tg

   

   
                            (3.11) 

If both inequalities are satisfied simultaneously, then iF  is a critical 

force, and the corresponding load position is called the unfavorable one 

(estimated). If inequalities are not satisfied at the same time, then we 

must assume that another force will be critical and verify that the 

criterion (3.11) is satisfied. 

Inequalities (3.11) can be given a graphical interpretation. It is given 

that 
b

c
tg

a

c
tg  , , inequalities show the ratio of equivalent 

uniformly distributed loads on the left-hand and right-hand sections of 

influence line   (Figure 3.17, d). 

The action of two related forces (Figure 3.18) can be regarded as 

a special case of the considered load case. In all the loads considered in 

the example, the movement of the load from right to left is received.  

For the first loading (Figure 3.18, b) 2211
)1(

max yFyFS  ; for the 

second loading (Figure 3.18, c) 1231
)2(

max yFyFS  .  

From the found values of the efforts, we select the larger one 

},max{ )2(
max

)1(
maxmax SSS   and obtain information of the position of the 

load is the unfavorable one and its force is critical. 

For the third loading (Figure 3.18, d) 5241
)3(

min yFyFS  ; for the 

fourth loading — 51
)4(

min yFS  , if the position of force 2F  outside the 

beam is possible. 

Further, from the found values of the efforts, we choose the smaller 

one },min{ )4(
min

)3(
minmin SSS  . Then, from the found values of the efforts, 

we choose the smaller one. The position of the load at which the effort 

will be minimal is the unfavorable. 
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Figure 3.18 

 

3.8. Influence Matrices for Internal Forces 

 

We define an effort Sk in the cross-section k of the beam (Figure 3.19) 

caused by the concentrated forces ( 1,..., )iF i n  applied to that beam. For 

a linearly deformable system, any internal force Sk in the cross-section k, 
___

( 1, )k m  can be determined by the expression: 

 

              ,...2211 nknkkk FsFsFsS                     (3.12) 

 

where kis  — is the effort in cross-section k due to 1iF . 
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Figure 3.19 

 

We represent expression (3.12) in the expanded form for 
___

,1 mk  . 

;... 12121111 nnFsFsFsS   

;... 22221212 nnFsFsFsS   

…                                                 (3.13) 

;...2211 nmnmmm FsFsFsS   

In matrix form, the system of equations (3.13) has the following form: 

FLS S


 .                                         (3.14) 

Here S


 is a vector of effort; F


 —a load vector; SL  — an influence 

matrix for the efforts S


: 

 

          





















mS

S

S

S
...

2

1


;   





















nF

F

F

F
...

2

1


;   





















mnmm

n

n

S

sss

sss

sss

L

...

...

...

...

21

22221

11211

.           (3.15) 

Influence matrix SL  is a linear operator that transforms the load 

vector into the efforts vector. 

If bending moments are determined, then the matrix SL  is denoted 

ML  and is called the influence matrix of bending moments. In this case, 

equations (3.14) are written in the form: 

                  FLM M


                                           (3.16) 
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where M


 — is a vector of bending moments in the calculated sections, 

and the matrix is written as follows: 





















mnmm

n

n

M

mmm

mmm

mmm

L

...

...

...

...

21

22221

11211

                          (3.17) 

 

In the general case, this matrix is rectangular; its dimension is 

)( nm . In the case when concentrated forces are applied in the 

calculated sections, the matrix ML  is a square matrix of order n  

Since kim   is the bending moment in the cross-section k caused by the 

force 1iF , then, analyzing the matrix ML , we notice that in each of its 

row the ordinates of the corresponding influence lines of the bending 

moments are recorded. For example, in the second row of the matrix ML  

the ordinates of influence line 2M  are recorded. 

In the second column of the matrix ML , the ordinates of the 

bending moments diagram 2M , calculated in the regarded cross-

sections of the beam loaded by the dimensionless force 2 1F  , are 

recorded. 

Consequently, the influence matrix can be formed in two ways: 1) by 

columns - using single force diagrams; 2) by rows - using influence lines 

for efforts. 

When calculating the transverse and longitudinal forces, the equations 

have the form: 

                       FLQ Q


                                             (3.18) 

                      FLN N


                                             (3.19) 

In equations (3.18) and (3.19) QL  and NL  are the influence matrices, 

respectively, of shear and longitudinal forces.  
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Note that when forming the influence matrix of shear forces QL , the 

calculating cross-sections must be taken to the left-hand and to the right-

hand of each concentrated force.  

Generally, a beam or other structure can be loaded not only with 

concentrated forces, but also with distributed loads or concentrated 

moments. It is possible to construct a matrix of influence that takes into 

account these types of loads. However, the computational process in this 

case will become more complicated, the universal character of the 

computational algorithm will be lost. Therefore, it is recommended that 

such loads should be converted by bringing them to equivalent 

concentrated forces according to the general rules of mechanics. When 

using the load nodal transfer method for this purpose, the position of the 

nodes is assigned depending on the features of the given load. The 

spacing of the nodes may be regular or irregular. With a small step 

length, the accuracy of the calculation increases, but the dimension of the 

problem increases. In addition to the nodes in the spans of beams, their 

location above the hinges and supports should be provided. 

 

Example 3.2. For the beam shown in Figure 3.20, a, we compose the 

influence matrix of bending moments, calculate bending moments in the 

calculated sections, plot the diagrams of bending moments caused by the 

given load and the equivalent concentrated load, compare them. 

The positions of the cross-sections are shown in the beam scheme. 

With a formal approach to the calculation, the position of the required 

cross-sections should be assigned not only in the spans of the beam, but 

also where obviously known that bending moments are equal to zero  (in 

this example, cross-sections 1, 5, 9). The load converted to concentrated 

forces is shown in Figure 3.20, b. The influence matrix of bending 

moments will have the order (9x9): 
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















































000000000

200000000

3/4012/100000

3/202/1100000

000000000

3/202/112/30000

9/403/13/2103/43/20

9/206/13/12/103/23/40

000000000

ML  

 

The explanations for the matrix formation: the values of the ordinates 

of the diagram 9M  (Figure 3.20, d) are recorded in the ninth column of 

the matrix, the values of the ordinates of the influence line for 2M  

(Figure 3.20, d) are recorded in the second row. 

Performing the load transformation, we get the vector of concentrated 

forces in the form: 

 
.]10;5.17;35;35;15;5.17;45;45;0[];;;;;;;;[ 987654321 kHFFFFFFFFFF TT 

  

 

Having preliminary information that the bending moments are equal 

to zero in sections 1, 5, and 9, we can delete the corresponding rows of 

the matrix ML . Since the concentrated forces above the supports do not 

affect the outline of the diagram of moments, columns 1, 4, and 8 can be 

deleted in the matrix. As a result, we obtain a matrix ML  of size (6x6): 
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Figure 3.20  
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9/26/13/12/13/23/4

ML
 

 

 The corresponding load vector has the form: 

.]10,35,35,15,45,45[];;;;;[ 976532 kHFFFFFFF TT 

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 Figure 3.21 

 

The vector of bending moments in the cross-sections is calculated by 

the formula (3.16): 

 
.]00.20;17.39;83.45;33.68;44.44;22.67[];;;;;[ 876432 kHмMMMMMMM TT 

  

 

Figure 3.21,a shows the diagrams of bending moments in the beam 

with a given load.  Figure 3.21,b shows one in the beam with a converted 

load. The ordinates in the considering cross-sections are the same. 
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THEME 4. 

CALCULATING OF THREE-HINGED ARCHES AND FRAMES 

 

4.1. General Information and Principles of Creation 

 

A system consisting of two disks interconnected by a hinge and joined 

with the ground using immovable hinged supports is called a three-

hinged system (Figure 4.1). 

Three-hinged systems where discs are represented by polygonal bars 

are called three-hinged frames (Figure 4.2). 

 

 
 

                      Figure 4.1                                                                  Figure 4.2 
 

Three-hinged systems where the disks are represented by curved bars 

are called three-hinged arches (Figure 4.3). According to their shape, 

arches are divided into circular, parabolic, sinusoidal, etc. arches. 

Three-hinged systems are formed by the triangles method. Therefore, 

they are geometrically unchangeable and statically determinate. All three-

hinged systems belong to the class of thrusting systems (Figures 1.24, 

4.1,…, 4.3). 

To eliminate the effect of the horizontal pressure due to the thrust on 

the underlying structures, the supporting hinges of the three-hinge 

systems can be connected by horizontal hinged rods or ties. In such cases, 

one of the supports should be hinged movable. For example, a three-

hinged arch with a tie (or a tightrope) at the level of the supports is shown 

at Figure 4.4.  

Three-hinged arches with a tie are externally non-thrusting systems. A 

vertical loads cause only vertical reactions in supports of such arches. 

Arches with an elevated (Figure 4.5) or polygonal complex tie (Figure 

4.6) are applied in order to rationally use the space under the arches. 
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Illustration 4.1. Construction of a hangar from wooden three-hinged arches

        
                             Figure 4.3                                                  Figure 4.4 

 

             
                       Figure 4.5                                                   Figure 4.6 
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4.2. Determining Reactions and Internal Forces in Three-

Hinged Arches 

 

Consider a symmetrical three-hinged arch with supports at the same 

level, loaded with vertical force (Figure 4.7, a). 

We compose the equilibrium equation in the form of the sum of the 

projections of all external forces on the horizontal axis: 

 

0A BX H H   . 

 

From this equilibrium equation it follows that: 

 

A BH H H  . 

 

That is, the horizontal reactions of the three-hinged arch with the 

vertical load are opposite in direction, identical in value and equal to the 

unknown value of H. This value of H and the horizontal reactions 

themselves are called the three-hinged arch thrust. 

 
 

Figure 4.7  
Three reactions of the arch: VA, HA and HB, intersect at the support 

point A. Therefore, the vertical reaction VB of the arch can be determined 

from the sum of the moments of all external forces relative to this point 

A. 
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0A BM Fa V l    , from 
0

B B

Fa
V V

l
  . 

 

The resulting expression for determining the vertical reaction VB of 

the arch (Figure 4.7, a) is completely equivalent to the expression that 

can be obtained for determining the vertical reaction of a simple single-

span articulated beam (Figure 4.7, b). Such a beam is called equivalent 

relative to the arch. An equivalent beam has the same span and the same 

vertical load as the arch. 

Accordingly, from the sum of all external forces moments relative to 

the support point B, the vertical reaction VA of the support A can be 

found. 

 

( ) 0B AM V l F l a     , from 
0( )

A A

F l a
V V

l


  . 

 

Consequently, the vertical reactions of the three-hinged arch under 

vertical load are equal to the vertical reactions of the equivalent beam. 

Therefore, vertical reactions of the arch are often referred to as beam 

reactions. And this is true with arbitrary vertical load. 

Three independent equilibrium equations have already been used to 

determine the support reactions of the arch. The equilibrium equation in 

the form of the sum of all external forces projections on the vertical axis 

is usually used to verify the correctness of the vertical reactions 

calculation. 

 

0A BY V V F     . 

 

There is just a need to find the value H of the arch thrust. To 

determine the arch thrust, we will use the distinguishing property of the 

arch compared to the equivalent beam. In the intermediate hinge C of 

the arch (Figure 4.7, a) there is no bending moment. There is no hinge 

in the corresponding cross-section of the equivalent beam, and the 

bending moment in this cross-section of the beam (Figure 4.7, b), in the 

general case, is not equal to zero. 

Therefore, defining the bending moment in the hinge C of the arch 

as the sum of the moments relative to this cross-section of all external 
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forces, for example, located to the left of it, we must equate the 

resulting expression to zero. 

 

A ( ) 0
2 2

left

C C

l l
M ΣM V F a Hf      . 

 

Taking into account, that 

 

0( )
2 2

A C

l l
V F a M   , 

 

where 0

CM   is the bending moment in the cross-section C of the 

equivalent beam, we can eventually find the thrust H. 

 
0

CM
H

f
 . 

 

Thus, the arch thrust is directly proportional to the beam bending 

moment in cross-section C of the equivalent beam and inversely 

proportional to the rise of the arch in the intermediate hinge. 

To check the calculated thrust value, the beam bending moment in 

the cross-section C is usually calculated once again through the sum of 

the moments of external forces applied to the beam to the right of this 

section. For our example, it is possible to write 

 

0

B
2

right

C C

l
M M V   . 

 

After calculating the support reactions, the determination of the internal 

forces in the cross-sections of three-hinged arches is usually carried out by 

the section method, as in any other bars systems. 

Consider the features of applying the section method to a three-hinged 

arch with supports at the same level (Figure 4.7, a). To do this, we cut the 

arch at some cross-section x-x and consider the equilibrium of the left-hand 

part (Figure 4.8). The action of the discarded right-hand part is replaced by 
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three internal forces: bending moment
xM , transversal force 

xQ , and 

longitudinal (normal) force 
xN . 

The bending moment 
xM  in the cross-section x-x of the arch is calculated 

as the sum of the moments of only external forces acting on the left part of 

the arch relative to the center of gravity of the cross-section x-x of the arch 

 

 left

x x A FiM M V x F x a H y      

 

Taking in to account, that 

 
0( )A xV x F x a M   , 

 

where 0

xM  is the bending moment in the cross-section x-x of the 

equivalent beam (Figure 4.7,b), the bending moment in the cross-

section x-x of the arch may be finally found using a formula: 

 
0

x xM M Hy  . 

 

 
 

Figure 4.8 
 

The obtained expression shows that the bending moments in the arch are 

less than the bending moments in the equivalent beam.  

It is possible to say that bending moments in the arch have been obtained 

by algebraic summation of the bending moments in the equivalent beam and 
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the bending moments in the arch, caused by the action of the thrust H only 

that is seen as two mutually balanced forces applied to the curvilinear bar. 

The diagram of bending moments due to only the thrust repeats the outline of 

the arch axis, while the thrust itself serves as a proportionality coefficient. 

The bending moments in the beam due to a vertically downward directed 

load are always positive. Bending moments in the arch from a thrust directed 

inside the span are always negative. Therefore, the thrust creates an 

unloading effect for the arch. 

We find the transversal force in the x-x section of the arch from the sum 

of the projections of all the forces applied to the left part of the arch (Figure 

4.8), normal to the axis of the arch in the section under consideration. 

Solving the resulting equation relative to 
xQ , we obtain 

 

sin

( ) sin ,

x A x x x

A x x

Q V cos Fcos H

V F cos H

  

 

   

  
  

 

or 
0 sinx x x xQ Q cos H   . 

 

Thus, the transversal force in the cross-sections of the arch is 

expressed through the projection of the beam transversal force 0

xQ   in the 

corresponding cross-section of the equivalent beam and the projection of 

the thrust H on the normal to the arch axis in the considered cross-section 

of the arch. 

Similarly, from the sum of the projections of all the forces on the axis 

tangent to the axis of the arch in section x-x, we find the longitudinal 

force in this section of the arch 

 

sin sin cos

( )sin cos ,

x A x x x

A x x

N V F H

V F H

  

 

    

   
 

 

or 
0 sin cosx x x xN Q H    . 
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The longitudinal force in the cross-section of the arch is also 

expressed through the projection of the beam transversal force 0

xQ  in the 

corresponding cross-section of the equivalent beam and the projection of 

the thrust H on the tangent to the arch axis in this cross-section of the 

arch. 

Compared with simple beams in three-hinged arches, the transversal 

forces, as well as bending moments, are much smaller. But unlike the 

beams, longitudinal compressive forces occur in the cross-sections of the 

arches. While no longitudinal forces are present in simple horizontal 

beams with vertical loads. 

The final diagrams of the internal forces in the arch along its entire 

length would be curvilinear. Curvilinear diagrams, like any graphs, can 

be built by calculating the values of the corresponding internal forces in a 

number of predetermined (characteristic) cross-sections of the arch (the 

more sections are presented the more accurate the diagram). 

Let us illustrate the definition of reactions and internal forces using 

the example of a circular three-hinged arch with a span of l = 36 m with a 

rise of f = 8 m (Figure 4.9). The arch is loaded with a concentrated force 

F = 24 kN and a uniformly distributed load q = 2 kN/m. 

 
Figure 4.9 

 

The equation of the arch axis, i.e., the equation of the circle arc 

passing through three points A, C and B, is described by the expression 
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2 2( ) ( )
2

l
y x f R R x     . 

 

The radius R of the circle and the trigonometric functions of the angle 

of inclination of the tangent to the axis of the arch are calculated by the 

formulas: 

 
2 24 2

, sin ( ) , cos( ) .
8 2

f l l x R f y
R x x

f R R


   
     

 

The vertical reactions of the arch supports are calculated with the 

formulas: 

0

0

24 24 2 18 9
25

36

24 12 2 18 27
35

36

A A

B B

V V kN

V V kN

   
  

   
  

  

 

The sum of the projections of all external forces on the vertical axis 

confirms the result: 

 

25 35 24 2 18 60 60 0Y           

 

In the cross-section C, the bending moment of the beam is calculated 

and checked: 

 

𝑀𝐶
0 = ∑𝑀𝐶

𝑙𝑒𝑓𝑡
= 25 ⋅ 18 − 24 ⋅ 6 = 306 𝑘𝑁𝑚,

𝑀𝐶
0 = −∑𝑀𝐶

𝑟𝑖𝑔ℎ𝑡
= 35 ⋅ 18 − 2 ⋅ 18 ⋅ 9 = 306 𝑘𝑁𝑚.

 

 

Then the arch thrust is calculated: 

 

𝐻 =
𝑀𝐶

0

𝑓
=
306

8
= 38.25 𝑘𝑁. 

 

To plot the diagrams of the internal forces it is necessary to assign 

characteristic arch cross-sections. Firstly, these are the supports A and B 
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and the intermediate hinge C. Secondly, these are the point of application 

of concentrated force and the beginning and the end of the arch segment 

where the distributed load acts. Thirdly, these are additional intermediate 

cross-sections necessary for constructing curvilinear segments of the 

diagrams with sufficient accuracy. In this example, there are at least 

seven of these characteristic points.  

They are located along the arch span in increments of 6 m. To plot the 

diagrams of the transversal and longitudinal forces at the point of 

application of the concentrated external force, it is necessary to consider 

two infinitely close points: one to the left of the application point of the 

external force, the second to the right of this point. At this cross-section, 

there will be a jump on the indicated diagrams of the internal forces, and 

a fracture on the diagram of bending moments. When constructing 

diagrams of internal forces and moments, it is necessary to monitor their 

correspondence with each other and the load. The differential 

dependencies between bending moments, transversal forces, and the load 

must be fulfilled. 

To determine the geometric characteristics of the arch, calculate the 

value of the arch axis radius  

 

𝑅 =
4⋅82+362

8⋅8
= 24.25 𝑚. 

 

All further calculations are summarized in the following tables. 

Calculations in tables can be performed on a calculator, plotting 

manually, using patterns and other drawing tools. But it is possible to use 

computers: universal mathematical and engineering software, 

programming languages, tabular and graphic editors and other modern 

software tools that automate the process of computing and plotting 

graphic objects. 

 

Table 4.1 

Calculation of bending moments in a three-hinged arch 

 
№sec x Y 0

xM   -Hy 
xM   

A 0 0 0 0 0 

1 6 4.823 150 -184.47 -34.47 

2 12 7.246 300 -277.16 22.84 
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C 18 8.000 306 -306.00 0 

3 24 7.426 276 -277.16 -1.16 

4 30 4.823 174 -184.47 -10.47 

B 36  0 0 0 

 

 

So, to build the below diagrams of internal forces in the arch, modern 

software was used that automates the process of performing calculations 

and graphing. The diagram of bending moments (Figure 4.10), the 

diagram of transversal forces (Figure 4.11) and the diagram of 

longitudinal forces (Figure 4.12), are built on the horizontal projection of 

the arch axis using the graphic software. Of course, the number of 

characteristic cross-sections along the span has to be significantly 

increased. 

As shown in Table 4.1, bending moments in a three-hinged circular 

arch at a given load are an order of magnitude smaller than bending 

moments in an equivalent beam. In the support joints and in the 

intermediate joint, the bending moments in the arch are equal to zero. At 

the point of application of concentrated force on the diagram of bending 

moments in the arch, a “beak”-type fracture is observed. On the diagrams 

of the transversal and longitudinal forces, there are jump discontinuities 

of the first type: 2cosF   on the transversal forces diagram Q  and 

2sinF   on the longitudinal forces diagram N .  

At the points where the transversal forces diagram passes through 

zero, there are the extremums on the diagram of bending moments. At the 

point where the segment of the distributed load begins, there is a fracture 

on the diagram of the transversal forces. In areas where the transversal 

forces diagram is ascending, the bending moments diagram is convex up. 

In areas where the transversal forces diagram is downward, the bending 

moments diagram is convex down.  

Such conclusions follow from the differential dependences known 

from the resistance of materials, according to which the transversal force 

in the cross-sections of the arch is the first derivative along the length of 

the arch arc from the function of bending moments. And the load is the 

first derivative from the transversal force function. 
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Table 4.2 

 

Arch parameters for calculation of the 

transversal and longitudinal forces in the arch 

 
№ sec x sin φx cos φx 0

xQ   

A 0 0.7423 0.6701 25 

1 6 0.4948 0.8690 25 

2left 12 0.2474 0.9689 25 

2right 12 0.2474 0.9689 1 

С 18 0 1 1 

4 24 -0.2474 0.9689 -11 

5 30 -0.4948 0.8690 -23 

B 36 -0.7423 0.6701 -35 

 

 

 

 

Table 4.3 

Calculation of the transversal and longitudinal forces 

 

 

 

№ 

sec 

 
0 cosx xQ 

  

 

sin xH 

  

 

xQ   
 

0 sinx xQ 

 

 

cos xH 

 

 

xN  

A 16.753 -28.39 -11.639 -18,557 -25.63 -44.19 

1 21.72 -18.928 2.797 -12.371 -33.24 -45.61 

2left 24.22 -9.464 14.756 -6.185 -37.06 -43.25 

2right 0.9689 -9.464 -8.495 -0.2474 -37.06 -37.31 

С 1.0000 0.000 1.0000 0.0000 -38.25 -38.25 

4 -10.658 9.464 -1.194 -2.722 -37.06 -39.78 

5 -19.987 18.928 -1.059 -11.381 -33.24 -44.62 

B -23.45 28.39 4.94 -25.98 -25.63 -51.61 
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Figure 4.10. Diagram M 

 

 

 
Figure 4.11. Diagram Q 

 

 

 
Figure 4.12. Diagram N 
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4.3. Calculating a Three-Hinged Arch with a Tie 

 

Three-hinged tied arches are externally non-thrusting systems. Vertical 

loads cause only vertical reactions in supports of such arches. These vertical 

reactions are determined as in simple beams. The horizontal reaction of their 

immovable hinged support is equal to zero under vertical loads. 

But internally such arches are thrusting systems. Their thrust is an internal 

longitudinal force in ties. 

To determine the tightening force, it is necessary to cut an arch by a 

section through the key hinge of this arch. For example, in a three-hinged 

arch with a complex tie it is a cross-cut 1-1 passing through the intermediate 

hinge C (Figure 4.13). The equilibrium equation of the left part of the arch in 

the form of the sum of the moments of all forces relative to the key hinge C 

gives a possibility to determine the arch thrust H. 

0left

CM  ;        0 0
2

A

l
R H f f   . 

 

The first term in the resulting equation is the bending moment in section 

C of the equivalent beam: 

0

2
A C

l
R M . 

 

Therefore, to determine the tightening force (thrust), the following 

expression can be obtained: 

0

0

CM
H

f f



. 

 

 
 

Figure 4.13 
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The internal forces in the other members of the complex tie and in the 

cross-sections of the arch may be calculated by the usual method of 

sections. 
 

4.4. Influence Lines in Three-Hinged Arches 

 

Consider an arch loaded with a single vertical force, the position of it 

is determined by the abscissa xF (Figure 4.14, a). To determine the 

vertical support reactions, we compose the equilibrium equations in the 

form of sums of the moments of all the forces acting on the arch relative 

to the left and right supports: 

 
 

0AM  ;      1 0F Bx R l  ; 
 

0BM  ;       1( ) 0F Al x R l    . 
 

From these equations we find the functions of changing the vertical 

support reactions depending on the position of the unit force 
 

F
B

x
R

l
 ;        𝑅𝐴 =

𝑙−𝑥𝐹

𝑙
. 

 

The obtained dependences of the change in the values of the support 

reactions completely coincide with the corresponding dependences for the 

support reactions of a simple two-support beam. Therefore, the influence 

lines for the vertical reactions (Figure 4.14, c, d) in the arch coincide with the 

influence lines (Inf. Lin.) for the reactions in the corresponding equivalent 

beam (Figure 4.14, b). 

The thrust H  of the arch under the action of vertical loads is determined 

by the expression: 
0

CM
H

f
 . 

Hence  

 0. . . . СInf Lin Н Inf Lin М f . 
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Thus, the influence line for the thrust in the arch is expressed through 

the influence line for the bending moment in the cross-section C of the 

equivalent beam (Figure 4.14, b, e), all ordinates of which are divided by 

the value of the arch rise f (Figure 4.14, f). 

The influence lines of internal forces in the cross-sections of the 

arches will be built using the previously obtained dependencies 

expressing the internal forces in the arches through the corresponding 

internal beam forces and the arch thrust. 

So the bending moment in the section K of the arch (Figure 4.14, a) is 

determined by the expression 

 
0

K K KM M Hy  . 

 

Since the ordinate Ky  of the cross-section K of the arch is constant, 

for the influence line for MK we get 

 

   0. . . . . .K K KInf Lin M Inf Lin M Inf Lin H y  . 

 

In accordance with this expression, we separately construct the 

influence line for the bending moment 
0. . KInf Lin M  in the section K of 

the equivalent beam (Figure 4.14, g) and the influence line for the thrust 

H . .Inf Lin H  , multiplied by a factor Ky  (Figure 4.14, h). Subtracting the 

ordinates of the second influence line from the ordinates of the first, we 

get the influence line for the bending moment in the section K of the arch 

. . KInf Lin M  (Figure 4.14, i). 

The transversal force in the cross-section K of the arch is determined 

by the dependence 

 
0 sinK K K KQ Q cos H   , 

 

Therefore, the influence line for the transversal force in this arch 

section can be represented as follows: 

 

   0. . . . cos . . sinK K K KInf Lin Q Inf Lin Q Inf Lin H   . 
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We build the influence line for the thrust H (Figure 4.15, b), and the 

influence line for the transversal force in the section K of the equivalent 

beam (Figure 4.15, c). Then we build intermediate influence lines, 

multiplying all the ordinates of 0. . KInf LinQ  on Kcos  (Figure 4.15, d), and 

the ordinates . .Inf Lin H  on Ksin  (Figure 4.15, e). Subtracting the 

ordinates of the second from the ordinates of the first influence line, we get 

the desired influence line for transversal force in the section K of the arch 

(Figure 4.15, f). 
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Figure 4.14 

 

The longitudinal force in the cross-section K of the arch is determined by 

the dependence 
0 sin cosK K K KN Q H    . 
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Accordingly, the expression 

 

   0. . . . sin . . cosK K K KInf Lin N Inf Lin Q Inf Lin H    . 

 

is used to construct the influence line for this longitudinal force. 

By building intermediate lines of influence 
0( . . )sinK KInf Lin Q   

(Figure 4.15, g) and  . . cos KInf Lin H   (Figure 4.15, h), we sum up 

them. Changing the sign of the result to the opposite, we obtain the 

desired influence line for the longitudinal force in the section K of the 

arch (Figure 4.15, i). 

 

4.5. The Rational Axis of the Arch 

 

Rational is called the axis of the arch, if bending moments in the 

cross-sections of the arch are zeros or close to zeros. 

The condition  
0 ( ) 0x xM M Hy x     

 

means that bending moments are absent in all cross sections of the arch. 

This condition allows you to find the equation of the rational arch axis: 

 
0

( ) xM
y x

H
 . 

 

Whence it follows that under the action of vertical loads the ordinates 

of the rational arch axis are proportional to the bending moments in the 

equivalent beam having the same span and the same load as the arch. The 

reciprocal of the thrust H is in this case a proportionality coefficient. 

For an example, we define the rational axis of a three-hinged arch 

when a vertical, evenly distributed load acts on the arch (Figure 4.14, a). 

The reactions in the arch in this case are equal 

 

2
A B

ql
R R R   ;         

2

8

ql
H

f
 . 
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Figure 4.15  
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The bending moment in an arbitrary cross-section x of the equivalent 

beam is defined as the sum of the moments of external forces applied to 

the beam to the left of section x: 

 

0 ( ) ( ).
2 2 2

left
x x

ql x qx
M M x qx l x      

 

Dividing the resulting expression by the thrust, we obtain the equation 

of the rational axis of the three-hinged arch with a uniform load over the 

span: 

 
0

2

( ) 8
( )

2

xM qx l x f
y x

H ql


  . 

Or finally 

2

2

4
( ) ( )

f
y x lx x

l
  . 

 

The resulting equation is a quadratic parabola equation. A parabolic 

arch with a load evenly distributed over the span does not have bending 

moments. Only longitudinal forces occur in the arch cross-sections. 

 

 
        a) Uniformly distributed    b) Uniformly distributed 

             vertical span load         radial load 

 

Figure 4.16 

 

In the key (in the middle of the span) of the arch, the longitudinal 

force is 

 

f

A B

l / 2 l / 2

C

y

x
2

ql
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f
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H

8
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f

ql
HNC

8

2

  

 

In heels (supports), the longitudinal forces are equal 

 

2
2 2 1

2 16
A B

ql l
N N R H

f
     . 

 

If the arch is outlined in a circle arc, then from the equilibrium 

conditions of an infinitesimal arch element of length ds, it can be proved 

that the arch circular axis will be rational when the arch is loaded with a 

uniformly distributed radial load (Figure 4.16, b). With a uniform radial 

load in a circular arch, there are no bending moments, and the longitudinal 

forces will be constant along the length of the arch and equal 

 

N qr  . 

 

We invite the reader to carry out the corresponding evidence 

independently. 

 

4.6. Three-Hinged Arches with a Superstructure 

 

Arches that serve as supporting structures for bridges usually have 

over-the-top or under-arch superstructures. The moving load on the main 

structure of such arches is not transmitted directly, but through the 

auxiliary vertical members (links) at certain points - at nodes. 

Three-hinged arches with a superstructure are generally regarded as 

statically determinate, and are complex systems in which an auxiliary part 

(over- or under-arch superstructure) rests on the main part (three-hinged 

arch).  

The analysis of systems for a moving load is carried out in the same 

way as for beams with nodal transfer of the load. Initially, the movement 

of a unit force F = 1 directly along the axis of the main arch is considered, 

and the influence lines for the factors under study are constructed. Then 

ordinates are fixed on these influence lines under the nodes. It can be 
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proved that during load nodal transfer, sections of the influence lines 

between nodal points will be rectilinear. Therefore, if the ordinates fixed 

under the nodes are connected by straight lines, then the influence lines 

adjusted in this way will correspond to the influence lines for arches with 

a superstructure. 

 

E x a m p l e: For a three-hinged arch with a under-arch superstructure 

(Figure 4.17, a), draw an influence line of the bending moment in section K. 

Solution:  

1. First, we construct the influence line for the bending moment *
KM  

(Inf. Line *
KM ) as if the unit force F = 1 moved directly along the axis of the 

three- hinged arch (Figure 4.17, b). To construct this influence line, we will 

use the arguments presented in Section 4.4: 

 

   * 0
K K KInf.Line M Inf.Line M Inf.Line H y   . 

 

The influence line for the bending moment 0
KM  arising in section K of the 

equivalence beam is shown in Figure 4.17, c, and the influence line for the 

thrust H  multiplied by Ky is shown in Figure 4.17, d. 

For the initial data of the example: with 3Kx m , it follows that: 

   
2 2

4 4 3
3 12 3 2.25

12
K K K

f
y x l x m

l


       

The influence line *
KM  obtained by subtracting   Kinf.line H y  

from 
0
Kinf.line M  is shown in Figure 4.17, e. 
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Figure. 4.17 

 

2. We correct the constructed influence line *
KM  taking into account 

the nodal transfer of the load. To do this, we calculate the ordinates of 

this influence line under the nodal points 2, 3, 4 and 5. The ordinates 

under the nodal points 1 and 6 have zero values (Figure 4.17, f) 
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3. We connect the calculated ordinates with straight lines. The 

resulting graph is the influence line for the bending moment in the section 

K (Figure 4.17, f) under the condition that the load on the arch is 

transmitted through the over-arch superstructure. 

 

 

4.7. Determining Support Reactions and Internal Forces  

in Three-Hinged Frames 

 

Consider the process of determining support reactions in a three-hinged 

frame with supports at different levels (Figure 4.18). 

The frame is loaded with a horizontal uniformly distributed load of 

intensity q=4kN/m and a vertical concentrated force F=12kN. The expected 

directions of support reactions are shown in Figure 4.18. 

As usual, we compose the sum of the moments of all external forces 

relative to the support B: 

 

4 6 1 12 2 8 4 0B AM V H            . 

 

Since the equation contains two unknown quantities VA and HA, we 

compose the second equation in the form of the sum of the moments of the 

left forces only, relative to the joint С: 

 

4 6 5 4 8 0left

C A AM V H        , 

 

The resulting equation includes the same two unknown quantities VA and 

HA. Solving the system of two joint equations, we find the values of the 

support reactions of the right support A: 

 

𝑉𝐴 = 10 𝑘𝑁;   𝐻𝐴 = 20 𝑘𝑁. 
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Figure 4.18 

 

Accordingly, the reactions of support B will be found from the sum of the 

moments of all external forces relative to the support A and the sum of the 

moments of only the right forces relative to the intermediate joint C: 

 

4 6 3 12 10 8 4 0,

12 6 4 4 0.

A B B

right

C B B

M V H

M V H

       

    




 

 

Solving the resulting system of two equations, we find 

 

𝑉𝐵 = 22 𝑘𝑁;    𝐻𝐵 = 4 𝑘𝑁. 

 

The calculated values of all supporting reactions are positive. Therefore, 

their directions shown in Figure 4.18 are valid. 

We will check the results. We compose the sum of all forces projections 

on the X and Y axes, as well as the sum of all external forces moments 

relative to, let's say, the point D in the middle of the left rack (the moment 

from the distributed load and the moment from the reaction VA at this point 

are zero, which reduces the amount of calculations): 
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4 5 20 4 24 24 0,

10 22 12 22 22 0,

20 3 12 10 22 8 4 1 180 180 0.D

X

Y

M

       

        

           

  

 

All three checking equilibrium equations are satisfied identically. 

Summing up, we can recommend the following rules for calculating 

support reactions in arbitrary three-hinged arches and other three-hinged 

systems with arbitrary external loads. 

Usually, four equations are composed to calculate the four support 

reactions, and three more equations are used to verify the results. 

The support reactions of the left support (VA, and HA) are calculated from 

two equations. 

The first is the sum of the moments of all external forces relative to the 

right support B: 

0BM  . 

 

The second is the sum of the moments relative to the intermediate 

joint C of only external forces located to the left of the joint C: 

 

0left

CM  . 

  

The support reactions of the right support (VВ and HВ) are calculated 

from two more equations. 

The third is the sum of all external forces moments relative to the right 

support A: 

0AM  . 

 

Fourth is the sum of the moments relative to the intermediate joint C 

of only external forces located to the right of the joint C: 

 

0right

CM  . 

  

To verify the results, the sums of all external forces projections on the 

coordinate axes and the sum of all external forces moments relative to 

any point not previously used as a moment point are written. 
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After determining the support reactions, the diagrams of internal 

forces in the bars of the three-hinged frame are constructed, as in any 

other bars systems. The calculated support reactions are considered as 

known external forces. Internal forces are calculated according to general 

rules in given characteristic cross-sections. For the considered frame from 

cross-sections with nonzero bending moments, six characteristic sections 

have been selected (Figure 4.19): this is the beginning and end of each 

bar, the middle of the distributed load application segment. 
 

 
              Figure 4.19 

 

We calculate the bending moments in the indicated sections: 

 

𝑀1 = ∑𝑀1

𝑙𝑒𝑓𝑡
𝑏𝑜𝑡𝑡𝑜𝑚 = 20 ⋅ 3 − 4 ⋅ 3 ⋅ 1.5 = 42 𝑘𝑁𝑚. 

𝑀2 = ∑𝑀2

𝑙𝑒𝑓𝑡
𝑏𝑜𝑡𝑡𝑜𝑚 = 20 ⋅ 6 − 4 ⋅ 6 ⋅ 3 = 48 𝑘𝑁𝑚. 

𝑀3 = ∑𝑀3
𝑙𝑒𝑓𝑡

= 20 ⋅ 6 − 4 ⋅ 6 ⋅ 3 = 48 𝑘𝑀𝑚. 

𝑀4 = ∑𝑀4
𝑙𝑒𝑓𝑡

= 20 ⋅ 10 − 4 ⋅ 6 ⋅ 7 − 10 ⋅ 8 = −48 𝑘𝑁𝑚. 

𝑀5 = −∑𝑀5
𝑟𝑖𝑔ℎ𝑡

= −(12 ⋅ 2) = −24 𝑘𝑁𝑚. 

𝑀6 = ∑𝑀6

𝑏𝑜𝑡𝑡𝑜𝑚
𝑙𝑒𝑓𝑡

= 4 ⋅ 6 = 24 𝑘𝑁𝑚. 

 

The diagram of bending moments is plotted in Figure 4.20 
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Figure 4.20  

 

We begin the calculation of transversal and longitudinal forces from 

the support section A: 

 

20 , 10 .A A A AQ H kN N V kN     

 

On a length A-2 of the bar, where a uniformly distributed load is 

applied, the transversal forces linearly decrease, and the longitudinal 

forces are constant. Therefore, we calculate: 

 

2 220 4 6 4 , 10AQ kN N N kN       . 

 

On an inclined bar section 3-4, the transversal and longitudinal forces 

are constant. The tangent of the angle  of bar inclination to the horizon 

on this length is equal 4 / 8 0.5tg   . Therefore sin 0.4472  , and 

cos 0.8944  . Next we calculate: 

 

3 4 10 0.8944 (20 4 6) 0.4472 10.73Q Q kN            

3 4 10 0.4472 (20 4 6) 0.8944 0.8944N N kN          
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In cross-sections of the inclined console, the transversal and 

longitudinal forces are also constant. It is enough to calculate them in the 

cross-section 5 through the right hand external forces: 

 

5 512 0.8944 10.73 , 12 0.4472 5.366Q kN N kN          

 

On the right strut, transversal and longitudinal forces are also constant. 

We calculate: 

6 64 , 22B BQ Q kN N N kN     . 

 

Diagrams of transversal and longitudinal forces are plotted in Figure 

4.21and Figure 4.22.  
 

 
Figure 4.21                                                       Figure 4.22 

 

Check the equilibrium of the left and right frame nodes (Figure 4.23). 

 

 
Figure 4.23 
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For the left node we have: 

 

  04848M . 

4 10.73 0.4472 0.8944 0.8944 4.800 4.798 0.002X kN         

Relative error        
0.002 100%

0.0417% 3%
4.800




     . 

10 10.73 0.8944 0.8944 0.4472 9.997 10 0.003Y kN           

Relative error        
| 0.003| 100%

0.03% 3%
10


 

   . 

 

For the right node we have: 

48 24 24 0M      . 

(10.73 10.73) 0.4472 (0.8944 5.367) 0.8944 4X           

9.597 9.600 0.003 kN      

Relative error     
| 0.003| 100%

0.0312% 3%
9.600


 

   . 

( 10.73 10.73) 0.8944 (0.8944 5.367) 0.4472 22Y           

21.993 22 0.007 kN       

Relative error      
| 0.007 | 100%

0.0318% 3%
22


 

  
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THEME 5. 

CALCULATING PLANE STATICALLY DETERMINATE 

TRUSSES 

 

5.1. Trusses: Concept, Classification 

 

Geometrically unchangeable bars systems composed, as a rule, of 

rectilinear rods connected at their ends by ideal hinges without friction, 

are usually called trusses. 

Therefore the design scheme of a truss is a geometrically 

unchangeable system of articulated rods (Figures 5.1-5.3, 5.5). 

A real structures with rigid nodes (welded or monolithic), which 

remain geometrically unchangeable after the mental replacement of all 

rigid nodes with hinged ones are often also called trusses (Figure 5.4). 

The rods located along the upper and lower contours of the truss form 

its top and bottom chords. The rods connecting the both chords form a 

lattice of the truss. Inclined rods of the lattice are called diagonals. The 

vertical rods of the lattice are called struts (or pendants if they are 

tensile). 

 

 
Figure 5.1. Trapezoidal truss with triangular lattice and additional struts  

 

The classification of design schemes of trusses as hinge-rod systems can 

be carried out according to many criteria. 

Trusses, like other structures, are divided into plane (Figures 5.1 - 5.3) 

and spatial (Figure 5.4). 

 
Figure 5.2. Beam truss with parallel chords and a lattice of N form  

Trusses can be subdivided according to the supporting conditions into  

Рис. 5.1



137 
 

trusses free of thrust, or beam trusses (figures 5.1, 5.2, 5.5); and trusses 

with thrust, or arch trusses (figure 5.3). 

According to the outline of the chords, trusses are divided into trusses 

with parallel chords (Figure 5.2 and 5.5, a) and polygonal chords (Figure 

5.5, b), triangular, trapezoidal trusses (Figure 5.1), parabolic, circular 

(Figure 5.3), etc. 

According to the type of lattice, trusses are divided into trusses with a 

triangular lattice or of V-form lattice (Figure 5.1; 5.3), trusses with a N-

form lattice (Figure 5.2;), trusses with a crossed lattice (Figure 5.5, a), 

trusses with a mixed lattice (Figure 5.5, b). 

 

 

 
Figure 5.3. Circular two-hinged arch truss with a triangle lattice 

 

 

 
 

Figure 5.4. Lattice dome 

 

 

 

Рис. 5.3 
  

Рис. 5.2 
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Figure 5.5: a) beam truss with a crossed lattice, 

b) simply supported truss with overhang and mixed lattice 

  

The given classification is far from complete. In real buildings, trusses 

of various types can be used. 

 

 
 

Illustration 5.1. Single-span bridge girders 

 

 

5.2. Plane Trusses. Degree of Freedom and Variability 

 

A necessary condition for the geometric immutability and static 

definability of a truss as a hinge-rod system is that its degree of freedom 

is equal to zero (W = 0) or, if the truss is separated from its supports, its 

degree of variability is also equal to zero (V = 0). 

 а)

б)

Рис. 5.5



139 
 

We assume that the truss in the general case consists of N nodes 

interconnected by B truss rods (bars) and attached to the supports with L 

supporting rods (simple links). 

Then, for a plane truss, its degree of freedom W with respect to the 

reference system associated with the supporting surface is equal to 

 

2W N B L   , 

 

where 2N is the degree of freedom of N free nodes as material points, 

B is the number of truss rods (bars) that connects truss nodes as 

simple links and eliminate B degrees of freedom, 

L is the number of simple support rods (links) that also eliminates 

L degrees of freedom of the system. 

The degree of freedom of a plane hinge-rod system, not having 

support connections and separated from the supports, consists of the 

degree of freedom of the system as a rigid whole (disk), equal to three (on 

the plane), and the degree of variability of V of its elements relative to 

each other (internal mutability). Thus, we can write 

 

3W V  , 

from 

3V W  . 

 

Substituting the expression for W under the condition 0L   in the last 

formula, we obtain the final expression for calculating the degree of 

variability of the truss (hinged-rod system) disconnected from the 

supports, 

2 3V N B     

 

If the degree of freedom (degree of variability) of the truss is positive 

(greater than zero) 

 

0 ( 0)W V  , 

 

then the truss is geometrically variable. The truss structure lacks W links 

(rods). 
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If the degree of freedom (degree of variability) of the truss is negative 

(less than zero) 

0 ( 0)W V  , 

 

then the truss formally contains an excessive number of links (rods) and 

is, again formally, statically indeterminate. 

If the degree of freedom (degree of variability) of the truss is zero 

0 ( 0)W V  , 

 

then the truss formally has the number of rods (links) necessary for 

geometric immutability and can, again, formally, be statically 

determinate. 

For example, the beam truss (Figure 5.1) has 22 nodes, 10 rods in the 

top and bottom chords, 10 diagonals and 11 struts. The truss is supported 

by three support rods. Its degree of freedom: 

 

2 22 41 3 44 44W       . 

 

This means that the truss has the required number of rods and support 

links for geometric immutability and static definability. 

A truss with parallel chords and a cross lattice consists of 18 nodes 

connected by 41 rods and rests, like a simple beam, on three support rods. 

Its degree of freedom: 

 

2 18 41 3 36 44 8W         . 

  

Therefore, this truss has 8 redundant links and is statically 

indeterminate 

 

5.3. Plane Trusses. Formation Methods 

 

As noted in subsection 1.1.5, for a final conclusion on the geometric 

immutability and on the static definability of a truss, as well as any other 

bar system, an analysis of its structure and of the laws by which it is 

compiled are necessary. Trusses of only the correct structure can be really 

geometrically unchangeable (W  0) and statically determinate (W = 0). 
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Trusses (systems) that are partially statically indeterminate and 

partially geometrically changeable, as well as systems that are 

instantaneously changeable are relative to systems of irregular structure.  

For such systems, the concept of the degree of freedom or of variability 

becomes uncertain, meaningless. 

The methods, rules for the formation of trusses of a knowingly correct 

structure, remain the same as for any other bar systems. Recall the main 

ones. 

1. The degree of freedom of the truss will not change if you attach 

(disconnect) a node to it using two rods that do not lie on one straight line 

(dyad method). The rods can be knowingly geometrically unchangeable 

and statically determinate trusses. 

2. Three rods (three disks) connected by three hinges that do not 

locate on one straight line form an internally geometrically unchangeable 

system (single disk) without redundant connections. 

3. Two trusses (two disks) connected by three rods lying on straight 

lines, not intersecting all three at once at one point and not parallel each 

other, form a single system (disk). In such a system, the total number of 

redundant rods does not change, and the total degree of freedom is 

reduced by three units. 

4. Two trusses (two disks) connected by a common hinge and by a rod 

that does not pass through a common hinge form a whole truss (disk), 

while the total number of redundant rods does not increase, and the total 

degree of freedom decreases by three units. 

By their structure, the trusses (Figures 5.1, 5.2 and 5.5, b) composed of 

rod triangles are disks without redundant connections. These disks are 

supported by beam supports (in total, three support rods, not parallel, not 

intersecting at one point). Consequently, all these trusses are geometrically 

unchangeable and statically determinate. 

The arched truss (Figure 5.3) is also composed of rod triangles forming a 

circular disk. But this disk rests on two immovable hinged supports (in total 

four support links). Therefore, one of the support links (horizontal) is 

superfluous. This arch is statically indeterminate. 

A truss with a crossed lattice (Figure 5.5, a) differs in its structure 

from a geometrically unchangeable and statically determinate truss with 

an N-form lattice (Figure 5.2) by the presence of eight additional 

diagonals. Therefore, additional diagonals represent redundant rods. This 
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truss is geometrically unchangeable, but statically indeterminate eight 

times. 

 

5.4. Determining Internal Forces in the Truss Rods from 

Stationary Loads 

 

The determination of internal forces in the rods of plane trusses, as in 

other systems (beams, frames, arches), is carried out by the method of 

sections. The essence of the section method for truss is as follows. The 

truss is cut (divided) into two (Figure 5.6, a) or several parts so that the 

rod in which the internal force is to be calculated is cut up. For a truss in 

equilibrium, any part of it must also be in equilibrium. The equilibrium 

equations compiled for the selected part of the truss, along with external 

nodal loads, include forces in the rods that are cut up. The internal forces 

(longitudinal forces) in the rods that are cut up are usually directed from 

the node to the cut that corresponds to the tension of the rods (Figure 5.6, 

b). The equilibrium equations must be compiled in such a form and 

sequence that each of them includes only one unknown force, if it 

possible. The algebraic signs of the found forces are retained. This allows 

us to determine the type of stress state of the rod by the sign of effort: 

tension or compression. The plus sign corresponds to extension in the 

rod, and the minus sign corresponds to compression in the rod. 

 

 
Figure 5.6 

 

Consider the process of applying the section method using the 

example of a trapezoidal truss with a triangular lattice and additional 

struts adjacent to the upper chord. The length of the span of the truss is 24 

m. The height of the truss above the supports is 2 m. The height of the 

truss in the middle of the span is 5 m. The truss is loaded with six vertical 

nodal forces of 24 kN each (Figure 5.7). 

First we find reactions. We find the reaction of the left support from 

the sum of the moments of all forces relative to the right support point: 
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24 (22 20 18 16 14 12)
102 ( )

24
AV kN

     
  . 

 

Accordingly, the reaction of the right support will be found from the 

sum of the moments of all forces relative to the left support point: 

 

24 (2 4 6 8 10 12)
42 ( )

24
BV kN

     
  . 

 

Perform a check in the form of the sum of the projections of the active 

and reactive forces on the vertical axis: 

 

102 42 6 24 144 144 0Y        . 

 

The forces in the truss rods can be determined in any order. For 

example, we make a vertical section through the fifth panel of the upper 

chord and the third panel of the lower chord, as shown in Figure 5.7. We 

are considering the equilibrium of the left part.  

We find the force 1N  in the cut rod of the third panel of the lower 

chord from the sum of the moments of all the left forces relative to the 

moment point where the cut diagonal and the cut rod of the upper chord 

intersect. The height of the truss at this point at a distance of 10 m from 

the left support is 4.5 m. This will be the arm of the force 1N  in the cut 

rod of the lower chord. Solving the equilibrium equation with respect to

1N , we find 

 

1

102 10 24 8 24 6 24 4 24 2
120 ( )

4.5
N kN

        
    

 

We find the force 2N  in the cut rod of the upper chord from the sum 

of the moments of left forces relative to the node (moment point) where 

the cut diagonal and the cut rod of the lower chord intersect. This node is 

located at a distance of 8 m from the left support. The height of the truss 

in this node is 4 m. The arm of the force 2N  in the upper chord relative 
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to this moment point located on the lower chord is equal to the projection 

of the height of the truss at this point on the normal to the upper chord. 

We calculate the tangent of the angle   of inclination of the upper chord 

to the horizon, and through it the sine and cosine of this angle: 

 

5 2
0.25, sin 0.2425, cos 0.9701.

12
tg  


      

 

We calculate the arm 2  of the force 2N   relative to the moment point 

 

2 4 0.9701 3.880    . 

 

So, from the sum of the moments of the left forces relative to the 

moment point, we find the force in the cut rod of the upper chord  

 

2

102 8 24 6 24 4 24 2
136.08 ( )

3.880
N kN

      
    . 

 

A negative value of the found force means that the rod of the upper 

truss chord is compressed. 

 
Figure 5.7 

 

To find the force 3N  in the cut diagonal, we calculate the sine of the 

angle   of inclination of this rod to the horizon, and then the cosine of 

the angle  : 
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2 2

4.5
sin 0.9138, cos 0.4062

4.5 2
   


. 

 

We project on the vertical axis all the forces acting on the left part: 

 

3102 4 24 ( 136.08 0.2425) 0.9138 0Y N         . 

 

From where we find 

3

102 96 33.00
29.55 ( )

0.9138
N kN

 
   . 

 

We will check the calculations by projecting all the forces acting on the 

left part on the horizontal axis: 

 

1 2 3cos cos

120 136.08 0.9701 29.55 0.4062

120 132.01 12.00 0.01.

X N N N    

     

    


  

 

Verification showed that the calculations were performed almost 

exactly. The error is only a unit of the fifth significant digit of one of the 

terms. 

In a similar way, internal forces can be found in the remaining rods of 

the truss. We invite the reader to perform the necessary actions on their 

own. 

In some cases, cuts (sections) may be carried out so that only one node 

is cut out from the truss. For example, such is the third left node of the 

upper truss chord (Figure 5.7). The cut out node is shown in Figure 5.8. 

The performed cut demonstrates a special case of the section method, 

called the cut-out nodes method. All the forces acting on the one cut-out 

node converge at one point, in the cut-out node itself. For such a system 

of forces passing through one point, only two independent equilibrium 

equations can be compiled. Therefore, the nodes should be cut out in such 

an order that in each cut out node there were no more than two unknown 

forces. 
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Figure 5.8 

 

For the cut node under consideration from the sum of the projections 

onto the horizontal axis (Figure 5.8) 

 

4 5cos cos 0X N N        

 

only equality of forces in the rods of adjacent panels of the upper chord 

follows 

 

4 5N N . 

 

The values of these forces remain unknown. They will have to be 

found from other equilibrium equations, for example, as shown above. 

But from the sum of the projections onto the vertical axis 

 

6 0Y F N       

 

we easily find 

6 24 ( )N f kN    . 

 

Consequently, the second on the left-hand vertical rod of the truss is 

compressed with a force of 24 kN. 

The cut-out nodes method often allows you to visually, without 

calculation, set the rods with zero forces, rods with the same forces, rods 

with known forces in advance. Consider these most common special 

cases of equilibrium of nodes: 
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1. Double-rod unloaded node (Figure 5.9, a). The forces in both rods 

are zero. 

2.  Double-rod node with a load along one of the rods (Figure 5.9, b). 

The force in the rod lying on one straight line with an external force is 

equal to this force. The force in the other single rod is zero. 

3. Three-rod unloaded node (Figure 5.9, c). The forces in the rods 

lying on one straight line are equal. The force in the third single rod is 

zero. 

4. A three-rod node with a load along a single rod (Figure 5.9, d). The 

forces in the rods lying on one straight line are equal. The force in the 

third single rod is equal to the external force. 

5. A four-rod unloaded node with rods lying in pairs on straight lines 

(Figure 5.9, e). The forces in pairs lying on the same straight line are the 

same. 

6. A four-rod unloaded node with two rods lying on one straight line 

and with two others, equally inclined to the first two (Figure 5.9, f). The 

forces in the equally inclined rods are equal in value and opposite in sign. 

 
 

Figure 5.9. Special cases of equilibrium of nodes 
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So, based on the considered particular cases of equilibrium of nodes, it 

can be immediately established in the considered truss (Figure 5.7) that 

the vertical rods above the supports and the extreme rods of the upper 

chord do not loaded (case 1). Two struts of the right-hand half-span of the 

truss are also not loaded (case 3). The second and third struts of the left-

hand half-span are compressed with a force of 24 kN (case 4). The forces 

in the rods of the upper chord adjacent to the intermediate struts are equal 

in pairs (case 4 and 3). 

We invite the reader to determine unloaded rods in the truss depicted 

in Figure 5.6, a. 

Efforts in some truss rods cannot calculate always immediately, from 

one equation. Sometimes you have to perform several cuts and draw up 

the appropriate number of equations. An example of such a bar is the 

central vertical rod of a trapezoidal truss (Figure 5.7). 

To find the force in this rod, you must first find the force in one of the 

adjacent rods of the upper chord (the first cross section and the first 

equation) using the moment point method. We suggest doing it yourself. 

Then cut out (the second cut) the central node of the upper chord (Figure 

5.10) and draw up two more equations. 

 

 
 

Figure 5.10 

 

The second equation: 

 

cos cos 0L RX N N      . 

 

Where should 
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L RN N N  . 

 

The value of N with its sign is already found from the first equation. 

The third equation: 

 

2 sin 0VY N F N      . 

 

Where should 

 

2 sinVN N F   . 

 

Thus, the force in the central vertical bar is expressed through the 

extern nodal force and forces in the adjacent rods of the upper chord by 

the method of two sections. 

 

5.5. Constructing Influence Lines for Internal Forces in the 

Truss Rods 

 

The influence lines for internal forces in the rods of the beam trusses 

(Figure 5.11, a) are constructed, as a rule, by the method of sections. 

First, we construct the influence lines for support reactions. As in a 

simple beam, to determine the support reactions of the beam truss, we 

compose the equilibrium equations: 

 

 

0BM  ;     1 5 0B Ax R d   ;     
5

B
A

x
R

d
 . 

 

0AM  ;     5 1 0B AR d x   ;     
5

A
B

x
R

d
 . 

 

The resulting expressions for AR  and BR  are functions of 

independent variables, respectively Bx  and Ax . Their graphs are shown 

in Figures 5.11, b and 5.11, c. 
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Thus, the influence lines for support reactions in a beam truss are 

constructed in exactly the same way as in the corresponding simple beam. 

Moreover, the influence lines for the support reactions do not depend on 

which chord the load moves: lower or upper. The efforts in the rods of the 

truss, as will be shown below, depend on which chord of the truss is 

loaded: top or bottom. 

Assuming for definiteness the movement of a unit force along the 

lower chord, we will construct an influence line for the internal force 1N   

of the diagonal of the fourth panel (the order of consideration of the rods 

and the construction of force influence lines for them may be arbitrary). 

To determine the force 1N , we make section I–I and use the sum of 

the projections of the forces on the vertical axis as the equilibrium 

equation of one of parts of the truss. This will eliminate unknown forces 

in the cut up horizontal rods of the lower and upper chords from the 

equilibrium equation. The equation of the projections on the vertical axis 

will include only vertical and inclined forces: unit force, support 

reactions, and the force in the diagonal bar. In the considering case, the 

mobile force may be on the left part of the truss, or on the right part. Let's 

consider the possible options. 

 

1 cos 0right

BY N R    ; 

 

1
cos

BR
N


 ;        1. . . . cosBI L N I L R  . 

 

That is, the influence line for the effort 1N  in section A–10 will have 

the same form as the influence line for the support reaction BR , all of 

whose ordinates are divided by cos  (the angle  is determined from the 

geometry of the system). 

When a unit force moves only to the right of the dissected panel (in 

the section 11–12), we consider the equilibrium of the left part of the 

truss: 

 

1 cos 0left

АY N R    ; 
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1
cos

AR
N


 ;  1. . . . cosАI L N I L R   . 

 

We received that the influence line for the effort 1N  in section 11-12 

will have the form of a support reaction AR , all of whose ordinates must 

be divided by cos . 

When a unit force moves in a section of a dissected panel (in a section 

of 10–11), the forces in the truss rods in accordance with the principle of 

nodal transfer of load will change according to a linear law. Therefore, to 

construct it on this section of the influence line under consideration, it is 

enough to connect the ordinates of the influence line to the left and right 

of the dissected panel with a straight line. This straight line segment is 

called the transition line. 

The final form of the influence line for the force 1N  is presented in 

Figure 5.11, d. 
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Figure 5.11 

 

To determine the force 2N  in the rod 10–11 of the lower chord, we 

can use the same section I – I (Figure 5.11, a) and the method of the 

moment point. We select the moment point in node 5, where the cut rods 

4–5 and 10–5 intersect. 
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Assuming that the unit force is located to the left of the dissected 

panel 10–11, we consider the equilibrium of the right part of the truss: 

 

 

5 0rightM  ;      2 0BN h R d  ; 

 

2 B

d
N R

h
 ;       2. . . . B

d
I L N I L R

h
 ; 

 

When the unit force is located to the right of the dissected panel 10–

11, we consider the equilibrium of the left part of the truss: 

 

 

5 0leftM  ;      2 4 0AN h R d   ; 

 

2

4
A

d
N R

h
 ;        2

4
. . . . A

d
I L N I L R

h
 ; 

 

In the segment of the dissected panel 10–11, we draw a transition line. 

The influence line for the force 2N   is shown in Figure 5.11, e. 

An analysis of this influence line shows that its left and right lines 

intersect under the moment point. This pattern will be satisfied when 

using the method of the moment point in other cases. 

To determine the force in the rod 3–9, we will make section II – II 

(Figure 5.11, a) and also will use the method of the moment point, for 

which we take the point K of the intersection of the axes of the rods 2–3 

and 9–10. The panels of the lower and upper chords dissected by section 

II – II are located on different verticals. In such cases, the position of the 

movable force should be determined relative to the dissected panels of the 

loaded chord, i.e., the chord along which the unit force moves. In this 

case, when the force moves along bottom chord, the dissected panel of 

the loaded (lower) chord is between nodes 9 and 10. If the unit force 

moves along top chord, then the upper chord will be loaded, and the 

dissected panel will be between nodes 2 and 3. 

Consider the movement of a unit force along bottom chord. 
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If a unit force moves to the left of the dissected panel (in the segment 

A – 9), then, as before, we consider the equilibrium of the right part of 

the truss: 

 

0right

кM  ;      33 6 0BN d R d  ; 

 

3

6
2

3
B B

d
N R R

d
  ;        3. . . . 2BI L N I L R  ; 

 

When a unit force moves to the right of the dissected panel of the 

loaded chord (in the area between nodes 10 and 12), we consider the 

equilibrium of the left part of the truss: 

 

0left

кM  ; 33 0AN d R d   ; 

 

3 0.333 AN R  ;    3. . . . 0.333AI L N I L R   ; 

 

On the length of the dissected panel of the loaded chords (9–10), we draw 

a transition line. The influence line for the force 3N  is shown in Figure 5.11, 

f. Its left and right branches intersect under the moment point K. 

When constructing the influence line for the force 4N  in the rod 2–8, the 

force 4N  is determined by cutting out the node 8 (Figure 5.11, a). Node 8 is 

located on the lower chord of the truss, along which a unit force moves. 

There are three options for the location of the unit force in relation to the 

node 8. 

1. The unit force is located directly in the cut out node 8. There is a 

special case (Figure 5.12). The considered rod is stretched by a single force, 

and the force in it 4 1N  . We postpone the unit with the plus sign on the 

influence line under the node. 

2. When the unit force is located outside the cut out node, to the left or 

right of the cut panels of the lower chord, or in any of the nodes of the upper 

chord, we also have a special case of equilibrium of the node 8 (Figure 5.13), 

and the internal force 4 0N  . The ordinates of the influence line are zeros in 

the corresponding segments. 
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3. When a unit force moves within the dissected panels of the lower, 

loaded chord, a nodal load transfer takes place, and in the corresponding 

segments of the influence line (A – 8 and 8–9), it is necessary to draw 

transitional lines 

 

 

                
 

                                   Figure 5.12                                       Figure 5.13 

 

The final influence line for the force 4N  has the form shown in Figure 5.11, 

g. 

The effort 5N  in the rod 4–10 is easiest to determine by cutting out the node 

4. Again we have a special case of the equilibrium of the node 4. For any 

position of the unit force on the loaded lower chord of the truss the effort 5 0N  . 

Accordingly, the influence line for this effort along the entire length of the truss 

will be zero (Figure 5.11, h), but only if a unit force moves along the lower 

chord.  

We offer the reader to independently build an influence line for the effort

5N  during the movement of a unit force along the upper chord by himself. 

Consider the process of constructing the influence line for the effort in the 

support column 6 - B. The internal force 6N  in this rod may be easy determined 

by cutting out the support node B. The equilibrium of the node B is also a special 

case. The internal force 6N in the support strut balances the support reaction BR , 

only if there is no any other force in this node. 

When the unit force is in the cut out support node B (Figure 5.14), it follows 

from the sum of the projections of the forces on the vertical axis 

6 1 0BY N R       
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that 

6 1 BN R  . 

 

Thus, the internal force in the support column is equal to minus the 

support reaction if there is no movable force in the support node. If the 

movable force is in the support node, then the internal force in the 

support column is zero. The load is transferred into the support and the 

whole truss doesn’t work. 

 

 
 

Figure 5.14 

 

The influence line for the effort 6N  repeats the influence line for the 

support reaction RB with the minus sign, when the unit force is in all 

nodes of the truss, except the support node B. When the unit force is in 

node B, the ordinate of the influence line for the force is equal to zero. 

Transitional straight lines are in sections of two cut panels of the lower 

chord. 

The final influence line for the effort 6N  is presented in Figure 5.11, i. 

 

5.6. Constructing Influence Lines for Efforts in the Rods 

of Compound Trusses with Subdivided Panels 

 

Trusses with subdivided panels are formed by superimposing 

additional secondary trusses on the main truss with a simple lattice. The 

secondary trusses are located within the panels of the main truss. 

The secondary trusses are used to perceive the local load applied 

between the nodes of the main truss, and transfer it to the nodes of the 

main truss. Examples of such trusses are shown in Figures 5.15,a and 

1F 

y

6N

Рис. 5.21 

BR

B
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5.16,a. The decomposition of these compound trusses into the main 

trusses and secondary ones is shown for these examples in Figures 5.15,b, 

c and 5.16,b, respectively. 

The compound trusses with subdivided panels can be single-tier and 

double-tier. Single-tier trusses transfer the load to adjacent nodes of the 

same load chord. For example, for the truss in Figure 5.15, the secondary 

truss 3-5-6-7 transfers concentrated force from node 5 equally to nodes 3 

and 7 of the main truss (Figures 1, b, c).  

Double-tier compound trusses, perceiving the load in additional nodes 

of one chord, transfer it to the main nodes of another chord of the truss. 

For example, the secondary truss 13-15-17-16-14-18 (Figure 5.16,b) 

transfers the concentrated force acting in the node 15 of the lower chord 

to the nodes 14 and 18 of the upper chord.  

Three types of rods are distinguished in compound trusses: rods only 

of the main truss (first type), rods of only secondary trusses (second type) 

and rods obtained by superimposing secondary trusses rods on the rods of 

the main truss (third type). 

Calculation of compound trusses is carried out, as a rule, by the 

method of sections. Sometimes it is more convenient to determine the 

forces in the rods of compound trusses taking into account the belonging 

of the rods to one of the types listed above. In this case, the calculation 

sequence is reduced to the following actions. 

1. The forces 
SN  in the secondary truss rods caused by local loads 

acting on them are determined. The resulting efforts in the rods of the 

second type are final. 

2. The load acting on the secondary trusses is transmitted to the nodes 

of the main truss. The forces 
MN  in the rods of the main truss are 

determined. The efforts obtained in the rods of the first type are final. 

3. The forces N  in the rods of the third type are calculated by the 

expression: SMN N N  .  

We give examples of constructing influence lines for forces in the 

rods of compound trusses with subdivided panels. 

 

E x a m p l e 1. Consider a beam-type single-tier compound truss 

(Figure 5.15,a). Let the lower chord of the truss be the loaded chord. To 

construct the influence lines for the efforts in the rods, one should be 
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guided by the rules for determining the internal forces in compound 

trusses described above. 

a) Let us construct the influence line for the force N1 in the rod 13-14 

(Figure 5.15, a). This rod refers to the rods of the second type, i.e 

1 1
SN N . To determine the force in it, we use the method of sections in its 

particular form - the method of cutting out nodes. We cut out the node 13 

and consider its equilibrium at various positions of the unit force. When a 

unit force moves outside the considered node (from node 1 to node 11 

and from node 15 to node 21), force 
1
sN  = 0 (a special case of the 

equilibrium of the node). If the unit force is in the considered node, then 

the force 
1
SN  = 1 (a special case of the equilibrium of the node). The 

influence line for N1 is shown in Figure 5.15,d. The indicated influence 

line is within the truss panel where the secondary truss 11-13-14-15 is 

located. It means that this secondary truss works only by local loading. 

 

b) The rod 3-5 refers to rods of the third type, i.e. its effort can be 

found by the expression: 

2 2 2
S MN N N  . 

 

Therefore, the influence line can be obtained by summing the two 

influence lines: 

 

   2 2 2
S Minf.line N inf.line N inf.line N  . 

 

The influence line for 
2

SN  is construct for the secondary truss 3-5-6-7, 

therefore, does not go beyond the panel on which the secondary truss is 

“hung”. The rod only works if the moving force locates in the node 5 

(Figure 5.15,c). To determine the effort 
2

SN  we cut out the node 3 of the 

secondary truss and write the equilibrium equations: 

3 6 3 5

3 6

3 6 3 5 3 5

3 6 3 6

cos 0,0,

0. 0,5 sin 0.

0.85 0, 0.8;

0.5 0.53 0. 0.94.

N NX

Y N

N N N

N N

 



  

 

    
  

     

    
  

     




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The influence line for 
2

SN  is shown in Figure 5.15,e. 

The influence line for 
2

MN  is constructed for the rod 3-7 of the main  

truss. We draw section I-I (Figure 5.15,b). Having compiled the 

equilibrium equations of all right or left forces, when the moving force is 

located to the left or to the right of the dissected panel of the load chord, 

we obtain the dependences for constructing the influence line 
2

MN  

(Figure 5.15,f): 

 

 

2 24

2

2 2 24

8
0, 8 1.25 0

1.25

8
. inf . .

1.25

0, 0 1.25 0 0 . 0.

right o o
B B

o
B

left o o o
A

M V N N V

inf lineN lineV

M V N N inf lineN

          

 

         

 

 

The influence line 
2N  obtained by summing is shown in Figure 5.15, g. 

 

c) Rod 7-8 refers to rods of the first type, i.e. an effort
33
MN N . To 

construct the influence line 
3

MN  we do the section II-II (Figure 1, b). We 

obtain expressions for the “left-hand branch" of the influence line 
3

MN  

(Figure 5.15, h): 
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Figure 5.15  



161 
 

 

3 2

2

10
0, 10 4 0

4

10
. inf . .

4

right o o
B BK

o
B

M V N N V

inf lineN lineV

          

 


 

 

The “right-hand branch” of the influence line 
3

MN  can be constructed 

without writing an analytical expression. The “left / right-hand branches” 

of the influence line for efforts in the rods of trusses of beam type have 

the properties: to pass through the left / right-hand supports; intersect 

under the moment point (moment point method) or be parallel in the case 

of the projection method. "Right-hand branch" of the influence line 
3

MN  

therefore, passes through the support B and crosses the "left-hand branch" 

under the point K (Figure 5.15, h). The transition line will connect the 

left-hand and right-hand branches within the dissected panel of the lower 

(load) chord. 
 

E x a m p l e 2. Consider a beam-type compound truss with two-tier 

secondary trusses (Figure 5.16, a). Let the lower chord be the load chord. 

a) Let us construct the influence line for the force N1 in the rod 16-18 

(Figure 5.16, a). This rod refers to the secondary truss rods 13-15-17-16-

14-18, i.e. 
1 1

sN N . The secondary truss under load is shown in Figure 

5.16, b. From the equilibrium of the node 18 of the secondary truss 

(Figure 5.16, b): 

10 0.5 sin 45 0,sY N      

 

find the effort 
1 0.707sN  . 

If the unit force moves outside the fourth panel, then the considered 

secondary truss will not work, and therefore the effort 
1 0sN   (a special 

case of the equilibrium of the node). The influence line for N1  is shown 

in Figure 5.16, c.  

b) The rod 14-18 of the same panel refers to the rods of the third type, 

i.e. the influence line for 
2N  is constructed by the expression: 

 

   2 2 2
S Minf.line N inf.line N inf.line N  . 
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To determine the effort 
2

sN  we consider the equilibrium of the 

secondary truss node 18 (Figure 5.16, b): 

 

2 10 cos45 0,s sX N N       

 

find the effort 
2 0.5SN   . 

The influence line for 
2

sN   is shown in Figure 5.16, d. 

The influence line 
2

MN  is constructed for the rod 14-18 of the main 

truss. Hold the section I-I (Figure 5.16, b). The dependence for 

constructing the "left-hand branch "of the influence line 
2

MN  (Figure 

5.16, e) is obtained by writing the equation of moments of all right forces 

relative to the moment point - node 17: 

 

2 217

2

0, 4 2 0 2

. inf . 2.

right M M
B B

M
B

M V N N V

inf lineN lineV

           

  
 

 

Right-hand branch" of the influence line 
2

MN  (Figure 5.16, e) passes 

through support B and crosses the "left-hand branch" under node 17 

(Figure 15.16, h). The transition line will connect the left-hand and right-

hand branches within the fourth (dissected) panel. The influence line 
2N  

obtained by summing is shown in Figure 5.16, f. 

c) It may seem that the rod 13-14 refers to the rods of the first type, 

i.e. an effort 
33
MN N . In this case the influence line 

3

MN  is shown in 

Figure 5.16, g by the dashed line: the upper dashed line is constructed 

under the condition that the unit force moves along the lower chord; the 

lower dashed line is constructed under the condition that a unit force 

moves along the upper chord (in this case, rod 13-14 does not work, 

because the concentrated force does not fall into node 13). 

However, in fact this rod is the support rod (suspension) of two 

adjacent two-tier secondary trusses located throughout 4 panels between 

nodes 9 and 17. Consider the location of the force at nodes 11, 13, 15. 

When the unit force is in the node 13 the internal force 3N in the rod 13-

14 is equal to 1.  
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Figure 5.16   

Therefore, under the node 13 the ordinate of the upper dashed line will 

be valid. If the force is located in nodes 11 and 15, the corresponding 

secondary trusses are included in the work and redistribute force pressure 
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on the upper chord. The node 13 is not loaded and the internal force 
3N  

is zero. Consequently, the corresponding ordinates of the lower dashed 

line will be valid. 

We show the final form of the influence line for the force 
3N  by the 

shaded part of the Figure 5.16, g. 

d) Using similar actions, we will build the influence line for 
4N  in the 

rod 14-16. 

Section II-II (Figure 5.16, a) passes through the considered rod 14–16, 

but does not intersect more than three rods with unknown forces. 

Therefore, it is possible to determine the forces and construct influence 

lines for the rod 14-16 guided by the rules for determining the internal 

forces in the truss rods with a triangular or diagonal lattice. 
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In Figure 5.16,h, the left-hand and the right-hand branches of 

influence line for 
4N  are shown in dashed lines. When the load moves to 

the left-hand of the dissected panel (to the left-hand of node 13), the 

expression for the "left-hand branch" is valid; when the load moves to the 

right-hand of the dissected panel (to the right-hand of node 15), the 

expression for the "right-hand branch" is valid. The transfer line is 

located within the dissected panel (rod 13-15 of the lower (loaded) 

chord). The final form of the influence line for 
4N  is shown in Figure 

5.16, h (the shaded part). 
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THEME 6. 

CALCULATING THREE-HINGED ARCHED TRUSSES, 

COMBINED AND SUSPENSION SYSTEMS 

 

6.1. Calculation of Arched Trusses 

 

In three-hinged arched trusses, unlike three-hinged arches and frames, 

the system disks consist of hinged-rod systems, i.e. trusses. 

In arched trusses not only vertical, but also horizontal components of 

the support reactions occur under the action of only vertical loads. The 

horizontal components are called thrust. Examples of arched trusses, 

trusses with thrust, are shown below (Figures 6.1 and 6.2, a). 

 

 
Figure 6.1 

 

The trusses shown in the drawings (Figures 6.1,a and 6.2,a) are called 

arched trusses, since the method of their formation is similar to the 

method of forming three-hinged arches. The beam truss (Figure 6.1, b) 

with an inclined support rod is also a thrusting system, a truss that has 

thrust under vertical loads. 

 
 

Illustration 6.1. Arched bridge trusses with traffic in the middle 

The support reactions of arched trusses are defined in the same way as 
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in three-hinged arches and frames. After determining the support 

reactions, the internal forces in the rods of the arched trusses from the 

action of any load are determined by the same methods as in beam 

trusses. 

Consider the features of constructing influence lines for efforts in the 

rods of arched trusses. Let's build, for example, an influence line for the 

internal force 
1N  in the rod of the upper chord of the truss (Figure 6.2, a). 

Before this, it is necessary to construct influence lines for the reactions of 

the truss. 

The vertical component of the reaction of the immovable hinged 

support A is determined from the equation of moments of all the forces 

acting on the truss, relative to point B: 

 

0BM  ;  1( ) 0A FR l l x   ;  1 F
A

x
R

l
  . 

 

The obtained dependence coincides with the corresponding 

dependence of a simple beam of a span of l. Therefore, the influence line 

of the support reaction RA is constructed as in a simple beam (Figure 6.2, 

b). 

Similarly, we obtain the dependence for the vertical component of the 

reaction of the support B: 

 

F
B

x
R

l
 . 

 

The influence line for the reaction BR  is shown in Figure 6.2, c. 

The horizontal component of the support reactions, i.e. thrust, may be 

defined, as in a three-hinged arch, according to the formula: 

 
0
CM

H
f

 . 

 

  

Therefore, the influence line for the thrust is the influence line for the 

beam bending moment in the beam cross section located under the 
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intermediate hinge of the arch truss, taken with a coefficient 1/ f   

(Figure 6.2, d). 

The internal force 1N   may be calculated using section I – I and 

moment point 1 (Figure 6.2, a). 

If the unit force is located to the left of the section, then, considering 

the equilibrium of the right part of the truss, we get: 

 

1 0rightM  ;        18 4 0BR d H a N a    ;           

1

8
4 B

d
N H R

a
  . 

It means that 

1

8
. ( . ) 4 ( . )B

d
Inf Line N Inf Line H Inf Line R

a
      

 

When the unit force moves to the right of the dissected panel, from the 

equation of equilibrium of the left forces we find: 

 

1 0leftM  ;      12 4 0AR d H a N a   ;       1

2
4 A

d
N H R

a
  . 

It means that  

1

2
. ( . ) 4 ( . )A

d
Inf Line N Inf Line H Inf Line R

a
    . 

 

In the length of the dissected panel, we draw a transition line. The 

influence line for the internal force 1N  is shown in Figure 6.2, e. 
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Figure 6.2 

 

6.2. Calculation of Combined Systems 

 

Structural systems, some of the elements of which work on bending, 

shear and tension-compression, and the other part only on tension-

compression, are called combined systems. Such systems, for example, 

include: a beam with a hinged arch (Figure 6.3, a), three-hinged systems 

(arches  ̧frames) with ties of various kinds (Figures 6.3, b, c, d), a beam 
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with a hinged chain (Figure 6.4, a), a suspension hinged chain with a 

stiffening beam (Figure 6.5) and many others. 

 

 
 

Figure 6.3 

 

Features of the combined systems calculation will be discussed below 

on the examples of the calculation of a beam with a hinged chain (Figure 

6.4, a) and a suspension system. (Figure 6.5, a) 

 

 

6.3. Calculation of a beam with a hinged chain 

 

A geometrically unchangeable and statically determinate beam with a 

hinged chain (Figure 6.4, a) is a structure, where the horizontal bars AC 

and CB connected by an intermediate hinge are strengthened by a 

polygonal hinged chain with vertical struts.  

The horizontal reaction of support A is zero under any vertical load. 

Vertical support reactions caused by a given load, we find from the 

equilibrium equations of the entire system: 

 

0; 5 2 0; 0.4 ;A B BM R d q d d R qd       

0; 5 2 4 0; 1.6 .B A AM R d q d d R qd      

 

We begin the calculation of internal forces by determining the force 

H  in the rod 4-6 of the hinged chain. To do this, we draw section I – I 

through the named rod and hinge C. Considering the equilibrium of the 

right part, we obtain 
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22.5

0; 2.5 0; .right

C B B

d qd
M R d Hh H R

h h
       

 

Then the internal forces in the rods of the chain and in the struts can 

be determined as in the rods of any truss (Figure 6.4, b). 

After determining the forces in the elements of the chain and in the 

struts, the horizontal bars are calculated on the action of a given load and 

the forces transmitted by the members of the strengthening system (figure 

6.4, d), like a simple beam. We recommend that the reader perform the 

corresponding calculations on their own. 

Diagrams of internal forces are shown in Figure 6.4, e, f, g. 

 

6.4. Calculation of a suspension system 

 

The features of the influence lines construction for internal forces in 

the elements of combined systems can be considered using an example of 

a suspension system such as a hinged chain with a stiffening beam 

(Figure 6.5, a). 

The procedure for determining the forces in the elements of this 

system is as follows. 

To find the support reactions from the action of the load applied to the 

stiffening beam, the hinged chain must be cut at the points A   and B  

located vertically above the supports A   and B  (Figure 6.5, a). The 

longitudinal forces in the cut rods can be decomposed into horizontal and 

vertical components AV  , AH    and BV  , BH  , Having compiled the 

equilibrium equations of the lower part of the system in the form of sums 

of moments relative to points A  and B , the sums of the vertical 

components  A A AR V V     and B B BR V V    may be found: 

0; 1 0; ;A B B

x
M x R l R

l
                            (6.1) 

0; 1( ) 0; .B A A

l x
M l x R l R

l



                     (6.2) 

 



171 
 

 
Figure 6.4 
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From the equations of equilibrium of the hinged chain nodes at the 

junctions of the vertical suspensions (Figure 6.6, b, c, d) or of a fragment 

(Figure 6.6, a) it follows that the horizontal component of the longitudinal 

forces in the chain elements is constant and equal to the thrust of system 

H. 

To find the thrust H, we draw section II - II, passing through the hinge 

C and the horizontal chain rod (Figure 6.5, a). Having compiled the sum 

of the moments of forces relative to the hinge C for one of the parts of the 

system, for example, for the left, we get: 

 

0; 1 ( ) 0
2 2

left

C A

l l
M R x Hh H h f

 
       

 
 . 

 

 

Or, considering that  

 

01
2 2

A C

l l
R x M

 
   

 
,                                  (6.3) 

 

get the formula for determining the horizontal component H 

 
0

CM
H

f
 .                                         (6.4) 

 

From the conditions for the expansion of the longitudinal force in the 

chain element at the point A  (Figure 6.6, a), we find the vertical 

component AV  : 

 

3AV H tg  . 

 

Similarly, the component BV   is determined. 

After that we find the support reactions AV  and BV : 

 

;A A A B B BV R V V R V     .                      (6.5) 
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With the known horizontal component H, the total forces in the chain 

elements will be equal 

cos
i

i

H
N


 . 

 

Suspension forces are determined from the equilibrium equations of 

the nodes (Figures 6.6, b, c, d). 

To determine the internal forces in the section K of the beam, we draw 

a strictly vertical section through K and consider the equilibrium of the 

left part (Figure 6.7). 

We decompose the longitudinal force in the cut chain element into the 

horizontal and vertical components H and V1. The bending moment and 

the transverse force in the cross section K will be equal to: 

 

( ) ( ) ( ) ( )K A A K K KM V V x F x x H h f H h f y           
01( )A K K K K KR x x x Hy M Hy      ,            (6.6) 

 
0

1 1 1( ) 1K A A A KQ V V F H tg R H tg Q H tg           ,  (6.7) 
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Figure 6.5 

 

where 0

KM  and 0

KQ   are the bending moment and the transverse force in 
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the corresponding section of a simple two-support beam having the same 

span and the same load as the system under consideration. 

Based on the obtained dependencies for determining the support 

reactions and efforts, it is possible to construct the necessary lines of 

influence. 

So, using formulas (6.1) and (6.2), we build the influence lines 

A A AR V V    (Figure 6.5, b) and B B BR V V    (Figure 6.5, c). As for a 

simple beam, the influence line for the beam bending moment 0

CM  is 

constructed (Figure 6.5, d). According to the formula (6.4), the influence 

line for the component H is built (Figure 6.5, e), and on the basis of (6.5) 

the influence line for the reaction 
AV   (Figure 6.5, e) is constructed. 

According to formulas (6.6) and (6.7), the influence lines of the 

bending moment 
KM    (Figure 6.5, g) and the transverse force 

KQ  

(Figure 6.5, h) are plotted. 

 
Figure 6.6 

 
Figure 6.7 
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THEME 7. 

BASIC THEOREMS OF STRUCTURAL MECHANICS 

AND DETERMINATION OF DISPLACEMENTS 

 

7.1. Bars Systems Displacements. General Information 

 

When the load is applied to a structure (we will denote this factor by F
), when the temperature changes ( t ) or the supports are displaced ( c ), 

linear deflections of its points and the angles of rotation of its cross-

sections appear. 

In Figure 7.1 the solid line shows the initial state (before the external load 

applied) of the frame elements, the dashed line shows the state after loading 

(deformed state). The cross-section K  has moved to the position 1K . The 

angle   describes the rotation of the cross-section, the section 1KK  (not 

shown in the diagram) describes the linear displacements of the cross-section

K . 

 

2

1

3
3
2

1

= F3

 F2

1F

1K

K

 
 

Figure 7.1 

 

The linear displacement of the cross-section K  in a direction that does 

not coincide with the true one can be determined by finding the projection of 

the segment 1KK  on this direction. In engineering calculations, the 

displacements of the cross-section in the vertical and horizontal directions 

are often determined. 
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The displacements are determined by checking the rigidity of 

structures, by calculating them for stability and vibrations, and also by 

calculating statically indeterminate systems. 

The displacement of any cross-section is usually denoted with a 

symbol   (delta) with two indices, the first of which indicates the 

direction of displacement, and the second one indicates the reason that 

caused the displacement. So, for example, F1  is denoted the displacement 

of the cross-section in the 1st direction, caused by an external load. The sense 

of the notation F2  and F3  is revealed with the help of Figure 7.1. 

Then, it will be necessary to determine the displacements in the direction 

of several concentrated forces nFFF ,,, 21   action. Then iF  

should be read as follows: this is the displacement of the application point 

of the force iF  in its direction caused by the load F . 

The displacement in the i-th direction caused by the temperature effect 

is denoted as it , the displacement in the i-th direction caused by the 

displacement of the supports is denoted as ic  . 

Determination of displacements in linearly deformable systems is 

based on general theorems on elastic systems. 

 

7.2. Work of External Statically Applied Forces 

 

The load on any structure causes the movement of the structure from 

the initial state to a new, deformed one. We will consider such a load that 

is applied to the structure so slowly, smoothly, that the resulting 

accelerations of its elements, and therefore, the inertial forces of their 

masses can be neglected. The loading process is called static, and the 

corresponding load is called static. 

Let a rod made of a nonlinear elastic material undergo tensile force F  

(Figure 7.2). 

The stress-strain diagram of this material is shown in Figure 7.3. 
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Figure 7.2  Figure 7.3 

 

The area of the diagram  , as is known from the course “Strength of 

materials”, is equal to the specific potential energy 0u  (in other words, 

the energy density is the energy referred to the unit of the initial volume 

of the element) under a linear stress state. 

If we change the scale of the diagram    ordinates by introducing 

the dependencies AN   and ll  , then we can get the 

dependence “load-displacement” that is often used in the practice of 

calculations (Figure 7.4). 

 

 
 

Figure 7.4 

 

In this figure symbol z  denotes some intermediate absolute elongation 

of the rod caused by force )(zF , and symbol   denotes  the displacement 

corresponding to the final (maximum) value of the force F . 

The work performed by force with infinitely small increase in 

displacement by dz is determined by the expression: dzzFdW )( .  
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Summing up the elementary work over the entire range of 

displacements change we obtain a formula for determining the work 

performed by a statically applied external force F : 
 

0

( )W F z dz



  . 

 

For a linear-elastic rod, the ratio between force and displacement is 

linear (Figure 7.5). Therefore, zkzF )( , where k  is the stiffness 

coefficient of the rod. 

 
 

Figure 7.5 
 

The final value F  of the force corresponds to displacement  . The 

work of the statically applied force is calculated by the expression: 

 
 

22
)(

2

0

2

00







 k
kz

dzzkdzzFW . 

 
 

Since 



F

tgk  , then . 

The work of an external statically applied force is equal to half the 

product of the value of this force by the value of the displacement 

caused by it (Clapeyron`s theorem (1799–1864)). The work of a 

statically applied force on the displacement caused by the same force is 

called actual work. 

In the general case, by force it is necessary to understand not only 

concentrated force, but also moment and distributed load. The corresponding 

2




F
W
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displacements will be linear displacement in the direction of the force, angular 

in the direction of the moment, and the area of the displacement diagram at the 

action region of the distributed load. 

With the mutual action on the system of several statically applied forces, 

their work is calculated as half the sum of the products of each force on the 

corresponding total displacement: 
 

 
i

iiFW
2

1
.                                     (7.1) 

 

For example, with a static action on the beam of concentrated forces 

1F , 2F  and of concentrated moment M (Figure 7.6) the actual work of 

external forces is equal to: 
 

222

2211 MFF
W 





 . 

 
Figure 7.6 

 

The minus sign in the last term of the expression is accepted because 

the direction of the angle   of rotation of the cross-section of the beam 

and the direction of the moment M are opposite. 

 

 

7.3. Work of the Internal Forces 

in a Plane Linear-Elastic Bars System 
 

Under the static action of external forces on a deformable system, 

internal forces arise in its cross-sections. To determine the work of these 

forces, we cut out an element of length dx  (Figure 7.7, a) with the help 

of infinitely close located cross-sections (Figure 7.7, b). 
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Figure 7.7 

 

With respect to this element, the forces N , M  and Q , which 

replaces the action of the discarded parts of the system on the selected 

element, are external. Internal forces are equal to them, but opposite in 

direction. Internal forces are resist element deformations. Therefore, the 

work of internal forces is always negative. 
 

Note – In the formulas of Section 7.3 and below, the following notation 

will be used: 

A  – is an area of the bars cross-section; 

J  – is an axial moment of inertia of a cross-section; the denote of the moment 

of inertia yJ  in the Zhuravsky`s formula is associated with the axes in Figure 7.9;  

EA  – is a rigidity of the bar in tension-compression; 

EJ  – is a bending rigidity of the bar; 

GA  – is a shear rigidity of the bar. 
 

The impact on the element of longitudinal forces N  causes it to 

stretch by value 
EA

dxN
dx   (Figure 7.8, a). On this displacement, a 

statically rising external force N  will perform elementary actual work: 

EA

dxN
dxNdWN

22

1 2

 . The work of the internal longitudinal forces 

NdA  will be equal to it, but negative (the directions of the internal forces 
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and the corresponding deformations are opposite). Consequently, 

EA

dxN
dWdA NN

2

2

 . 

At the angular displacement d  of the cross-sections caused by the 

action of the bending moment M (Figure 7.8, b) its work will be equal to 

dM
2

1
 . 

Using the formula for determining the curvature 
EJ

M

dx

yd


2

21


 of 

the axis of the bar, the expression of the angle of mutual rotation of the 

cross-sections can be written in the form 
EJ

dxMdx
d 


 . Then 

EJ

dxM
dAM

2

2

 . 

 
Figure 7.8 

 

The tangential stresses in the cross-section, determined by the 

Zhuravsky`s formula: 

( )

cut
y

y

Q S

J b z
  , 
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cause a mutual shear of the cross-sections dx
G

dxZ


   (Figure 

7.9). 

To determine their work, we select the corresponding strips with an 

area dA  at the ends of the element dx . Given the static nature of the 

load, we find that: 

 

2

2
2 2

1
( )

2 2

,
2 ( ) 2

Q Z

A A

cut

y

yA

dx
dA dA dA

G

SQ dx Q dx
dA

G J b z G A

 



     

 
    

 
 

 



 

 

where  

2

( )

cut

y

yA

S
A dA

J b z


 
  

 
 
  – is the dimensionless coefficient 

depending on the shape of the cross-sectional area.  

For a rectangular cross-section  = 1,2; for round cross-section  = 

1,18; for rolling I-beams approximately  is equal to the ratio of the area 

of the I-beam to the area of its wall. 
 

 

Figure 7.9 
 

We obtain the full actual work of the internal forces of a plane bars system 

by integrating the expressions for elementary work along the length of each 
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part of the bar and summing over all parts of the system. The total actual work 

of internal forces is equal to: 

2 2 2

int
2 2 2

N dx M dx Q dx
A

EA EJ GA


        .            (7.2) 

 

Since in the formula (7.2) value N , M  and Q  are squared, the work 

of internal forces is always negative. 

The relationship between loads and displacements (forces) is linear in 

linearly deformable systems. The relationship between the load and work, 

as follows from formula (7.2), is non-linear. The actual work of a group 

of simultaneously acting external forces is not equal to the sum of the 

actual works caused by each of the forces individually. The superposition 

principle of the action of forces in calculating the actual work is not 

applicable. 

 

7.4. Application of Virtual Displacements Principle 

to Elastic Systems 
 

We expand the concepts presented in section 2.4. 

An elastic system loaded by a given external action takes a definite 

deformed position. The displacements of the system points counted from 

the initial (undeformed) state of the system till their corresponding 

positions in the deformed state are actual displacements. 

We set the virtual displacements for the considered system. Since the 

position of the elastic system in a deformed state is characterized by an 

infinitely large number of parameters, such a system is a system with an 

infinitely large number of degrees of freedom. The number of virtual 

displacements will also be infinitely large. 

As noted in section 2.4, while "passing" system from the deformed 

state to a new, which takes into account the virtual displacements, external 

actions and internal forces do not change. Therefore, the work of external 

and internal forces on virtual displacements must be determined by the 

expressions: 
 

 virt

i iW F  , 
 

where  F i – generalized forces;  

 i – corresponding generalized displacement; 
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 
int

virt

i iA S e  , 
 

where  S i – generalized internal forces;  

e i – corresponding generalized deformations.  
 

The work of internal forces is always negative. 

The formal notation of the principle of virtual displacements is the same 

as in section 2.4: 
 

( ) ( )
int 0virt virtW А  . 

 

It is assumed that the constraints are ideal in an elastic system, and for 

virtual displacements, no work is required to overcome friction or to 

generate and release heat, etc. This is taken into account in inelastic 

systems. 

In practical applications, virtual displacements are the small 

displacements that can be caused by force actions or other ones. For 

example, for the beam state shown in Figure 7.10 (state “ i ”), as virtual 

displacements one can take the displacements of the same beam loaded 

with another group of forces (state “ k ”).Then the virtual work of the 

external forces of the state “ i ” at the displacements of the state “ k ” is 

written in the form: 
 

( )
1 1 2 2

virt
k kW F F    . 

 

 

Figure 7.10 
 

 

The virtual work of the internal forces of the state “ i ”on the beam 

deformations in the state “ k ” will be equal to: 
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( )
int
virt k k k

i i i

N dx M dx Q dx
А N M Q

EA EJ GA
         . 

 

 

 

The principle of virtual displacements is one of the basic principles of 

mechanics. It allows one to find equilibrium conditions, which are very 

important, without determining unknown links reactions. 

If actual displacements are taken for virtual displacements, then the 

virtual work of external and internal forces will be determined by the 

expressions: 

 

( )
i

virt
i iW F  , 

 
2 2 2

( )
int
virt N dx M dx Q dx

A
EA EJ GA

    


    ,      (7.3) 

 

 

where  
( )virtW  is virtual work of external forces; 

( )
int
virtA  is virtual work of internal forces. 

 

Note that the concept of the virtual displacement (indicated by a 

symbol  ) was introduced by Lagrange. In the classical treatise 

"Analytical Mechanics" (1788; Russian transl., Vols. 1–2, 2 ed., 1950), 

he considered the “general formula”, which is the principle of virtual 

displacements, as the basis of all statics, and the “general formula”, 

which is a combination of the principle of virtual displacements with the 

D'Alembert principle, he considered as the basis of all dynamics. 
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7.5. Theorems of Reciprocity Works and Displacements 

 

Suppose that a linearly deformable system (Figure 7.11, a) is sequentially 

loaded first with force iF , and then with force kF . 

 

 
Figure 7.11 

 

When the beam proceeds from position 1 to position 2, then the actual 

work of the force iF  on the displacement ii  is equal to iiiii FW 
2

1
. 

When the beam proceeds from position 2 to position 3, then the actual 

work of the force kF  is equal to kkkkk FW 
2

1
, and the force iF , 

remaining unchanged at this time, does the virtual work ikiik FW   on 

the displacement ik . The total work of two forces will be equal to: 

 

ikkkii WWWW 1 . 

 

If the beam is loaded in the reverse sequence (first by force kF , and then by 

force iF  (Figure 7.11, b)), then we obtain: 

 

kiiikk WWWW 2 . 

 

Since the value of the work of external forces is equal to the potential 

energy of the system and, regardless of the loading sequence, in both 

cases the initial and final positions of the beam coincide, then 21 WW  . 

So, we have the equation: 
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kiik WW  .                                      (7.4) 

 

In expanded form: 
 

kikiki FF  . 

 

A formal record of the theorem of reciprocity work is obtained 

(Betty's theorem (1823–1892)): the work of the forces of the state “i” 

on the displacements of the state “k” is equal to the work of the 

forces of the state “k” on the displacements of the state “i”. 

Note, that in the above formulation, the term “force” should be 

understood as “generalized force”, which can be a group of forces, and 

the term “displacement” as “generalized displacement”. 

A similar dependence exists for the virtual work of internal forces on 

the corresponding deformations. Then the statement of the theorem of 

reciprocity work can be given in the following form: the virtual work of 

the external (internal) forces of the state i  on the displacements 

(deformations) of the state k  is equal to the work of the external 

(internal) forces of the state k  on the displacements (deformations) 

of the state i . 
 

E x a m p l e .  A beam (Figure 7.12) of a constant section in state 1 is 

loaded with a uniformly distributed load of intensity q , and in state 2 it is 

loaded with a concentrated moment M  applied  at the end point. Show the 

validity of the theorem of reciprocity work. 

 

 

 
Figure 7.12 

 

State 1 State 2 
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The generalized force in state 1 is the load q . Its virtual work is 

defined as the sum of elementary works of the forces dxq  on the 

displacement 2y  of the state 2: 
 

qdxyqydxqW
ll

 
0

2
0

212 , 

 

where   is the area of the diagram of the vertical displacements of the 

beam in the state 2.  
 

To determine   we find the equation of the bended axis of the beam. 

The differential equation of the bended axis is written in the form: 

x
l

M
xyEJ  )(2 . 

 

Sequential integrating gives: 
 

1
2

2
2

)( cx
l

M
xyEJ  , 

 

21
3

2
6

)( cxcx
l

M
xyEJ  . 

 

Using the boundary conditions 00 2  yx  and 02  ylx , 

we find: 
 














 xl

l

xM
xyEJ

3

2
6

)( . 

 

Then: 
 

EJ

lM
dxxl

l

x

EJ

M
dxxy

ll

246
)(

3

0

3

0
2 














  . 

 

The virtual work is: 
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EJ

Mlq
W

24

3

12  . 

 

The virtual work of the concentrated moment M  is BMW 21 . 

Displacements and angles of rotation of the beam in state 1 are 

determined from the equations: 














241224

1
)(

4
3

3

1

xq
x

lq
x

lq

EJ
xy , 














6424

1
)(

3
2

3

1

xq
x

lqlq

EJ
xy . 

 

When 
EJ

lq
xylx B

24
)(

3

1   . 

The direction of action of the moment M  coincides with the direction 

of displacement B , therefore: 
 

EJ

lqM
W

24

3

21 . 

 

Consequently, 2112 WW  .  

If the generalized forces in the states “ i ” and “k” are equal to one 

(displacements from unit forces are indicated by the symbol δ, Figure 

7.13), then it follows from theorem (7.4) that: 
 

kiik
  .                                         (7.5) 

 

 
Figure 7.13 
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Equality (7.5) expresses one of the general properties of linearly 

deformable systems and is a formal record of the theorem of 

reciprocity displacements (Maxwell's theorem (1831–1879)): 

displacement in the i-th direction from the k-th unit force is 

equal to displacement in the k-th direction from the i-th unit 

force. 

Remark on the dimension of displacement ik . The generalized 

displacement ik , caused by the generalized force kF , is defined as 

kikik F . Therefore, the dimension of displacement ik  is 

obtained in the form: 
 

 dimension of ik =
 

 

ik

k

dimension of

dimension of F


. 

 

For example, when loading the beams shown in Figure 7.14, we have: 

21
21 21

1

,  dimension f
F

o


   = rad/kN= kN-1; 

 

12
12 12

2

,  dimension f
F

o


   = m/( kN·m) = kN -1. 

 

 
 

Figure 7.14 

 

 

Displacements 12  and 21  have the same dimension. 
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7.6. General Formula for Determining Plane Bars System 

Displacements 
 

Suppose that the bars system (Figure 7.15, a) has been deformed 

under the influence of given actions, and it is required to determine the 

displacement of any of its points i in a predetermined direction that does 

not necessarily coincide with the true direction of displacement of this 

point. Considered system state we denote as a “state a ”, and internal 

forces in the cross-sections of the elements we denote by aaa QMN ,, . 

In general, there are elongation dxdx  , bending dxd    and 

shear dxz   deformations in the infinitesimal element of this 

system in the deformed state. Here, dx  is the length of the element,   is 

the relative elongation (shortening) of the element, 



1

  is the curvature 

of the bended axis,   – is the relative shear (angle of shear) of the edges 

of the element. 

To determine the required displacement we consider the auxiliary 

(fictitious) state of the system. In this auxiliary state, we attach a unit 

generalized force to the same system in the direction of generalized 

unknown displacement (Figure 7.15, b). 

 
 

Figure 7.15 
 

The internal forces in this state (state i ) of the system are denoted by 

iii QMN ,, . Since this state is a state of equilibrium, the principle of virtual 
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displacements can be applied to it. For virtual displacements, we take the 

displacements caused by a given action. The total work of the external and 

internal forces of the state i  on the displacements of the state a  should be 

equal to zero (7.3), that is: 
 

( ) ( )
int 1 0virt virt

ia i i iW A N dx M dx Q dx               

Integration is carried out along the length of each bar or section of the 

bar, during which the integrand is a continuous function of a certain kind. 

Consequently,  
 

  dxQdxMdxN iiiia  .            (7.6) 

 

The obtained formula allows us to express the required displacement 

through deformations of the system elements in the state a , and the 

system itself can be both linear and physically nonlinear. The cause of the 

deformation of the elements is also insignificant: force impact, change in 

ambient temperature, creep of the material or other reasons. Therefore, 

formula (7.6) can be considered as a general formula for determining the 

displacements of bars systems. 

The state of the system under the action of a given load is called loaded 

state (state F ). From the course of resistance of materials it is known that 

the deformations of elements of a linearly deformable system in this state 

are determined through internal forces as follows: 
 

, ,F F FN dx M dx Q dx
dx dx dx

EA EJ GA


     , 

 

where , ,EA EJ GA  – the rigidity of the element, respectively, in 

tension (compression), bending and shear. 
 

Substituting these expressions in (7.6), we obtain a formula for 

determining the displacements of a plane bar system in the following form: 
 

i F i F i F
iF

N N dx M M dx Q Q dx

EA EJ GA


        .   (7.7) 

 

This formula is called the Maxwell-Mohr formula for determining the 

displacements of elastic systems caused by a given load. 
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The relative contribution of each of the three terms of formula (7.7) to 

the final result depends on the type of the bars system and the nature of 

loading. In particular, it appears that the displacements in the beams 

depend mainly only on the second term (bending moments); the 

proportion of the term, taking into account the influence of shear forces, 

is a negligible fraction of the final value iF . Therefore, with sufficient 

accuracy for practical purposes, the displacements of systems that 

primarily perceive bending can be calculated by the formula: 
 


EJ

dxMM Fi
iF . 

 

For the same reason, the calculations (especially “manually”) of the frame 

and arch systems neglect the influence of longitudinal and shear forces in 

determining displacements. At the same time, the automated calculation of 

these systems using computer programs is carried out, as a rule, taking into 

account bending moments and longitudinal forces in determining 

displacements. 

In elements of trusses with hinged joints only longitudinal forces arise 

from the node loads. Therefore, the determination of the displacements of 

nodes in the trusses is made according to the formula: 
 

0

l

i F
iF

N N dx

EA
  . 

 

Since with a nodal load on the truss, the longitudinal force along the 

length of the rod does not change, then, provided that the rigidity of each 

rod is constant, the formula is rewritten in the form: 
 





n

k k

kkFki
iF

EA

lNN

1

,                                  (7.8) 

 

where  kl  – the length of the k-th rod; 

n  – number of truss rods. 
 

In this form (7.8), for the first time in 1864, J. Maxwell obtained 

a formula for determining the displacements of trusses. 10 years 

later, O. Mohr (1835–1918) developed a method for determining 
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displacements for the case of arbitrary deformations of the system 

(see formula (7.7)). 

Let us explain the features of the choice of the auxiliary state. A single 

generalized force must be applied to the system in the direction of the 

corresponding generalized displacement. Their product, as you know, gives the 

work of force 1F  on the required unknown displacement. If, for example, for 

the frame in the state F  (Figure 7.16, a), it is necessary to determine the angle of 

rotation of any cross-section of the element, for example, the cross-section D , 

then in the auxiliary state in this section it is necessary to apply a single 

concentrated moment 1 1M   (Figure 17.16, b) , and then the virtual work of 

the external  force in the state “1” on the displacement of the state “F” will be 

equal 1 11 FM    . Subsequently, the index of the unit load in the auxiliary 

state will determine the number of this state. 
 

 

Figure 7.16 
 

If it is necessary to determine the change in the distance between 

points k1 and k2, then in the auxiliary state (state 2) two unit forces directed in 

opposite sides should be applied along the direction of the line connecting 

these points (Figure 7.16, c); if it is necessary to find the angle of mutual 

rotation of the cross-sections с1 and с2, then in the auxiliary state (state 3), two 

opposite-directional moments should be applied in these cross-sections (Figure 

7.16, d) each being equal to the unit. 
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The directions of unit forces given in auxiliary states correspond to positive 

directions of displacement iF . If the result of the calculation is 0iF , 

then it will mean that the required displacement is directed in the 

direction opposite to the direction of the force 1iF . 

 

 

7.7. Mohr Integrals. Ways for Calculation 
 

The problem of calculating displacements using the Mohr's formula 

reduces to calculating integrals of the form 

 


b

a

Fi

EJ

dxMM
, 

 

which are commonly called Mohr integrals. For relatively simple 

problems, the integrant  

 

EJ

MM
xf Fi)(  

 

can be such that the indefinite integral )(xF  can be expressed using a 

finite number of elementary functions. Then a definite integral is 

calculated by the formula  

 

)()()( aFbFdxxf
b

a

 . 

 

Let us show, for example, the determination of the vertical 

displacement of cross-section 1 and the angle of rotation of cross-section 

2 of the cantilever beam (Figure 7.17), loaded with a uniformly 

distributed load. The influence of only bending moments to deflection 

only we will take into account. 
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Figure 7.17 

 

To determine the deflection, we use the auxiliary state 1. In the future, 

the designations of forces from dimensionless forces will be accompanied 

by the upper line. Then: 

 
2

10.5 , 1FM qx M x    . 

 

Taking the bending rigidity of the beam EJ  constant along its length, we 

obtain: 
 

2 4
( ) 1
1 1

0 0

1
( ) ( )

2 8

l l
vert F

F

M M dx qx ql
x dx

EJ EJ EJ
         . 

 

To determine the angle of rotation of the cross-section in the middle of 

the beam, we use the auxiliary state 2. Then: 
 

2

;
2

F

q x
M    

2 0M  , if ; 

12 M , if lx
l


2

: 

 

2
0

l
x 
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qlx
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q
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EJEJ

dxMM
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F
F







 

 

 

For the same example, when calculating the area of the deflection 

diagram using the auxiliary state 3 (the beam is loaded with a unit 

uniformly distributed load), we obtain: 
 

2
,

2

2

3

2 x
M

qx
M F  , 

dx
xqx

EJ

l

F 



























 

22

1 22

0
3 =

l
x

EJ

q

0

5

54
=

EJ

ql

20

5

. 

 

The indicated method of calculating the Mohr integrals can lead to 

significant difficulties, since a very complex formula either can be 

obtained, or cannot be obtained at all for an indefinite integral )(xF . 

In practice, integrals, such as dx
xf

xfxfb

a


)(

)()(

3

21  are calculated graph-

analytically or using numerical integration. 

But for the case when the bar has constant rigidity in the integration 

area, that is constxfEJ  )(3 , and one of the function )(1 xf  or 

)(2 xf  is linear, the method proposed by A. K. Vereshchagin is usually 

used. This method is one of the most effective methods of calculating 

definite integrals. Let us explain its essence. 

We plot the graphs of functions )(1 xf  and )(2 xf , that is, 

diagrams of bending moments )(xM i  and )(xM F  on the integration 

area (Figure 7.18). 
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Figure 7.18 

 

Suppose, for example, diagram iM  is rectilinear (Figure 7.18, b). The 

reference point is the intersection point of the bar axis with the diagram 

inclined line. Then tgxxM i )( , and the Mohr integral is converted to 

 

 
b

a
F

b

a
F

b

a

Fi dxMx
EJ

tg
dxMtgx

EJEJ

dxMM 


1
. 

 

The integral 
b

a
F dxMx , by definition, is the static moment of the 

area of the diagram FM  (Figure 7.18, a) relative to the axis y . The 

static moment is equal to the product of the area of this diagram by the 

distance from its center of gravity to the axis, that is: 
 

0xdxMx
b

a
F  . 

 

Given the ratio tgyx /00  , we get: 
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EJ

y

EJ

dxMMb

a

Fi 0
  .                               (7.9) 

 

Thus, the Mohr integral is calculated by multiplying the area of the 

curvilinear diagram with the ordinate of the rectilinear diagram, taken 

under the center of gravity of the curvilinear one. 

The process of calculating the integrals by Vereshchagin's method is 

sometimes called the “multiplication” of diagrams. The positive sign of 

the product у0 is taken when the diagram M , whose area is denoted by 

 , and the ordinate y  have the same signs, i.e., when they are located 

on one side of the bar. In practice, one can be guided by a simpler rule: if 

both diagrams of efforts for certain section of the bar are located on one 

side of its axis, the result of their  “multiplying” is accepted as positive, if 

diagrams are located on opposite sides of the bar, the result of their  

“multiplying”  is accepted as negative. 

When using the Vereshchagin's rule, complex diagrams of the internal 

forces should be represented as a sum of simple ones, for each of which 

formulas for area calculation and gravity center position are known. 

Examples of the simple diagrams are bending moment diagrams for 

cantilever or single-span beams loaded with concentrated force or 

uniformly distributed load (Figure 7.19). 
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Figure 7.19 

 

To obtain simple diagrams, the principle of independence of the action 

of forces should sometimes be used. 

 

E x a m p l e. Determine the vertical displacements of points A and B 

(Figure 7.20) of the beam with constant rigidity. 

Diagrams of bending moments for a beam from a given load and unit 

forces are shown in Figure 7.20. 
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Fig 7.20 
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

  
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dxMM F
F
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

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EJ

Fa
aaFa

EJEJ

y

EJ

dxMM F
F

63

1

2

11 3
02

2  

 

Ex a m p l e. Determine the vertical displacement of the point D  and 

the angle of rotation of the cross section C  of the beam with constant 

rigidity (Figure 7.21, a). 
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To determine the vertical displacement of a point D  we load the 

beam with force 11 F  (Figure 7.21, c) and construct the corresponding 

diagram of bending moments (Figure 7.21, d). 

 
 

Figure 7.21 

 

Using the principle of superposition, we represent the diagram FM  in 

the form of two simple ones (Figure 7.22) and determine the 

displacement according to the Vereshchagin's rule: 

 

01
1

1 1 1 1 2 186.67
20 8 80 8 0.5   m.

2 3 3

F
F

yM M dx

EJ EJ

EJ EJ EJ


   

      

 
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Figure 7.22 

 

The auxiliary state for determining the angle of rotation of cross-

section C is shown in Figure 7.21,e, and the corresponding diagram of 

bending moments is shown in Figure 7.21,f. 
 

2
2

1 1 1
20 8 0.5

2 3

1 2 93.33
80 8 0.25   rad.

3

F
F

M M dx

EJ EJ

EJ EJ

      

   

 

 

E x a m p l e. Find the horizontal displacement of point A of the frame 

shown in Figure 7.23 a. 

The auxiliary state (state 1) is shown in Figure 7.22, b. The bending 

moment diagrams corresponding to the frame states are shown in Figure 

7.23, c,d. 

1
1

1 1 1 16 32
16 4 3 6 4

3 2 2

1 1 2 1568
32 4 4   m.

2 3 3

F
F

M M dx

EJ EJ EJ

EJ EJ

 


       

  
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Figure 7.23 

 

In this example, the required displacement is calculated as the sum of the 

integrals over three members. In each of them, the functions )(1 xM  and 

)(xM F  have well-defined analytical expressions. If through the length 

of one element the diagrams of moments are described by different 

functional dependencies, the element must be divided into the 

corresponding sections, the integrals must be calculated separately for 

each section, and the calculation results should be summarized. 

Once again, we note that the Vereshchagin's method cannot be applied 

in the case when both diagrams are non-linear. So, for example, it cannot 

be applied to calculating the area of the diagram of the deflections of a 

beam loaded with a uniformly distributed load. 

The same rule for calculating integrals can be applied to the other two 

terms in the Mohr's formula for determining displacements. 

The value of a definite integral, as it is known, can be calculated using 

formulas of numerical integration, that are based on replacing the integral 

with a finite sum: 
 

 k

b

a

n

k
k xfcdxxf 




0

)( , 

 

where  kx  are the points of the segment  ba, ; 
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kc  are the numerical coefficients. 

 

Given equality, generally approximate, is called the quadrature 

formula, points kx  are the nodes of the quadrature formula, and numbers 

kc  are called coefficients of the quadrature formula. The error of the 

quadrature formula 
 

  k

b

a

n

k
k xfcdxxf 




0

)(  

 

depends both on the location of the nodes and on the choice of 

coefficients. Most often, a uniform grid of nodes is used in practical 

applications to the problems of structural mechanics; in this case, the 

initial integral is represented as the sum of the integrals over partial 

segments, on each of which a quadrature formula is applied. 

The simplest quadrature formulas for one interval are the 

rectangle formula 








 


2
)()(

ab
fabdxxf

b

a

 

 

and the trapezoid formula 

 

2

)()(
)()(

bfaf
abdxxf

b

a


 . 

 

Naturally, even in the case of functions close to linear, the use of these 

formulas will lead to an error in the calculations of displacements. 

If concentrated forces or uniformly distributed load act on a system 

composed of rectilinear elements, the diagram of bending moments on 

separate sections of the element is limited to a straight line or parabola. If 

it is necessary for this system to determine the linear or angular 

displacement of some point, in the auxiliary state, the contour of the 

diagram “ M ”due to the load 11 F  will be determined by linear 

relationships )(xM . In this case, when constxf )(3 , then the function 
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)()()( 21 xfxfxf   will be represented by a curve of the second or third 

degree. Then, on the segments of elements with constant rigidity, the 

Mohr integral can be calculated exactly using T. Simpson's formula 

(parabola formula): 
 

 321 4
6

)( yyy
l

dxxf
b

a

 ,                       (7.10) 

 

where  321 ,, yyy  are the values of the function at the end points of the 

segment and in the middle of it (Figure 7.24). 

 
 

Figure 7.24 

 

Simpson's formula is exact for any polynomial not higher than the 

third degree. 

Using the Simpson's formula, we determine the vertical displacement 

of the cross-section D  and the angle of rotation of the cross-section C  

for the beam shown in Figure 7.21: 

 

.,
33.93

)025.07040(
6

8

;,
67.186

)05.07040(
6

8

2
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1

rad
EJEJ
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EJEJEJ
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F
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

 
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The obtained values of the displacements coincide with those ones 

found according to the Vereshchagin's rule. 

E x a m p l e. Determine the angle of mutual rotation of the ends of 

the beams, adjacent to the hinge C (Figure 7.25). The bending rigidity of 

the beams is constant. 

Diagrams of bending moments for a beam from a given load and unit 

force are shown in Figure 7.25. 

 
 

Figure7.25 
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We offer the reader to show how the same value of the displacement 

can be calculated easier.  

E x a m p l e. Determine the horizontal displacement of the end of the 

cantilever broken beam (Figure 7.26, a). 

The diagram of bending moments caused by a given load is shown in 

Figure 7.26, b, from  unit force 1 1F   is shown in Figure 7.26, c. 

 

 
Figure 7.26 

 

“Multiplication” of diagrams on a vertical element is made according to the 

Vereshchagin's rule, on an inclined one (its length is 10 m) - according to 

Simpson's formula: 

 1

1 1 2 10
1 3.75 1 3.75 4 5.625 1.5 37.5 2

2 3 6 2

1.25 8.75 10 26.42
  m.

F
EJ EJ

EJ EJ

            


 
 

 

 

If a function in a certain section of the element is a more complex than 

a polynomial of the third degree, which is possible for elements of 

curvilinear shape, or the rigidity changes along the axis of the element, or 
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the load is non-uniformly distributed on it, the result of the calculation 

using the Simpson's formula will be approximate. 

On a partial section, the error is estimated as follows: 
 

M
h

2880

5

 , 

 

where 
 

 
 xfM IV

bax

sup
,



, 

 

that is, on this section the Simpson's formula has accuracy  5hO , on the 

whole section accuracy is  4hO , while the trapezoid formula, like the 

formula of rectangles, has a second order of accuracy. 
 

E x a m p l e .  Using the Simpson's formula, determine the area of the 

deflection's diagram of the cantilever beam with a constant cross-section, 

loaded with a uniformly distributed load. 

Diagrams FM  and 1M  are shown in Figure 7.27. 

 
Figure 7.27 

 

                                                           
 Lat. supremus  is the highest. 



211 
 

Here: 
 

4
)()()(

4

1

qx
xMxMxf F  . 

 

For the variant with one section of length l  we get: 
 

2 2 2 2 5

1 4
6 8 8 2 2 19.2

F

l ql l ql l ql

EJ EJ

 
     

 

. 

 

The exact solution has been obtained earlier by direct integration. 

Area is 
EJ

ql
F

20

5

1  . 

If we accept 1
EJ

q
, then the calculation error is 

5 5

19.2 20

l l
     

3 52.083 10 l  , which corresponds to the previously given estimation 

5 5
3 56 2.083 10

2880 2880

l l
M l   , where it is accepted, that: 
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x
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For the variant with two sections of length 
2

l
 we get: 

 

2 2 2 2

1

2 2 2 2 2 2 5

4
2 6 32 32 8 8
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4 .
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The error is equal 
5 5

4 51.253 10
19.95 20

l l
l     . On the entire 

integration interval, the error is estimated as follows: 
 

M
abh

2880

)(4 
 . 

 

In this case lab
l

h  ,
2

 and, therefore, 


 6
288016

5l
  

4 51.302 10 l  . 

The Simpson's formula is set on three equally spaced nodes.  

In some cases, quadrature formulas are applied with a large number of 

equally spaced nodes. In particular, such a formula, built on four 

nodes, is the following one: 
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b
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This formula is sometimes convenient to use to multiply linear 

diagrams of the internal forces. The result of this calculation is accurate. 

For example, if the multiplied diagrams have the form shown in Figure 

7.28, the Mohr's integral in this section will be equal to: 
 

 dbca
EJ

l
dxxfxf

EJ

l


8

)()(
1

0
21 . 

 

 
 

Figure 7.28 
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In general, formulas with a large number of equally spaced nodes are 

applied relatively rarely. 
 

 

7.8. Determining Displacements Caused by the Thermal Effects 
 

Suppose that for a system in state а (Section 7.6) the external 

influence is thermal one: the temperature of systems elements has 

changed with respect to some initial state. For an infinitely small element 

(Figure 7.29) of this system, we take the temperature of the lower fiber 

equal to t1, the upper one equal to t2. And the temperature distribution 

along the cross-section height is accords to the linear law. 

 
 

Figure 7.29 

The temperature on the axis passing through the center of gravity of 

the cross-section will be equal 2
21

2 h
h

tt
tt


 . When 21 hh   we get 

2

21 tt
t


 . 

Under the influence of temperature, the element moves to a new 

position (it is indicated by a dashed line). In this new position, all the 

fibers are extended by an amount  dxd t  dxt  and each lateral 

face is rotated by an angle 
2

td
 relative to the axis passing through the 

center of gravity. 
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The elongation of the lower fiber is equal to dxt1 , and the upper 

one is equal to dxt2 , ( is the coefficient of linear expansion). Then, 

due to small deformations, we obtain: 

 

 dxkd t
 

h

dxt
dx

h

tt

h

dxtdxt 





  2121 , 

 

where 21 ttt   is the temperature difference. 
 

Since temperature deformations do not cause a cross-sectional shear, 

substituting td  and td  in the general formula (7.6) for determining 

displacements and replacing the index a  in the designation ia  by t  

(indicates the reason that caused the displacement), we obtain: 

 

 

dx
h

t
MdxtN

l
i

l
iit


  


 .                 (7.11) 

 

Note that each of the integrals in this expression determines the work 

of the internal forces of the auxiliary state of the system on displacements 

caused by a change in temperature. Therefore, the values of the integrals 

are accepted positive on the integration interval in the case when the 

corresponding directions of the element deformations, caused by the 

forces of the i-th (auxiliary) state and by thermal action, coincide. 

If the values tt ,,  and h  remain unchanged in some parts of the 

elements, the expression (7.11) is converted to the form: 
 

MNit
h

t
t 


 


 ,                     (7.12) 

 

where  

dxN
l

iN  , dxM
l

iM   
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are the areas of the diagrams of longitudinal forces and bending moments 

on the segments of the members with the specified features. 
 

E x a m p l e. Determine the horizontal displacement of the frame 

support B  (Figure 7.30, a) from thermal action indicated on the figure. 

Unchanged cross-sections through the length of each element are assumed 

to be symmetrical. The height of the vertical element is 1h , the height of 

the horizontal one is 2h . 

The temperature along the axis of each member is 
015

2

1020



t , 

the temperature difference is 
0101020 t . 

The auxiliary state of the frame is shown in Figure 7.30, b, and the 

diagrams of internal forces 1N  и 1M  are shown in Figure 7.30, c,d. 

We calculate the required displacement: 
 

1 11

2 2

1 2 1 2

1
15 15 1

2 2

10 1 10 1 1.25 2.5
18.75 .

2 2 2 2 2

t N M

t l
t l

h

l l l l l
l

h h h h

 


           

  
      

 
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Figure 7.30 

 

E x a m p l e. Determine the angular displacement of the frame cross-

section K  (Figure 7.31, a) from the thermal action indicated on the 

figure. Unchanged cross-sections through the length of each element are 

assumed to be symmetrical. The height of vertical and horizontal elements 

is 0.6h m . The coefficient of linear expansion is  6 110 10 С    . 

The temperature along the axis of members is: 

010 20
5

2
AB BDt t

 
   ; 

00 20
10

2
CDt


  ; 

010 0
5

2
DEt

 
   ; 

00 0
0

2
CKt


  ; 

the temperature differences are: 
0 0

0 0

20 ( 10) 30 ; 20 0 20 ;

0 ( 10) 10 ; 0 0 0 ;

AB BD CD

DE CK

t t t

t t

         

       
. 
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Figure 7.31 

 

 

The auxiliary state of the frame and the diagrams of internal forces

1M  and 1N  are shown in Figure 7.31, b,c,d. 

We calculate the required displacement: 
 

1 1

6
1

1
10 10 5 0 5 4 10 0

6

1 30 1
( 5) 4 0 0 1 6

6 0.6 2

30 20 10 0
1 4 1 6 0 1 4 0.0055 .

0.6 0.6 0.6 0.6

t N M

t
t

h

l

rad


 

   
                

 

   
                

   

   
                  
    
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7.9. Determination of Displacements  

Caused by the Settlement of Supports 
 

Suppose that the support connections of a given statically determinate 

system (Figure 7.32, a) under the influence of some actions moves to the 

positions shown in Figure 7.32, a: rigid support turned clockwise by an 

angle 1c , and the hinged-movable support moved upward by 2c . We 

denote this state of the system as state с. To determine the displacement 

of a point, for example, the horizontal displacement of the node D , we 

apply a force 1iF  in the auxiliary state in the direction of the required 

displacement (Figure 7.32, b). 
 

 
Figure 7.32 

 

We define the work of the forces of the i-th state of the system at its 

displacements in the state c . There are no internal forces in a state c : 

displacements of the supports of a statically determinate system do not cause 

forces in its elements. Therefore, only external forces, which include support 

reactions, will do the work on the displacements of the state c . In accordance 

with the principle of virtual displacements, we obtain: 
 

  01 kkiic cR , 
 

where kiR  is the reaction in k-th support link caused by 1iF ; 

 kc  is the given displacement of link k . 
 

So it follows that 
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 kkiic cR .                                (7.13) 

 

The sign of the product kki cR  is assumed to be positive if the 

directions of kiR  and kc  coincide. 

For this example, we get: 
 

1 2
1 2

2 2

horiz
D iс ki k

c ch h
R c c c h

l l


  
            

   
. 

 

E x a m p l e. Determine the horizontal displacement of the frame 

cross-section K  (Figure 7.33, a) caused by the settlement of supports 

indicated on the figure. 

 

According to (7.13), the expression for the requied displacement is: 
horiz
KC ki kR c   . 

The auxiliary state of the frame for determining support reactions caused by 

a unit concentrated force applied to the cross-section K in the horizontal 

direction is shown in Figure 7.33,b. 

 

 
Figure 7.33 
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A given system is a statically determinate compound frame. We find 

support reactions from equilibrium equations: 

 

 

0 : 6 0 0 ;

0 : 12 2 1 6 0
0.4 , 0.6 ;

0 : 6 4 0

0 : 12 2 1 4 0
0.4 , 0.4 .

0 : 6 6 0

D E E

A B B

B Bright
C B B

B A A

A Aleft
C A A

M V V kN

M V H
V kN H kN

M V H

M V H
V kN H kN

M V H











    

        
  

      

        
  

        
 

 

We calculate the required displacement: 

 
 

 0.4 0.06 0.4 0.06 0.4 0.1 0.6 0 0 0 0.04 .horiz
KC m            

 
 

 

Here the «-»sign is accepted before 1AH c  and 3BV c , since the 

direction of the reaction and the corresponding settlement do not 

coincide. 

In conclusion, we note that if a given linearly deformable system is 

simultaneously exposed to external load, temperature changes, the 

displacement of supports or other exposures, the required total 

displacement is determined by summing the components from each 

exposure separately. 

 

The features of determining displacements in statically indeterminate 

systems will be described below. 
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7.10. Matrix Form of the Displacements Determination 

 

Сonsider this question in relation to the plane trusses. In practical 

problems of trusses calculating, it is important to be able to determine the 

displacements of each node in horizontal and vertical directions. The total 

number of unknown displacements with this approach will be equal to the 

number of degrees of freedom of the nodes 2m N L   (there are no 

displacements of nodes in the directions of the support links). In Figure 

7.34,a unknown displacements of nodes are shown by arrows. 
 

 
Figure 7.34 

 

To determine the displacement i  we take the auxiliary state as shown in 

Figure 7.34, b: load 1iF  is applied in the direction of the required 

displacement. In this figure, a designation of the force kiN  arising in the rods 

is shown near each rod of the truss, where the index k  corresponds to the 

number of the rod. The index n  corresponds to the number of the last truss 

member. 

From formula (7.6) it follows that 
 

  



l n

k
kkiii lNdxN

0 1

 , 

 

where kiN  is the force in the k - th rod caused by 1iF ; 

kl  is absolute deformation of the k -th truss rod. 
 

An expanded record of the last expression with respect to all 

calculated displacements will appear as the following equations: 
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nnmmmm

nn

nn

lNlNlN

lNlNlN

lNlNlN















2211

22221122

12211111

,

,

 

 

or in matrix form: 
 

lL

l

l

l

NNN

NNN

NNN

T
N

nnmmm

n

n

m











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

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




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


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
















































2

1

21

22212

12111

2

1

,    (7.14) 

 

where 


 is the vector of nodal displacements; 

T
NL  is the matrix transposed with respect to the influence matrix 

NL ; 

l


 is the vector of absolute deformations of the rods. 
 

For statically determinate truss 2m N L B   , that is nm   and in 

this case the matrix NL  will be square. 

So, in order to find the displacements of the truss nodes, it is 

necessary to know the deformations l  of the rods, determined in 

accordance with the action set on the system. 

When the temperature changes: 
 

kkk ltl  , 
 

where    is the coefficient of linear thermal expansion; 

kt  is the temperature change of the k -th rod. 

 

If there are displacements due to inaccuracy in the manufacture of the 

rods, kl  is determined as the differences between the real and design 

values of the lengths of the rods. 
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When calculating a physically nonlinear system under the action of a 

load F , it is possible, using a nonlinear tensile (compression) diagram, 

to determine the corresponding elongation (shortening) kl  by a known 

effort kFN . 

If the material of the rods at a given load F  works in a linearly elastic 

stage, then: 

kFk
k

kkF
k Nd

EA

lN
l  , 

 

where  kEA  is the rigidity of the rod in tension (compression); 

k

k
k

EA

l
d   is the coefficient of pliability of the k-th rod. 

 

Then for the vector of deformations caused by a given load, there is a 

dependence: 
 

F

nF

F

F

nn

ND

N

N

N

d

d

d

l

l

l

l

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
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





















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2

1

2

1

2

1

,      (7.15) 

 

where  D   is the matrix of internal pliability of truss rods; 

FN


 is the vector of efforts in the truss rods from the load F . 
 

Substituting expression (7.15) into formula (7.14), we obtain a matrix 

notation of the formula for determining the nodal displacements of the 

truss due to the load F : 
 

F
T
N NDL


 .                                    (7.16) 

 

To determine the displacements of bended systems due to the load F , 

we will use the Simpson's formula. At the k-th section of the bar with 

variable bending rigidity, the Mohr's integral is written in the form: 
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0

4
6

k
i F i F i F

B B M M E E
l

i F k

B M E

M M M M M MM M dx l

EJ EJ EJ EJ


 
   
 
 

, 

 

where the superscripts B , M  and E  indicate the values iM , FM , ... and 

EJ  at the beginning, middle and end of the integration section. 
 

We represent this expression in matrix form: 
 

0

6

4

6

6

F

k

i i i F

F

k

B B

l
B M E Mi F k

M

E

k

E

l

EJ M
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M M M M

EJ EJ
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EJ
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 
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     

     
   

  
  

 

kFk
T
ki MDL


 , 

 

where kD  is the diagonal matrix of pliability for the k-th section. 
 

For the variant of linear diagrams ,,i FMM  we obtain: 
 

,
2 2

i i

i

B E B E
M M F F

F

M M M M
M M

 
  , 

 

and then, at EJ  const, the computations in the section are reduced to: 
 

0

2

6 6

2

6 6

k

i i

k k
Bl
FB Ei F

E
k k F

l l

MM M dx EJ EJ
M M

l lEJ M

EJ EJ



 
   

      
    
  

. 

 

Summing up the results of calculations for all sections, we obtain: 
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  
k

kFk
T
ki

Fi
iF MDL

EJ

dxMM 
.            (7.17) 

Using the sequential docking of the bending moment vectors in all n 

parts of the system and introducing the matrix of pliability D for the 

entire system into the calculation, the displacements calculation can be 

represented as follows: 
 

 
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        (7.18) 

 

If it is necessary to determine the displacements of several points of 

the system, the row-vector 
T
iL  should be replaced by a matrix 

TL , in 

each row of which values of bending moments caused by the i-th 

auxiliary state are recorded. 

If the problem is to determine the displacements caused by different 

loadings, it is necessary to replace the vector FM


 with a matrix, in each 

column of which values of efforts corresponded to a certain load are 

recorded. 

With these remarks, the expression for determining the displacements of 

a bended system in the general case can be written as: 
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 (7.19) 
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In this expression, the index m  corresponds to the number of determined 

displacements  for one loading, the index t  corresponds to the number of 

independent loadings. 

If LM  , the matrix   will be a matrix of external pliability A of the 

flexible bars system: 
 

M
T
M LDLA  .                                    (7.20) 

 

The same remark applies to formula (7.16). Replacing the vector FN


 

with the matrix NLN  , as a result of the calculations we obtain the 

truss pliability matrix: 

N
T
N LDLA  .                                   (7.21) 

 
7.11. Influence Lines for Displacements 

 

The theorem of reciprocal displacements is used to solve various 

problems in mechanics. In particular, the influence lines for displacements 

are relatively easy to obtain. Suppose, for example, it is necessary to 

construct the influence line for the rotation angle k  (Figure 7.35, a). Each 

new position of the unit force (Figure 7.35, b) corresponds to a certain 

value of the rotation angle ( ...),, 21 kk  .At the same time, on the basis 

of the reciprocity theorem, these displacements can be determined each 

time by uploading the beam with a fixed generalized force 1kM  

(Figure 7.35, c). Consequently, the shape of the influence lines for k  

coincides with the diagram of the vertical displacements of the beam axis 

caused by force 1kM . The equation corresponding to this load for the 

bent axis of the beam is written in Section 7.5. 
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Figure 7.35 

 

An analysis of the results of the last example (Figure 7.35) shows that 

the practical task of constructing influence lines for displacements of a 

linearly deformable system, on the one hand, can be associated with its 

calculation on the set of unit loads in characteristic sections, and then 

with the determination of the required displacement for each of them. On 

the other hand, this task may be connected with the calculation of the 

system for one load and the determination of the corresponding 

displacements in those cross sections in which the unknown shape of the 

influence line can be represented by the found displacements. The second 

solution is generally preferred. 

We illustrate it with the example of a multi-span statically determinate 

beam (Figure 7.36), for which we will construct the influence line for 3 . 

From the calculation of the loading beam by force 11 F  we can find only 

one ordinate 31 of the influence line for 3  (Figure 7.36,b), from the 

calculation at the action of the force 12 F  we can find the ordinate 32  

and so on. A simpler technique is to construct an influence line  3  as a 

diagram of vertical displacements of the axis of the beam from the action 

of the force 13 F  (Figure 7.36, c). In Figure 7.36, d it is shown the view 

of Inf. line for 3  taking into account generally accepted construction rules: 

positive ordinates are located above the axis of the beam, negative ones are 

below. 
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7.12. Influence Matrix for Displacements 

 

The vertical displacement, due to the given load, of the cross-section i, 

for which the influence line for displacement is constructed, can be 

calculated by the formula: 
 

niniiiF FFF   2211 , 

 

where 1F , 2F , ... , nF  – are concentrated vertical forces applied in 

characteristic sections. 

 
Figure 7.36 

 

 With the value of the index i  = 3 we get the expression for calculation 

F3  using the influence line (Figure 7.36, d). 
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Applying the expression for iF  to each characteristic cross-section 

and using the matrix form for recording the transformations, we obtain 

the value of the displacement vector F


: 
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is the influence matrix for displacements.  

The components of the k-th column are the ordinate values of the 

displacements diagrams constructed due to 1kF , which corresponds to 

the general definition of the influence matrices. Since the conditions 

kiik    are fulfilled, the matrix A  is a symmetric matrix and, therefore 

the influence lines for i  can be constructed from the elements of the i-th 

column or i-th row. 

In the case of systems of arbitrary outline, not necessarily the beams, 

displacements ik  may have different orientations in space. They 

determine the pliability of the system at some point i in a given direction 

(i-th) caused by the unit force applied at a point к . Therefore, the matrix 

A  is called the pliability matrix of the system. To calculate it, one can 

use formulas (7.20) and (7.21). 
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E x a m p l e .  Calculate the matrix A  of the external pliability of the 

frame in the given directions (Figure 7.37). 
 

 

 

 
Figure 7.37 

 

 

Diagrams of bending moments caused by the action of unit forces in 

given directions are shown in Figure 7.38. 

 
 

 

 
Figure 7.38 

 
When compiling the influence matrix ML , we will consider the 

ordinates of the diagrams M , located inside the frame contour as 

positive. 

The pliability matrix A  is calculated as follows: 
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THEME 8.  

FORCE METHOD AND ITS APPLICATION TO PLANE 

FRAMES CALCULATION 

 

8.1. Statically Indeterminate Systems and Their Properties 

 

Statically indeterminate systems are those systems in which not all 

internal forces can be found from the equilibrium equations. 

In statically indeterminate systems, the number of unknown efforts 

exceeds the number of independent equilibrium equations. For example, 

to determine the four support reactions of the beam (Figure 8.1, a) arising 

from the action of any load on it, only three independent equilibrium 

equations can be compiled. 

Consequently, in all cross-sections of the beam in the AC region, the 

internal forces cannot be determined. If in this beam we remove the 

support rod at a point B (Figures. 8.1, b) or introduce a hinge in a region 

BC (Figures. 8.1, c), then we obtain the design schemes of statically 

determinate beams. The constraints that can be removed from the beam 

(and in the general case, from any system) without changing its properties 

of geometrical unchangeability and unmoveability are called redundant 

constraints. The number of redundant constraints, the elimination of 

which turns the system into to the statically determinate one, is called the 

degree of static indeterminacy of the system (degree of redundancy). The 

beam shown in Figure 8.1, a, has statical indeterminacy of the first 

degree. 

 
DA

а)
CB

б)

с)

 
 

Figure 8.1 

The same can be said about the design scheme of the truss (Figure 8.2). It 

is possible to find support reactions and forces in rods 3–5 and 4–5 caused by 

a) 

b) 

c) 
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the load applied to its nodes solely using equilibrium equations, but the 

efforts of the rest of the rods remain unknown. Among these rods, there is 

one redundant, so the truss is statically indeterminate once. 

 

 
 

Figure 8.2 

 

We note once again that the term “redundant constraint” should be 

understood from the point of view of the geometrical unchangeability and 

unmoveability of the system. According to the working conditions of the 

structure, these constraints are necessary; in their absence, the strength 

and rigidity of the structure may be insufficient. 

Any constraint can be accepted as a redundant constraint, the 

elimination of which will not change the immutability and immobility of 

the system. So, for the scheme in Figure 8.1 as redundant constraint, you 

can take any vertical support rod or, in any cross-section on the region 

AC, the constraint, through which the bending moment is transmitted 

from one section of the beam to another. 

The degree of the static indeterminacy of a structure is an important 

characteristic of a structure. 

Statically indeterminate systems have the following properties. 

1. The thermal effect on the system, the displacement of the supports or 

the inaccuracy of the manufacture of its elements with their subsequent 

tension during assembly cause, in the general case, additional forces in a 

statically indeterminate system. In a statically determinate system, these 

factors cause only displacements of the elements, while internal forces do 

not arise. 

Here are some examples. 

Let’s consider the temperature of the lower fibers of the beam (Figure 

8.3, a) is equal 1t , and the upper ones is 2t , and 21 tt  . If there was no 

support link at the point B, then the cantilever beam AB due to the 

indicated action would have taken a position shown by a dashed line. To 
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return the beam from this position to the initial (undeformed) position, it 

is necessary to apply a force 1X  at the point B  , equals to the reaction 

that arises in the support B  from temperature changes. 

The displacement of the support point C  to the position C   provokes 

bending of the beam CA  (Figure 8.3, b), which indicates the appearance 

of bending moments and transverse forces in the beam cross-sections. 

      
 

Figure 8.3 

 

If we assume that in the truss (Figure 8.2) the length of the rod 1–4 turned 

out to be less than the size required by the project, then in order to attach its 

ends to the nodes, the rod would have to be pulled. This means that the entire 

group of rods of this panel of the truss will undergo additional forces even 

before the given load is applied, in particular, rods 1–4 and 2–3 will be 

stretched, and four other rods will be compressed (the initial stress state 

arises). 

2. The forces in statically indeterminate systems arising from an 

external load depend on the ratios of the rigidity of the system elements. 

Compare, for example, the distribution of bending moments in the 

frame (Figures 8.4, a, b) with different ratios of bending rigidity of the 

members. 

The forces in these systems, arising from thermal effects and 

settlements of supports, depend on the rigidity values of the members. 
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Figure 8.4 

 

3. A system with n redundant constraints retains geometrical 

immutability even after the loss of these constraints, while a statically 

determinate system, after the removal of at least one constraint, turns into 

a changeable one. 

4. The displacements of statically indeterminate systems are, as a rule, 

less than the corresponding displacements of those statically determinate 

systems from which they are formed. For example, as follows from the 

analysis of the work under load of the beams (Figure 8.5), 12  . 

 

 
 

Figure 8.5 

 

Other features of the distribution of forces and displacements in 

statically indeterminate systems will be explained in the subsequent parts 

of the chapter. 
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8.2. Determining the Degree of Static Indeterminacy 
 

By the definition, the degree of static indeterminacy is equal to the 

number of redundant constraints. From the formula (1.1), which 

establishes quantitative relations between the number of disks degree of 

freedom and the number of constraints superimposed on them, it follows 

that the number of redundant constraints (Λ) will be equal to W   , 

that is, calculated by the formula: 
 

0 2 3 3L H R D     ,                           (8.1) 

 

and if the disks are connected only by constraints of the first (single link) 

and second (hinge) types, then by the formula: 
 

0 2 3L H D    .                                (8.2) 

 

As in the definition of W, both formulas can be used when none of the 

disks of the system is represented as a closed contour. 

If the outline of the frame is closed, it must be divided into several 

open ones and only then the formula (8.1) should be used.  

Hingeless closed contour is three times statically indeterminate. 

Indeed, in order to turn the frame with the form of a closed contour 

(Figure 8.6, a) into a statically determinate frame (Figure 8.6, b) it is 

possible to remove three constraints in the cross-section k. These three 

links transfer internal forces from one end of the member to the other. 
 

 
  

Figure 8.6 

 

If in the cross-section k the constraint will be removed, through which the 

bending moment is transferred from one part of the member to another, i.e. 

set the hinge, we get twice statically indeterminate frame (Figure 8.6, c). 
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Thus, the degree of static indeterminacy of the frame can be determined 

by the formula: 

3K H   ,                                      (8.3) 
 

where K  is the number of closed contours in the frame; 

H  is the number of simple hinges. 

Note that the frame shown in Figure 8.7 also represents a hingeless 

closed contour. The base, to which the frame is attached at points A and 

B, in this case, is considered as a disk connecting these points. 

Here are some examples. Let us determine the degree of static 

indeterminacy for the frame shown in Figure 8.8. 

By the formula (8.2) we get:  
 

0 2 3 9 2 2 3 3 4L H D          . 

 

By the formula (8.3):  
 

3 3 2 2 4K H       . 
 

Closed contours are shown in Figure 8.8 by wavy line. 
 

            
 

Figure 8.7   Figure 8.8 
 

When using formula (8.1) for the frame shown in Figure 8.9, we take 

into account that disks 1 and 2, as well as 2 and 3 are rigidly connected to 

each other. 
 

 
 

Figure 8.9 
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The outlines of the discs are highlighted by wavy lines. The hinge at 

the point C is double one. 

 

0 2 3 3 7 2 4 3 2 3 5 6L H R D             . 

 

By the formula (8.3) we get: 

 

3 3 4 6 6K H       . 

 

The partition of the frame (Figure 8.10) into individual disks will be 

accepted as shown in the figure. 
 

 
 

Figure 8.10 

 

Then we get: 6D  , 2H  , the number of rigid (fixed) connections 

(nodes) 4R  . 

By the formula (8.1):  
 

0 2 3 3 9 2 2 3 4 3 6 7L H R D             . 

 

By the formula (8.3): 
 

3 3 4 5 7K H       . 
 

In the previous expression it is accepted that 2H  , since there are two 

simple hinges on the scheme (each of them connects only two disks). 
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In the last expression 5H  , since in addition to two hinges in the 

upper contour, two hinges in the lower left contour and one hinge in the 

lower right contour are taken into account. 

The degree of static indeterminacy defines the number of additional 

equations that need to be written to determine unknown forces. These 

unknowns are efforts in redundant constraints. 

 

 

 
 

Illustration 8.1. Cross frames of the production building 

 

 

 

 

8.3. Primary System and Primary Unknowns 

 

The sequence of actions for disclosing the static indeterminacy of a 

given system is as follows. 

In a given statically indeterminate system, redundant constraints are 

removed, and unknown forces are applied instead. The obtained system is 

called the primary system of the force method, and unknown forces are 

called the primary unknowns of this method. They are designated with 

symbols iX , where ni ,,2,1   ( n   ). 
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In order to reduce the number of unknowns, experienced specialists 

use sometimes statically indeterminate primary systems. The number of 

unknowns (n) in this case will be less than the number of redundant 

constraints ( ). This calculation method requires additional calculations 

for statically indeterminable fragments included in the main primary 

system. 

Subsequently, by comparing the displacements of the given and the 

primary systems, equations are obtained for determining the primary 

unknowns. 

Let us explain some features of the choice of the primary system. First 

of all, we note that the primary system should be geometrically 

unchangeable and immovable. For any statically indeterminate frame, 

several primary systems can be selected. Consider the following example. 

The degree of static indeterminacy of the frame shown in Figure 8.11, a, 

is three. Possible variants of the primary systems are shown in Figures 

8.11, b – c. In Figure 8.11, b it is shown that as the primary unknowns of 

the force method, the forces in the support connections of a given frame 

are taken. According to Figure 8.11, c the primary unknowns are 1X , 

3X  (reactions in support connections) and 2X  (interaction forces 

(moments) between the members adjacent to the hinge). The systems 

shown in Figures 8.11, d, e, cannot be selected as the primary ones, since 

they are instantly changeable. 

 

 
Figure 8.11 

 

All subsequent calculations in the force method are associated with 

the primary system. Therefore, the complexity of the calculation will 
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substantially depend on the successful choice of a variant of the primary 

system. Methods for selecting rational primary systems are outlined in 

Section 8.8. 

 

8.4. Canonical Equations 

 

Deformations of the given and the primary systems will be the same only 

if the displacements of the application points of the primary unknowns in 

their directions in the primary system are the same as in the given system, 

i.e., equal to zero.  

Indeed, for example (Figure 8.11,a-c), in the given system the 

displacement in the direction of force 1X  or 
3X  is equal to zero. The angle 

of mutual rotation of the cross-sections in the direction of unknown 2X  

(Figure 8.11, c) is equal to zero also. 

The displacements in the primary system in the directions of the 

primary unknowns depend on the external load acting on the system and 

the primary unknowns, so we can write that: 
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                           (8.4) 

 

where   nii ,,1  – is full displacement in the direction of the unknown 

iX , that is, displacement caused by the unknowns ,...,, 21 XX nX  and 

external load F . 
 

The number n of such equations certainly corresponds to the number 

of primary unknowns. If we use the principle of independence of the 

action of forces, then the i-th equation from system (8.4) can be written in 

the form that allows us to see the contribution of each force factor to the 

final result: 
 

iFiniii  21 ,                      (8.5) 
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where inii  ,,, 21   are the displacements of the application point of 

the i-th primary unknown in its direction, caused by forces 

;,,, 21 nXXX   

iF  are the displacement of the same point in the same direction, caused 

by an external load. 
 

The displacement in the direction of the i-th unknown, caused by force 

kX , can be represented as: 
 

kikik X ,                                       (8.6) 
 

where ik  – is the displacement in the same direction caused by force 

1kX . 
 

Taking into account expressions (8.5) and (8.6), we write the system 

of equations (8.4) as follows: 
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         (8.7) 

 

These equations are called the canonical equations of the force method 

for calculating the system on the action of an external load. The essence 

of the i-th equation is that the displacement of the application point of the 

unknown iX  in its direction, caused by all unknowns and the external 

load, is zero. 

In the matrix-vector form, system (8.7) can be written more 

compactly: 
 

0 BXA


,                                      (8.8) 
 

where: 

A  is matrix of coefficients at unknowns in the canonical equations 

(pliability matrix of the primary system): 
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;                         (8.9) 

 

X  is vector of unknowns: 
 

 n
T XXXXX 


321 ;                           (8.10) 

 

B  is vector of free terms of canonical equations (vector of the load 

displacements): 
 

 nFFF
TB  


21 .                             (8.11) 

 

The coefficients of the type ii , i. e., located on the main diagonal, are 

called the main ones (main displacements), and the coefficients ik , if 

ki   – are called the secondary ones (secondary displacements). 

According to the reciprocity theorem kiik   , i. e., the matrix A  is 

symmetric. 

When calculating the statically indeterminate system on the thermal 

effect, the vector B


 in equation (8.8) has the form: 

 

 nttt
TB  


21 ,                                (8.12) 
 

where it  is the displacement of the application point of the i-th unknown 

in its direction, caused by a change in the temperature of the 

members. 
 

When calculating the system by the settlements of supports: 
 

 nccc
TB  


21 ,                               (8.13) 
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where ic  is the displacement in the direction of the i-th unknown 

caused by the settlements of supports. 

 
8.5. Determining Coefficients and Free Terms of Canonical 

Equations 

 

The coefficients and free terms of the canonical equations are 

calculated according to the rules of determining displacements described in 

Chapter 7. For the frame systems that experience predominantly bending 

deformations in non-automated computing (“manual” calculation), we can 

take into account the influence on displacements of only bending moments. 

Therefore, displacements ik  and iF  are calculated by the formulas: 
 


EJ

dxMM ki
ik , 

 


EJ

dxMM Fi
iF , 

where iM , kM  are bending moments diagrams caused by 

dimensionless forces, respectively 1iX  and 1kX ; 

FM  is bending moments diagram caused by external load. 
 

So, for example, if for the frame (Figure 8.12, a) we accept the 

primary system according to the variant of Figure 8.12, b, when 

determining the displacement 21 , it is necessary to consider the state of 

the frame under the action 11 X  (Figure 8.12, c) as load state, and the 

second state, corresponding to the action 12 X  (Figure 8.12, d), as an 

auxiliary one. Then, after the construction of the bending moments 

diagram (Figures 8.12, f, g), you can use the well-known methods of 

calculating the Mohr integral of the form: 
 


EJ

dxMM 12
21 . 
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Displacement F1  (Figure 8.12, e) is calculated using diagrams 1M  

(Figure 8.12, e) and FM  (Figure 8.12, h): 
 

 


EJ

dxMM F
F

1
1 . 

 

 

The matrix form for determining displacements is described in 

Section 7.10. 

Obviously, the values of the coefficients and free terms of the 

canonical equations are more accurate if in addition to bending 

moments we take into account the longitudinal and shear forces in the 

frame elements. 

After determining the coefficients and free terms, the system of 

canonical equations can be solved in numerical form. 
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Figure 8.12 

 

 

8.6. Constructing the Final Diagrams of the Internal Forces 

 

The solution of the system of canonical equations allows us to find the 

values of the primary unknowns. The final efforts   NQMS ,,  in the 

k-th cross-section of a given system are calculated by the expression, 

based on the principle of independence of the forces action: 
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1 1 2 2k kF k k kn nS S S X S X S X     ,          (8.14) 
 

where 
kFS  is the force in the k-th section from the action of external 

load 

kiS  is the force in k-th section from 1iX  , 1, 2, ,i n . 

 

In accordance with expression (8.14), the final diagrams of bending 

moments, shear and longitudinal forces are constructed: 
 

1 1 2 2F n nM M M X M X M X     ,               (8.15) 

 

1 1 2 2F n nQ Q Q X Q X Q X     , 

 

1 1 2 2F n nN N N X N X N X     . 
 

Constructing diagrams Q  and N  using the above formulas is not 

always convenient. A simpler way of constructing the diagram Q  is 

based on the use of differential dependence
dM

Q
dx

 . 

To use this dependence we obtain an analytical expression for 

determining the bending moment in the cross-section of a frame member. 

Consider such a member as a beam on two supports. Suppose that the 

beam at its span is loaded as shown in Figure 8.13, a. Both external 

moments at the supports (left (l) and right (r)) cause in the cross-sections 

of the beam over the supports the positive bending moments equel to 
lM  

and 
rM . 

Having constructed for this beam the moment diagrams caused by 

span load (Figure 8.13, b) and supporting moments (Figure 8.13, c, d), we 

will determine, based on the principle of independence of the action of 

forces, the final ordinate in the cross-section k on the diagram M as the 

sum of its components : 
 

F l r

l x x
M M M M

l l


   .                        (8.16) 
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Taking the first derivative of the expression (8.16), we obtain the 

formula for determining the shear force in the same cross-section: 

r l
F

M M
Q Q

l


  .                               (8.17) 

 
 

Figure 8.13 

 
 

8.7. Calculation Algorithm. Calculation Check 

 

The process of calculating statically indeterminate frames or any other 

statically indeterminate systems by the force method includes the 

following steps. 

1. Determination of the degree of static indeterminacy of the system. 

2. Selection of the primary system. 

3. The recording of the system of canonical equations in the general 

form. 
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4. Construction of the diagrams of the internal forces in the primary 

system due to the external load and the unit values of the primary 

unknowns. 

5. Calculation of the coefficients at the unknown and free terms of the 

canonical equations. 

6. Recording the system of canonical equations in numerical form and 

solving it. 

7. Construction of the final diagram of bending moments. 

8. Construction of the final diagrams of Q  and N . 

In order not to be mistaken during the calculation, the calculations at 

each step of the algorithm should be checked. For this, of course, it is 

necessary to understand thoroughly the essence of the operations 

performed and correctly use the knowledge accumulated during the 

studying the course of structural mechanics. 

Let us explain the features of checking the accuracy of the calculation 

at individual steps of the algorithm. 

First of all, we make a remark on the question of choosing the primary 

system. For all possible variants of the primary system, a kinematic 

analysis of them should be performed in the sequence recommended in 

Chapter 1. Particular attention should be paid to the analysis of the 

structure of the system and its verification for instantaneous 

changeability. 

At the step of constructing the efforts diagrams in the primary system, 

as a rule, the static method is used. To check the diagrams, the conditions 

of equilibrium of fragments of the design scheme, in particular, frame 

nodes, are used the most. 

Verification of the calculation of the coefficients at the unknown and 

free terms of the canonical equations is carried out using the total 

diagram of the unit moments sM , construct according to the rule: 
 

ns MMMM  21 .                          (8.18) 

 

If we "multiply" diagram iM  and diagram sM , we get: 
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





  

  





     (8.19) 

 

i. e., the sum of the coefficients for unknowns in the i-th  ni ,,2,1   

equation should be equal is . Such a check is called line by line. 

Instead of “multiplying” each unit moment diagram by total diagram sM , 

in practice, we can “multiply” sM  by sM . Using (8.19), it is easy to show 

that: 
 

  
 


n

i

n

k
ik

ss
ss

EJ

dxMM

1 1

 ,                       (8.20) 

 

i.e. ss  equal to the sum of all the coefficients of the 

canonical equations.  

This check is called universal. 

Similarly, verification of the calculation of free terms is performed: 
 





n

i
iF

Fs
sF

EJ

dxMM

1

.                   (8.21) 

 

The sum of all free terms of the canonical equations is sF . 

It should be noted that performing the checks of coefficients and free terms 

mentioned here is not always a guarantee of correct calculations. In the course 

of determining ik , iF  and ss , sF  in some step, the same mistake can 

be made and, as a result, it will be unnoticed. Therefore, we recall once 

again that the basis of correct calculations at this step is knowledge and the 

ability to apply methods for calculating the Mohr integrals correctly. 

To verify the final diagrams of bending moments static and kinematic 

checks are used. The static check of the diagram “M” carries out by 

checking the equilibrium of the frame nodes. With its help, only errors that 



252 
 

can be made during the step of constructing the bending moment diagram 

using the formula (8.15) are detected.  

The main verification is kinematic one (its other names: deformation 

check, check of displacements). The displacement of the application point 

of the i-th primary unknown in its direction in the given system should be 

equal to zero. Therefore, using the general rule for determining 

displacements, we obtain: 
 

0
EJ

dxMM i
.                                 (8.22) 

 

In this case, it is clear that the sum of the displacements along the 

directions of all the primary unknowns is also equal to zero. 

Consequently, 
 

0
EJ

dxMM s ,                                (8.23) 

 

i. e., the result of “multiplying” the total unit diagram sM  by the final 

diagram of the moments must be equal to zero. 

The static check of the diagrams Q  and N  consists in checking the 

equilibrium of the part of the frame cut off from the support connections. 

 

E x a m p l e. Construct the diagrams M , Q  and N  for the frame 

shown in Figure 8.14, a. 

The given frame is twice statically indeterminate. The primary system 

and the primary unknowns are shown in Figure 8.14, b. The system of 

canonical equations has the form: 

11 1 12 2 1

21 1 22 2 2

0;

0.

F

F

X X

X X

 

 

    


    
 

 

Diagrams of bending moments in the primary system caused by the 

action of 1 1X  , 2 1X   and external load are shown in Figures 8.14, c, d, 

e. 

We determine the coefficients at unknowns and the free terms in the 

canonical equations: 
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11

1 1 2 1 2 1 1 1 2 203
1 1 1 3 3 3 3 6 3 3 3 3

2 2 3 2 3 2 3 3EJ EJ EJ EJ


 
          

 
; 

 

22

1 1 1 2 144
6 4 6 6 6 6

2 2 3EJ EJ EJ
       ; 

 

12 21

1 1 66
6 4 1 3 6 3

2EJ EJ EJ
           ; 

 

 1

1 6 3160
320 4 1 320 3 4 125 3 20 3

2 6
F

EJ EJ EJ
            ; 

 

 2

1 6 7260
320 4 6 320 6 4 125 3

2 6
F

EJ EJ EJ
             . 

 

To check the coefficients and free terms, a total diagram of the unit 

moments is constructed (Figure 8.14, e). Using the formula (8.20), we 

obtain: 
 

4
(2 3 3 2 7 7 3 7 2)

6 2

6 1 1 2 239
(3 3 3 3) 3 3 3 .

6 2 3 3

s s
E J

E J E J E J

          


      

 

 

Indeed: 
 

11 12 21 22

203 66 66 144 239

3 3EJ EJ EJ EJ EJ
           . 

 

By the formula (8.21) we have: 
 

 
1 6 4100

320 4 5 320 3 20 3
2 6

sF
EJ EJ EJ

            , 

 

that is equal to 1 2

3160 7260 4100
F F

EJ EJ EJ
       . 

 

We record the system of equations in numerical form: 
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1 2

1 2

203 66 3160
0;

3

66 144 7260
0.

X X
EJ EJ EJ

X X
EJ EJ EJ


   


   


 

 

Having solved this system of equations, we find: 

1 4.477X  kN;        2 52.468X  kN. 

To construct the final moment diagrams, we use the formula (8.15). 

The diagrams 11XM  and 22 XM  are shown in Figures 8.14, g, h, and 

the final diagram M  is shown in Figure 8.14,i. Its static verification is 

performed (The reader is advised to conduct its own verification). We 

perform a kinematic check: 
 

 

 

4
2 3 18.62 2 7 0.71 3 0.71 7 18.62

6 2

6 1 1 2
3 18.62 3 33.43 3 3 13.43

6 2 3

140.57 140.55 0.02
.

sM M dx

EJ EJ

EJ EJ

EJ EJ EJ

           


       

    



 

The relative error of the calculations is: 
 

0.02
100 0.01%

140.55



    

 

which is less than the acceptable value. 

The diagram Q  (Figure 8.14, k) is constructed in accordance with the 

diagram M . Once again, we note that a simpler way of constructing is 

based on dependency  

dM
Q

dx
 . 

We use the formula (8.17). 

Considering the element 2-3 as a simple beam loaded with a uniformly 

distributed load, we construct a diagram of the shear forces (diagram of the 

shear forces for the beam). It is shown in Figure 8.14, l. 

Given the distribution of moments on this element (Figure 8.14, i) using the 

formula (8.17), we find that in the cross-section adjacent to the node 2: 
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 
2

33.43 18.62
30 27.53

6
Q

  
    kN, 

 

and in the cross-section adjacent to the node 3: 

 
3

33.43 18.62
30 32.47

6
Q

  
      kN. 
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Figure 8.14 (begining) 
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Figure 8.14 (ending) 

 



258 
 

The Q  diagram for the cantilever 3-4 is constructed as for a statically 

determinable fragment of a frame. However, in this case we can also use 

the formula (8.17), if you consider section 3-4 as a beam with two 

supports (Figure 8.14, m). 

Then in the cross-section adjacent to the node 3: 

 

 
20

2

200
103 


Q  kN, 

 

and in the cross-section adjacent to the node 4: 

 

 
0

2

200
104 


Q . 

 

For element 1–2 we get: 

 

 
1

18.62 0.71
0 4.48

4
Q

  
     kN, 

 

 
2

18.62 0.71
0 4.48

4
Q

  
     kN. 

 

Mind that tg
dx

dM
 . The diagram of bending moments is usially 

constructed on the stretched fibers of the element. For horizontal 

elements, the positive ordinates of the bending moments must be located 

below the axis of the element. Therefore, the sign of the transverse force 

in a given cross-section “k” of the horizontal bar can be determined as 

follows. Drawing a tangent to the line bounding the diagram M , at a 

point, corresponding to the position of the cross-section k  (Figure 8.14, 

n), it is necessary to find the intersection point of this tangent and the axis 

of the element (point O ). 

If the axis of the element must be rotated around the point O until it 

coincides with the tangent in the shortest way clockwise, then the shear 

(transverse) force in the cross-section k  will be positive  0Q . When the 
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axis of the element moves anticlockwise, then the shear force in the cross-

section will be negative ( 0Q ). 

On the linear zones of the diagram of bending moments, the 

position of the tangent coincides with the line bounding the diagram. 

The shear force along the entire length of this section will be 

constant. For the element 3–5  

13.43
4.48

3
Q     kN, 

 and for the element 1–2  

18.62 0.71
4.48

4
Q


     kN. 

 

After determining the shear forces in the frame elements the 

longitudinal forces N  are determined from the equilibrium equations of 

the nodes. The calculations begin with a node in which the elements with 

no more than two unknown forces are joined, and then, sequentially 

cutting out the nodes, determine the efforts in all other bars. The 

equilibrium equations are written as the sum of the projections of all the 

forces (both internal and external forces applied to the nodes, if any) on 

the vertical and horizontal axes. In the presence of inclined bars, if the 

calculations may be simplified, the forces projections can be performed to 

the axes perpendicular to the bars directions. 

Composing equations for node 2 (Figure 8.14, o) 0X  ,   0Y , 

we find 2 3 4.48N     kN, 1 2 27.53N     kN. 

From the equation 0Y   for node 3 (Figure 8.14, p) we get 

3 5 52.47N     kN. 

The equation   0X  for node 3 is a test one. The diagram N  is 

shown in Figure 8.14, p. 

For carrying out a static check of the diagrams Q  and N  we cut off 

the frame from the support connections, load it by a given load and shear 

and longitudinal forces in the cross-sections separating the rods from the 

support connections (Figure 8.14, c). Composing the equations  0X , 

  0Y  and   0М , we make sure that the frame is in equilibrium. 
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8.8. The Concept of Rational Primary System  

and Methods of Its Choice 

 

A rational primary system is such a system for which in the canonical 

equations greatest possible number of secondary coefficients is zero. At 

the same time, it is very important to set zero coefficients only on the 

basis of a visual analysis of the outline of the force diagrams, without 

spending time on their numerical determination. Zeroing secondary 

coefficients leads to significant simplifications in the calculation. 

If some coefficient 
ik  is equal to zero, the corresponding diagrams 

iM  and kM  are usually called mutually orthogonal. An analogy with the 

scalar product of mutually orthogonal vectors is used. 

The most commonly used methods for obtaining rational primary 

systems include: using the symmetry of the system, grouping unknowns, 

transforming of the load, breaking up multi-span frames. 

 

1. Using the symmetry of the system. The primary system for a 

frame which has a symmetric geometric dimensions and symmetric 

rigidity of the elements should be taken symmetrical. If the primary 

unknowns can be positioned on the axis of symmetry, then some of them 

will be symmetric, and the other - inversely symmetric (or skew-

symmetric). Due to the action of a symmetrical load on the symmetrical 

frame, the distribution of forces in its elements will be symmetric, and 

vice versa: inverse-symmetrical loading of the symmetrical frame causes 

inverse-symmetrical forces in its elements. Therefore, the diagrams of 

bending moments in the primary system will be either symmetrical or 

inversely-symmetrical. Symmetrical and inverse-symmetrical diagrams 

are mutually orthogonal. 

For example, taking for the frame (Figure 8.15, a) the primary system 

shown in Figure 8.15, b, we obtain symmetrical diagrams 1M , 2M , 4M  

(Figures 8.15, c, d, f) and inverse-symmetrical 3M  (Figure 8.15, e). 

Therefore, the coefficients 13 , 31 , 23 , 32 , 34 , 43  are equal to zero. 

Crossing out in the system of equations (the reader should write them 

down) the terms including the listed coefficients, we see that it has 

decomposed into a subsystem containing only symmetrical unknowns 

and one equation with inverse-symmetrical unknown. 
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Figure 8.15 

 

It is easy, obviously, to extend the above reasoning to examples of 

frames with a large number of unknowns. 

 

2. Groupings of the unknown. In many cases, the primary unknowns 

cannot be positioned on the axis of symmetry. So, for the frame shown in 

Figure 8.16, a, the number of redundant constraints is six. The symmetric 

primary system can be adopted according to the variant shown in Figure 

8.16, b. However, in this case, when loading it with forces 1iX  none 

of the diagrams of bending moments will turn out to be symmetrical or 

inversely-symmetrical, which means that all secondary coefficients will 

be nonzero. 

In order to obtain symmetrical and invers-symmetrical force plots, it is 

necessary to introduce new ones (we will denote them iZ ), which are 

groups of forces, instead of traditional unknowns iX . The transition from 

old unknowns to new ones, and vice versa, should be univocal.  
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In Figure 8.16,c the same primary system with new unknowns is 

shown. Comparing the location of the unknowns in Figures 8.16, b, c, we 

find the rules for converting them: each pair of symmetrically located 

unknowns iX  corresponds to the operation of addition or subtraction of 

symmetrical and inverse-symmetrical group unknowns iZ . 

In particular, 1 1 2X Z Z  , 4 1 2X Z Z  , from where the expressions 

for Z :  

 

1 4
1

2

X X
Z


 ,         1 4

2
2

X X
Z


 . 

 

The diagrams of efforts caused by group unknowns are shown in 

Figure 8.16, d–i. Due to the mutual orthogonality of symmetrical and 

inverse-symmetrical diagrams, the system of canonical equations 

decomposes into two independent ones: one of them will include only 

symmetrical unknowns 
1Z , 

3Z , 
5Z , and the other will include only 

inverse-symmetrical 
2Z , 

4Z , 
6Z . 

 

3. Transforming of the load. Further simplifications in the 

calculation of symmetric systems (Figure 8.17, a) are associated with the 

decomposition of the load into symmetrical and inverse-symmetrical 

components. 

Using the property of mutual orthogonality of the diagrams, it is easy 

to show that, when a symmetrical load is applied to a symmetrical 

system, inverse-symmetrical unknowns become zero, and when a 

inverse-symmetrical load acts, symmetrical unknowns turn out to be zero. 

In relation to the design scheme of the frame shown in Figure 8.17, b, this 

means that it should be calculated as systems with three unknowns 1X , 

2X , 4X  (the primary system is shown in Figure 8.15, b), and the frame 

calculation for the action of inverse-symmetrical load (Figure 8.17, c) as 

systems with one unknown 3X . 
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Figure 8.16 
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Figure 8.17 

 

4. Breaking up multi-span frames. This method is used for both 

symmetrical and asymmetrical frames. Less computational work to define 

iк , will be if the diagrams of the internal forces in the primary system 

extend to small fragments of the frame, i. e., they are “localized” in the 

vicinity of the load. 

For a frame (Figure 8.18, a) with four unknowns in Figures 8.18, b, c, 

two variants of the primary system are presented. Analyzing the 

distribution of bending moments due to 1iX  in the frame shown in 

Figure 8.18, b, we can verify that none of the coefficients iк  is equal to 

zero. 

In the system shown in Figure 8.18, c, bending moment diagrams 

occur only on columns directly perceiving the action 1iX . Therefore, 

03113  , 04114  , 04224  , and the primary system is 

rational. 

 

8.9. Determining Displacements  

in Statically Indeterminate Systems 

 

To determine the displacements using the Mohr formula, described in 

section 7.6, it is necessary to construct in the system the bending moment 

diagrams caused by the given loading  (Figure 8.19, a) and the auxiliary 

loading (Figure 8.19, b). Then the required displacement will be 

calculated by the formula (8.24): 

k
kF

M M dx

EJ
  .                                (8.24) 
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Figure 8.18 

 

However, this method of calculation is not entirely convenient, since it 

will be necessary to calculate the statically indeterminate system twice. 

A simpler calculation method can be obtained from the following 

reasoning. If you load the primary system with a given load and primary 

unknowns, which have been determined from the canonical equations, 

then the diagram of bending moment in this statically determinate system 

(Figure 8.19, c) will completely coincide with the final moment diagram 

(Figure 8.19, a). Therefore, if we consider the state of the frame in Figure 

8.19,c as the initial one, then to determine the displacement of the point k 

it is possible to take a statically determinate system (Figure 8.19, d) as an 

auxiliary state. In this case: 

 
0

,k
kF

M M dx

EJ
                                   (8.25) 
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where 
0

kM  –is the bending moments in a statically determinate system 

due to 1kF  . 

 

 
 

Figure 8.19 

 
 

Another method can be used to calculate the same displacement: the 

diagram of bending moments caused by given load can be constructed in 

the primary system, and the diagram caused by 1kF  – in a given 

statically indeterminate system. We will show this. 

Applying reciprocity theorem to the states of the frame shown in 

Figures 8.19, a, b, we get: 
 

FkkFk FF  ,                                (8.26) 
 

where  1kF ;  
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F  are the forces acting in the state a  (this force is a uniformly 

distributed load q  in Figure 8.19,a);  

Fk  is the displacement caused by 1kF  in the direction of 

force F , (in this example, the area of the diagram of vertical 

displacements of the horizontal element). 
 

Since the diagrams in the states a  (Figure 8.19, a) and c (Figure 

8.19, c) coincide completely, the expression (8.26) is applicable to the 

frame states b (Figure 8.19, b) and c. In this case, as F, in Figure 8.19, 

c, the distributed load and the primary unknowns 1X  and 2X  are 

accepted. But the work of the primary unknowns on the displacements 

of the frame in the state b is equal to zero. Therefore: 

 
 

  FkkF F ,                                 (8.27) 
 

 

i. e., the right side of the expression (8.27) is the work of external forces 

applied to the primary system. This work is done on the displacements of 

a statically indeterminate system in state k . 

Note that in the above explanations, there were no restrictions on the 

choice of the primary system. 

Writing the expression (8.27) through the work of bending moments, 

we obtain: 
 


EJ

dxMM Fk
kF

0

,                              (8.28) 

 

where 
0
FM  is the bending moments diagram in the primary system (Figure 

8.19, e). 

Thus, when determining displacements in statically indeterminate 

systems, one of the “multiplied” diagrams can be built in a given statically 

indeterminate system, and the second – in any statically determinate one 

obtained from a given system. 

Let us turn to the calculations. In Figure 8.20, a diagram of bending 

moments in a statically indeterminate frame caused by a given load is shown, 
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and in Figure 8.20, b - diagram of bending moments in the same frame 

caused by 1kF . By the formula (8.24) we get: 

2 2 2 2

2 2 2 2

2 4
2

15 13 15 13
2 2

24 176 22 176 44 176 44 176 22

3 13 13 3
2 2

24 176 11 176 44 176 11 176 44

3 3 7 1
4   м.

6 176 11 352 88 1408

k
kF

M M dx

EJ

l l ql l ql l ql l ql

EJ

l l ql l ql l ql l ql

EJ

l l ql l ql
ql

EJ EJ

  

 
      

 

 
     

 

 
    

 



 

 

In Figure 8.20,c the diagram of moments in a statically determinate 

frame (primary system) caused by 1kF  is shown, and in Figure 8.20, d 

- plot of moments in the primary system caused by a given load. By the 

formula (8.25) we get: 

 
0 2 2 4 1

2
24 4 22 4 44 1408

k
kF

M M dx l l ql l ql ql

EJ EJ EJ

 
       

 
 m. 

 

 
Figure 8.20 
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According to the formula (8.28): 
 

0 2 41 2 1 3 1

3 8 2 176 1408

k F
kF

M M dx ql l ql
l

EJ EJ EJ
      m. 

 

It is clear that the calculations of displacements using formulas (8.25) 

or (8.28) are simpler than using the formula (8.24). 

 

8.10. Calculating Frames Subjected to Change of Temperature 

 and to Settlement of Supports 

 

When calculating the frames subjected to the thermal effect, the 

canonical equations of the force method are recorded in the form: 

 

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

0;

0;

0.

n n t

n n t

n n n nn n nt

X X X X

X X X X

X X X X

   

   

   

       


       


      
       

 

 

To calculate the free terms of the equations, formula (7.12) is used. 

In statically determinate systems, there are not the efforts caused 

by the action of the temperature. Therefore, the final diagram of 

bending moments in a given frame is constructed by summing up unit 

diagrams of moments multiplied by found from the equations values 

of corresponding unknowns: 

 

1 1 2 2 n nM M X M X M X    .                      (8.29) 

 

Kinematic check comes down to the verification of the frame 

displacements in the direction of redundant constraints, i.e checking the 

condition: 

 

1

0
n

s
it

i

MM dx

EJ 

    .                        (8.30) 

When calculating the frames subjected to the settlements of supports, 

the canonical equations are written in the form: 
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11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

0;

0;

0.

n n c

n n c

n n n nn n nc

X X X X

X X X X

X X X X

   

   

   

       


       


      
       

 

 

The free terms of the equations are calculated, in the general case, by 

the formula (7.13). 
 

E  x  a  m  p  l  e .  Construct diagrams QM ,  and N  caused by the 

action of temperature change in the frame (Figure 8.21, a). The height of the 

cross-section of the elements AC  and BD  equals to 1 0.3h  m, the element 

CD  equals to 2 0.4h  m. The coefficient of thermal linear expansion of the 

material equals to 
51.2 10    1/(

0
C), the bendimg rigidity is 60EJ   

МN·m2. 

The primary system in the initial and deformed states is shown in 

Figure 8.21, b. The coefficients of the canonical equations will be 

determined taking into account the influence of only bending moments. 

Using the diagrams 1M  and 2M  (Figures 8.21, e, g), we obtain: 

 

11 22 12

272 180 84
, ,

3EJ EJ EJ
      . 

 

For the calculating convenience of free terms t1  and t2  (the 

corresponding segments are shown in Figure 8.21, b) using formula 

(7.12), we write the used values of the calculating parameters in the Table 

8.1. 

 

Recall that in the calculations by formula (7.12) each term in it is 

assumed to be positive in the case when the corresponding directions of 

the elements deformation caused by unit forces and thermal action 

coincide. 
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Table 8.1 
 

№  

element h , m t , (
0

C) 

t  , (
0

C) 
,

1M m2 ,
1N m ,

2M m2 ,
2N m 

AC  0.3 –5 50 8 0 0 4 

CD  0.4 –5 50 24 6 18 0 

BD  0.3 –5 50 8 0 24 4 
 

1 11

50 50 50
5 6 8 24 8 5636.67 .

0.3 0.4 0.3

t N M

t
t

h




  
 


     

  
       

 
 

 

2 22

50 50
5 4 5 4 18 24 6250 .

0.4 0.3

t N M

t
t

h




 
  


     

 
        

 
. 

 

Following the calculation algorithm (section 8.7), we write the system 

of canonical equations in numerical form: 
 

1 2

1 2

272 84
5636.67 0;

3

84 180
6250.0 0.

X X
EJ EJ

X X
EJ EJ






   


   


 

 

Solving it, we find 1 52.8498X EJ  kN, 2 10.0590X EJ   kN. 
 

The static indeterminacy of the frame disclosed. There is not the 

diagram of moments caused by the external exposure in the statically 

determinate primary system subjected to the thermal effect.  
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Figures 8.21 
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Therefore, we construct the final diagram of bending moments by the 

expression: 
 

2211 XMXMM  . 
 

This diagram is shown in Figure 8.21, h. Bending moments in the frame 

depend on the values of the rigidity of the elements, i. e., one of the general 

properties of statically indeterminate systems is confirmed (Section 8.1). In 

parentheses are the ordinates for the initial data accepted in the example. 

We are performing a kinematic verification. The total diagram of unit 

moments sM  is shown in Figure 8.21, g. 

 

 

 



2

1

1 2
211.399 4 4

2 3

6
2 211.399 4 2 271.753 2 271.753 4 211.399 2

6 2

4
2 271.753 2 2 60.354 6 60.354 2 271.753 6

6

5636.67 6250.0 0.

S
it

i

M M EJ

EJ EJ



 




      



          


          

  

 

 

The condition (8.30) is satisfied. The diagrams Q  and N  are shown 

in Figures 8.21,i,k. 

 

E  x  a  m  p  l  e .  Construct diagrams QM ,  and N  in the frame 

subjected to the settlements of supports indicated in Figure 8.22,a. It is 

assumed that the rigidity of the frame elements equal to 60EJ  

МN·m2, and the settlements of supports equals to 1 2 0.01c c c    m. 

The given frame is twice statically indeterminate. Selecting the primary 

system of the force method (Figure 8.22, b), we write the canonical equations 

in the form: 
 

11 1 12 2 1

21 1 22 2 2

0;

0.

c

c

X X

X X

 

 

    


    
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We will construct the unit moments diagrams (Figures 8.22, c, d) and 

calculate the coefficients of canonical equations: 
 

11

225

3EJ
  ,       22

16

3EJ
  ,        12

20

3EJ
  . 

 

Considering the distribution of reactions in the support constraints due 

to 11 X  (Figure 8.22, c) and 12 X  (Figure 8.22, d), according to the 

formula (7.13) we get: 
 

 1 1 1 2 1 21 2.5 2.5 3.5 ;c k kR c c c c c c           

 

 2 2 2 20.5 0.5 0.5 .c k kR c c c c         

 

The canonical equations, after simple transformations, get the 

following form: 
 

1 2

1 2

225 20
3.5 0;

3 3

20 16
0.5 0.

3 3

X X cEJ

X X cEJ


   


  


 

 

Having solved them, we find: 
 

1 0.043125X cEJ  ,       2 0.039844X cEJ  . 

 

Since the displacements of the supports does not cause efforts in a 

statically determinate system the final diagram of the bending moments is 

constructed by the expression: 
 

2211 XMXMM  . 

 

It is shown in Figure 8.22, f. In parentheses there are the values of the 

ordinates of the moments for the accepted source data. Kinematic 

verification, as when calculating the thermal effect, is reduced to 

verifying the fulfillment of the condition: 
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0 ic
s

EJ

dxMM
. 

 

Figure 8.22 
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We will check it using the total unit diagram sM  (Figure 8.22, e): 
 

 

1 2 4
0.2156 5 5

2 3 6

2 0.2156 5 2 0.2953 7 0.2156 7 0.2953 5

3.5 0.5 0.

cEJ

EJ

c c


   


           

  

 

 

The check is performed. The diagrams Q  and N  are shown in 

Figures 8.22, g, h. 
 

8.11. Influence Line for Efforts 
 

To construct the influence line for any effort, it is necessary, first, 

using the well-known methods of structural mechanics, to obtain the 

dependence (analytical or numerical) of this effort due to the position of 

the force 1F    xfS  , and then, using this dependence, determine the 

ordinates of the influence line for all characteristic sections. 

If the methods of statics are used to determine the dependence  xfS   

then the corresponding method of constructing the influence line is called 

static one. 

In statically indeterminate systems, the effort in the cross-section of 

the element is determined by the expression (8.14). If it is used to 

construct influence lines mind, that the values of the primary unknowns 

iX  and the value of the effort in the cross-section k  of the primary 

system change due to the moving load 1F . Therefore, the expression 

(8.14) for constructing the influence line for the effort in the cross-section 

k  should be rewritten in the form: 
 

inf.line kS  = inf.line 
0
kS  + 1kS ( inf.line 1X ) + 

                         (8.31) 

+ 2kS ( inf.line 2X ) + … + knS  (inf.line nX ),  
 

where inf.line 
0
kS  is the influence line for effort S  in the cross-

section k  of the primary system;  
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kiS  is the effort in the cross-section k  of the primary system 

caused by 1iX  ( ),,2,1 ni  . 
 

We use this expression to construct the influence line for bending 

moment in the cross-section k of a once statically indeterminate beam 

(Figure 8.23, a). 

 
 

Figure 8.23 

 

Having selected the primary system (Figure 8.23, b), we will construct 

the diagram of the moments caused by the movable load (Figure 8.23, c) 

and caused by the unit unknowm 1 1X   (Figure 8.23, d). Then we 

determine: 

EJ

l

3

3

11  ,          
 
EJ

xlx
F

6

32

1


 . 
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From the canonical equation  

 

11 1 1 0FX     

we find: 
 

 
3

2

1
2

3

l

xlx
X


 . 

 

It follows that the influence line for 1X  is described by a curve of the 

third degree relative to the abscissa x  of the moving load 1F . It is shown 

in Figure 8.23, e. 

In statically determinate systems, influence lines for efforts have a 

rectilinear outline or piece-broken (a rectilinear outline on a limited 

length of the movement of force). Recall, for example, influence lines for 

support reactions in simple beams, influence lines for bending moments, 

etc. 

To construct influence line for bending moment kM , the expression 

(8.31) can be written in the form: 
 

inf.line kM  = inf.line 
0
kM  + 1kM (inf.line 1X ).          (8.32) 

 

In this example
2

1

l
M k   (Figure 8.23, d). Inf.line 

0
kM  is shown in 

Figure 8.24, b, and inf.line 11 XM k  is shown in Figure 8.24,c. 

Summing up two last influence lines, we get inf.line kM  (Figure 

8.24, d).  

The described method of constructing influence line can be applied to 

systems with a small number of unknowns using the “manual” (non-

automated) method of calculating ordinates. 

For complex systems, including frames, it is difficult to obtain 

analytical dependences of the required factor on the coordinate of the 

load 1F , therefore, numerical methods of solution are used for them. 

Using computer programs that implement methods for calculating various 
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systems, one can find the required effort caused by unit load in various 

characteristic cross-sections of the frame. 

 
 

Figure 8.24 

 

Thus, in order to construct the influence line for an effort, it is necessary 

to calculate the given system sequentially for several loadings by forces 

1F  applaied in several characteristic points. Let us explain this approach 

to constructing of influence lines using the example of a two-span frame 

(Figure 8.25) all of whose elements have the same bending rigidity. 

Suppose that a force 1F  can move along elements 4–8 and 9–13. We 

construct influence line for bending moment in cross-section 6. 

We accept three intermediate cross-sections on each of the bars and assume 

that all the elements of the frame have longitudinal rigidity EA . Next, 

we perform the calculation of given frame subjected to the six unit loadings 

(force 1F  is applied in each intermediate cross-section of elements 4–8 and 

9–13). From the calculation results for each load position, we select the 
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bending moment values in cross-section 6 and build with they the influence 

line 6M  (Figure 8.25). 

The static method in the presented form is currently the main method 

for constructing of influence lines for efforts and displacements in bar 

and continuum systems. 

 
 

Figure 8.25 

 

Such an approach to constructing influence lines for efforts (or other 

factors) is described in more detail in Section 9.11. 

Let us briefly explain the essence of the kinematic method of 

constructing influence lines for efforts in statically indeterminate frames. 

If for the given system having n redundant constraints, we take a 

statically indeterminate system with 1n  redundant constraints as the 

primary system, then the canonical equation of the force method for 

calculating the frame for the action of the force 1F  will take the form: 
 

   
0

1
11

1
11 

 n
F

n
X  .                            (8.33) 

 

Since by the theorem on reciprocity of displacements 
   1

1
1

1



n

F
n
F  , 

then: 
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 

 1
11

1
1

1 




n

n
FX




,                                     (8.34) 

 

where  
 1
11

n  is the displacement (in the system with 1n  unknowns) of 

the application point of force 1X  in its direction; it is calculated by 

“multiplying” the diagram 
 1
1

n
M by itself; 

 1
1
n

F  is the displacement (in the same system) of application point of 

force 1F , caused by force 11 X . 
 

The load 1F  can take any position on the frame elements, therefore, 

1F  determines the displacement of the frame elements from the force 

11 X . 

Thus, the expression (8.34) for constructing the influence line for 1X  can 

be written as follows: 
 

inf.line

 

 

1

1
1 1

11

.
n

F

n

diag
X






 


.                                (8.35) 

 

So, to construct an influence line for 1X  it is necessary to construct 

the displacements diagram caused by the load 11 X  of the frame 

elements along which the force 1F  moves, and divide all its ordinates 

by ( 11 ). 

The outline of the influence line turns out to be similar to the 

displacements diagram of the frame elements. The multiplier (
11

1


 ) is 

the similarity coefficient. This is the main advantage of the kinematic 

method. With its help it is easy to imagine the shape of the influence line 

for effort. For this, it is necessary to remove the constraint in which the 

required force arises and load the frame (or other system) by the 

appropriate force 11 X . With sufficient engineering intuition, it is easy 

to draw a diagram of displacements, i. e. the shape of influence line. 
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To construct, for example, the influence line for kM  in the statically 

indeterminate beam (Figure 8.24, a), it is need to set a hinge in the cross-

section k  and load the beam with bending moments 1X  (Figure 8.26). 

The diagram of the vertical displacements of the beam points will be 

similar to inf. line kM . 

 

 
 

Figure 8.26 

 

To construct the influence line 6M  in the frame (Figure 8.25) we set 

the hinge in the 6-th cross-section and load the frame with bending 

moments 11 X  (Figure 8.27). The diagram of the vertical 

displacements of the horisontal elements caused by the given unit 

moments will be similar to the influence line 6M . The ordinates 1F  of 

the displacement diagram, if necessary, can be calculated according to the 

rules set out in section 8.9. 

 
 

Figure 8.27 
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