ность, при переменном ее диаметре значительно меньше, чем при постоянном

Литература

- 1. Ивицкий, А. И. Проектирование и расчеты регулирующей сети осущительно-увлажнительных систем на торфяных почвах / А. И. Ивицкий, Г. И. Афанасик, А. И. Михальцевич. Минск: Ураджай, 1979. 80 с.
- 2. Ивицкий, А.И. Основы проектирования осущительных и осущительно-увлажнительных систем / А. И. Ивицкий. Минск: Наука и техника, 1988. 311 с.

УДК 624.827

Оценка прочности и устойчивости новых конструкций креплений откосов канала при неустановившейся фильтрации

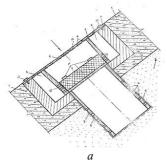
Файзиев Х., Жураев К. Т., Рахимов Ш. А. Ташкентский архитектурно-строительный институт Ташкент, Республики Узбекистан

В статье рассматриваются новые конструктивные решения крепления откоса, работающих в условиях изменения уровня грунтовых вод. Приведена методика расчета определения количества фильтрационных стаканов, обеспечивающих необходимую прочность облицовки и устойчивость откосов канала.

В практике эксплуатации гидротехнических сооружений оросительных и осущительных систем наблюдались деформации оснований, а также имелись местные нарушения устойчивости откосов облицованных и необлицованных каналов. На основе анализа выявлено, что все нарушения связаны с неустойчивостью креплений, неэффективной дренажной и противофильтрационной защитой. Обычно трассы каналов проходят в выемках различной глубины, в различных инженерно-геологических и гидрогеологических условиях. Первоначально уровень грунтовых вод в этих каналах находится ниже отметки каналов. Поэтому основной задачей на первом этапе эксплуатации сооружений является исключение фильтрационных потер из канала. В дальнейшем за счет инфильтрации из вышерасположенных каналов, водохранилищ и орошения прилегающих территорий происходит питание грунтовых вод и возможен подъем уровня грунтовых вод выше отметки канала. Очевидно, что такое положение может привести к неблагоприятным последствиям, особенно при быстром снижении уровня воды в канале. При этом на облицовку должны будет действовать значительное гидродинамическое давление грунтовых вод, которое может привести к выпору отдельных плит и нарушению целосности облицовки канала. Следовательно, изучение вопроса защиты облицовки каналов от воздействий указанных фильтрационных сил имеет большое практическое значение.

Наиболее надежными креплениями откосов каналов в аналогичных условиях являются те, которые при нормальном режиме работы канала, когда отсутствует подпор со стороны грунтовых вод, исключают фильтрации из канала, т. е. фильтрационные потери орошаемой воды, а при наличии подпора и при быстром снижения уровня воды в канале облицовка должна обеспечивать свободный выход грунтового потока в русло канала или отвод его в другую сторону. Благодаря этому исключается возникновение значительных гидродинамических давлений, и разрушение креплений откосов канала.

С целью обеспечения надежности работы крепления на восприятие основных нагрузок, действующих на облицовку при их наихудшем сочетании, принимают различные конструкции фильтрационных стаканов.


Нами разработана новая конструкция облицовок с фильтрационными стаканами, а также получен патент Республики Узбекистан [1]. Данная методика позволяет обеспечить организованный выход фильтрационных вод при сработке уровня воды в верхнем бьефе с заданными расходами изпод бетонной облицовки на ее поверхность и снизить взвешивающее давление воды на саму облицовку до допустимых значений, исключить суффозии в грунтах. Эти условия должны быть обеспечены достаточными размерами стаканов и их количеством на рассматриваемом участке. Исключение суффозии материала тела откоса обеспечивается правильным подбором материала фильтров стакана.

На рисунке изображена схема крепления откоса, разрез с фильтрационным стаканом (патент РУз № 332), полость которого перекрыта водонепроницаемой пробкой, находящейся в перфорированной конусообразной трубе оголовка в крайнем нижнем положении; на рис., б то же с открытой полостью при поднятии пробки до упора в фильтрующую ткань и перфорированную металлическую крышку в фильтрационном оголовке стакана.

Конструкция крепления представляет собой облицовку из бетонных плит, уложенных на песчаный грунт откоса, с зачеканенными в нее фильтрационными стаканами.

Конструкция фильтрационного стакана состоит из двух основных частей: трубчатого фильтра, заходящего в грунт, и непроницаемого оголовка. Трубчатый фильтр представляет собой полиэтиленовую трубу с перфорационными отверстиями в нижней ее части, обшитую фильтрующим нетканым синтетическим материалом типа дорнит или стеклотканью, на 326

верхнюю часть надевается оголовок, внутрь которого вставляется полиэтиленовая труба конусообразной формы, образуя при этом межтрубное пространство. В полиэтиленовую конусообразную трубу оголовка вставляется песчано-битумная (асфальт) пробка, обернутая пергаментом, перемещаемая при перемене направления действующего давления по каналу полиэтиленовой трубы оголовка до упора сверху выступами в перфорированную металлическую крышу, имеющую снизу прокладку из фильтрующего материала (типа дорнит или стеклоткани) и прикрепляемую к оголовку болтами.

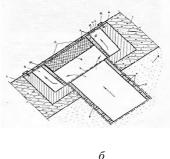


Рис. Крепления откоса с фильтрационным стаканом: a — закрытое положения стакана; δ — открытое положения стакана; l — бетонная монолитная плита; 2 — песчаный грунт откоса; 3 — полиэтиленовая труба; 4 — перфарационные отверстие; 5 — фильтр из синтетического материала; 6 — оголовка; 7 — полиэтиленовая труба конусообразной форме; 8 — межтрубное постранство; 9 — песчано-битумная пробка; 10 — пергаминовая прокладка; 11 — упорный выступ; 12 — металлическая крышка; 13 — болт

Конструкция крепления откоса работает следующим образом. В начальный период эксплуатации канала с максимальным уровнем его наполнения и при отсутствии грунтовых вод под облицовкой она должна быть водонепроницаемой и исключать потери воды на фильтрацию из канала. Это достигается тем, что фильтрационные отверстия полиэтиленовой трубы стаканов сверху в оголовке герметически закрыты непроницаемой асфальтовой пробкой, имеющей пергаминовую прокладку. В последующий период эксплуатации канала, связанный с подъемом уровня грунтовых вод до наивысшего его стояния, когда максимальный фильтрационный напор, взвешивающий облицовку, достигается при быстрой сработке уровня и полного отсутствия воды в канале (H=0), крепление должно обеспечить общую и фильтрационную устойчивость грунтового откоса.

Эта цель достигается тем, что под действием фильтрационного напора гидроизоляционная пробка с пергаминовой прокладкой, снижающей трение, выходит из нижней части полиэтиленовой трубы и автоматически перемешается в вертикальном направлении в конусообразном оголовке до упора в перфорированную крышку, открывая при этом отверстия в нижней части трубы, и грунтовая вода поступает по ним в межтрубное пространство, затем через перфорированную крышку в канал, снижая тем самым фильтрационной давление (рис., δ). Образуя между поверхностью оголовка и пробки зазоры, и грунтовая вода быстро выходит из-под плит, через них в канал, снижая фильтрационное давление (рис., δ)

В случае, когда гидростатическое давления в канале вновь окажется выше давления грунтового потока, пробка под действием гидростатического давления воды и собственного веса опускается до крайнего нижнего положения, перекрывая отверстия в полиэтиленовой конусообразной трубе, и перекрывает полость трубы стакана, предотвращая фильтрацию воды из канала.

Фильтрационная прочность откоса, исключение заиления стаканов и предотвращение механической суффозии обеспечиваются синтетическими фильтрами. Свободное перемещение пробки вверх-вниз обеспечивается за счет пергаминовой прокладки и придания внутренней поверхности полиэтиленовой трубы оголовка конусообразной формы.

Количество фильтрационных стаканов на участке канала устанавливается исходя из обеспечения устойчивости плит облицовки. В поперечнике канала устанавливается две группы стаканов — на левом и правом его бортах с шагом по высоте h. Шаг установки стаканов по высоте должен быть не больше допустимой разницы уровней воды под облицовкой и канала h, которая устанавливается из условия устойчивости плит при равенстве моментов всех сил относительно верхнего ребра и соблюдения условия предельного равновесия сил согласно зависимости [2]:

$$h^{2} + 3(H_{1} - l\sin\alpha)h^{2} + 3H_{1}(H_{1} - 2l\sin\alpha)h + \left[2(R_{1} + R_{2}) + G\cos\alpha\right]l\sin^{2}\alpha = 0, \quad (1)$$

где H_1 — уровень воды в канале над нижнем концом плиты; G — вес плиты; R_1 и R_2 — равнодействующие элементарных сил сопротивления в межплитных швах (т. к. $R=R_2$ и $R_3=R_4$ то в (1) суммарная величина этих сил учитывается выражением $2(R_1+R_2)$, она принимается равной $10\,\%$ от веса плиты); l — длина плиты поперек канала; f — коэффициент трения плиты по грунту (пленке); α — угол наклона откоса (плиты) над горизонтом.

Количество устанавливаемых стаканов *n* в одном поперечнике канала в левом и правом откосах вычисляется по формуле

$$n = \frac{2(H_c - h_0)}{h},\tag{2}$$

где H_c — максимальная глубина сработки уровня воды в канале; h_0 —высота установки первого стакана в откосе над уровням дна канала, принимаемая в пределах допустимой величины h, вычисленной по (1).

Расстояние между поперечниками ближайших групп стаканов устанавливают из условия непревышения над допускаемой величиной взвешивающего фильтрационного напора h_c в центре

$$h_c = h. (3)$$

Фильтрационный напор между поперечниками стаканов вычисляют по зависимости [3]:

$$h_c = \sqrt{H^2 - 0.73 \frac{Q_c}{k} lg \frac{R}{0.5\sqrt{a^2 + B^2}}},$$
 (4)

где H — мощность водоносного слоя песчаного массива над уровнем дна канала ($H \approx H_c$); R — радиус влияния группы стаканов, принимаемый для песчаного массива $R \approx 200$ м; K — коэффициент фильтрации песков; Q_c — дебит групп стаканов ($Q_c = \sum Q_p$); в — расстояние между группами стаканов в одном поперечнике.

Фильтрационный расход через фильтрационный стакан:

а) с плоским нижним торцом вычисляют по зависимости [3]:

$$Q = 4kr_0(H_c - h'), (5)$$

б) с перфорированным в нижней части фильтром вычисляется по зависимости

$$Q = 2\pi k r_0 (H_c - h'), \tag{6}$$

где r_0 — радиус стакана; H_c — напор воды на облицовку в точке установки стакана; $h^{'}$ — уровень воды в стакане.

Таким образом, исследованиям потверждено, что предлагаемая конструкция крепления откосов канала позволяет исключить выпор плит избыточным гидродинамическим давлением при высоком стоянии грунтовых вод и резком сбросе воды в канале, обеспечить надежность и долговечность облицовки в период эксплуатации, уменшает фильтрационные потеры из канала при любом стоянии уровня грунтовых вод.

Литература

- 1. Крепление откосов канала. Патент Республики Узбекистан № 332 опубликован в бюл. № 2, 1993 г.
- 2. Тугай, В. М. Влияние колебаний уровня воды в каналах на устойчивость сборного железобетонного крепления / В. М. Тугай // Мелиорация и водное хозяйство. Киев: Урожай, 1983. вып. 58. С. 59–63.
- 3. Аравин, В. И. Фильтрационные расчеты гидротехнических сооружений / В. И. Аравин, С. Н. Нумеров. М.-Л: Гослитиздат по строительству и архитектуре, 1955. 292 с.

УДК 628.112

Конструктивные особенности скважин для забора воды из подземных источников

Медведева Ю. А., Ивашечкин В. В., Кондратович А. Н., Чиникайло А. В.

Белорусский национальный технический университет Минск, Республика Беларусь

В данной статье авторами представлены типовые и усовершенствованные конструкции водозаборных скважин, применяемых в рыхлых водовмещающих породах.

Скважины наиболее часто используются для нужд водоснабжения, гидротехнического строительства и мелиорации и являются более распространенными типами водозаборных сооружений.

Водозаборная скважина предусматривает соответствие основным требованиям: обеспечить заданное количество воды с качеством, соответствующим составу воды выбранного водоносного горизонта, быть надежной в эксплуатации и иметь возможность проведения ремонтных и восстановительных работ [1].

Скважина состоит из следующих основных конструктивных элементов: направляющая колонна, кондуктор, промежуточные колонны (технические