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ABSTRACT

In this work, the authors have developed the procedure for calcula-
tion of mesh slabs on an elastic base modeled by an elastic homogeneous
isotropic layer affected by the external load. The history of development
of calculations of structures on an elastic basis demonstrates that, due
to the scientific and technical progress, methods for calculation of afore-
mentioned structures were improved and refined. This can be traced on
various models of the elastic foundation that were used to simulate real
soils in their natural occurrence or in an artificial base when setting up
fundamentally new problems of structural analysis.

Variety of practical tasks results in ambiguous modelling of the elas-
tic base. The authors refer to the works of Tarasevich A. N., Kozunova O.
V. and Semenyuk S. D. that provide extensive systematic review of elastic
base models for calculation of foundation beams, beam and foundation
slabs, as well as for calculation of cross tapes for shallow foundations.

The relevance and timeliness of the proposed work is due to the fact
that the issues of calculation of mesh slabs and the system of cross tapes
on an elastic base have not yet been fully studied. The authors are fa-
miliar with the works of M. I. Gorbunov-Posadov, 1. A. Simvulidi, G. Ya.
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Popov, S. D. Semenyuk, S. N. Klepikov, where various approaches are
used to conduct the researches in calculation of mesh slabs and spatial
monolithic foundations as the system of cross tapes on an elastic base.

The procedure proposed is based on the Ritz variational method and
the mixed method of structural mechanics using the Zhemochkin influ-
ence functions. To calculate the coefficients of canonical equations and
the absolute terms for the mixed method of structural mechanics by way
of the Zhemochkin method, the ratios of deflections with the normal
restrained in the center of the slab are used in the calculation.

The numerical implementation of the new general-purpose ap-
proach is carried out, as an example, for the rectangular foundation
slab with holes, symmetrically loaded by the uniformly distributed load,
on the elastic uniform isotropic layer. Graphical results of calculations
are given, describing the settlements of the foundation mesh slab and
the distribution of contact stresses under the slab.

Keywords: foundation mesh slab, elastic base, elastic half-space,
elastic uniform isotropic layer, Ritz variational method, Zhemochkin
method, mixed method of structural mechanics, influence functions,
settlements, contact stresses.

For citation: Bosakov S., Kozunova O. Calculation of foundation
mesh slabs on an elastic layer. In: Contemporary Issues of Concrete
and Reinforced Concrete: Collected Research Papers. Minsk. Institute
BelNIIS. Vol. 12. 2020. pp. 11-27. https://doi.org/ 10.35579/2076-
6033-2020-12-01.
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BocakoB Ceprei BUKTOpPOBMY, A-p TEXH. HayK, NPOGECCOp, FaBHbIA Hayy-
HbI coTpyaHuK, PYM «UHctuTyT BenHUUC»; npodeccop kadeapsl
«MaTtemaTtnueckmue MeToAbl B CTPOWUTEALCTBE», BEAOPYCCKUI HaLMO-
HaAbHbIM TEXHUYECKUI YHUBEpPCUTET, I. MnHCK (Beaapychb)

KosyHoBa OkcaHa BacuabeBHa, KaHpA. TEXH. HayK, AOLEHT, AOLEHT KadeAapbl,
HauyaAbHWK MPOEKTHO-KOHCTPYKTOPCKOrO OTAeAa, beaopycckuin rocy-
AAPCTBEHHbIN YHUBEPCUTET TPAHCMNOpPTa, I. foMmeAb (Benapych)

PACYET ®YHAAMEHTHbIX CETYATbIX NAUT
HA YIIPYITOmM CAOE

AHHOTALUA

B paccmampugaemoii pabome aemopamu paspabomaHa memo-
ouka pacuema yHOAMEHMHBLX CEMUAMbLX NAUM HA YNPY20M OCHO-
8AHUU, MOOENUPYEMOM YNPY2UM 00HOPOOHBLM U30MPONHbBIM C0EM,
noo delicmauem gHellHell Hazpy3KU. M3 ucmopuu paszsumus pacue-
ma KOHCMpYKyuil Ha ynpy2om 0CHO8AHUU 8UOHO, UMO MemoObl UX
pacuema cogepuleHCmMa08anucs U YMOUHANUCL NO Mepe pas3sumus
HAYUYHO-MexXHUUecKk0z20 npozpeccd. IMmMo MONIHO npocaedums Ha
DPA3NUUHBLX MOOENAX YNPY2020 OCHOBAHUS, KOMOPbIMU MOOeAUPO-
BAIUCL peaibHble 2PYHMbL 8 eCMeCm8eHHOM 3aie2aHuu Wal 8 uc-
KYCCMBEeHHOM OCHOBAHUU NPU NOCMAHOBKE NPUHYUNUANIBHO HOBBLX
3adau pacuema KOHCMpyKyuil.

PasHnoobpasue npakmuueckux 3a0au npugooum K HeoOHO3HAu-
HOMY MO0enUupOoB8aHU yNpy2020 OCHOBAHUS. ABMOPbL CCbLAAIOMCSA
Ha pabomwst A. H. Tapacesuua, O. B. Kosynosoii u C. /]. CemeHroka,
8 KOMOpbLX npugedeH OOWUPHBLIL cUCMeMAMU3UPOBAHHDLIL 0630p
Modenell ynpye0eo 0CHO8AHUS 0ns1 pacdema @yHOAMeHMHbLX 6a-
JI0K, OANOUHBIX U hyHOAMEHMHDBIX NAUM, A makyce 0 pacuema
nepexpecmHblx JeHm @gyHO0aMeHmo8 MelK020 3a0NCeHUSL.

AKmyanbHOCMb U c80e8peMeHHOCMb npediazaemoll pabomol
8 MoM, UmoO B80NPOCbL pacyema CemMuaAmMbslX NAUM U CUCTMeMbl
nepeKpecmHblX JieHM HA YNpy20M OCHO8AHUU 00 HACMOAWe20
8peMeHU He UcCCned08aHblL 8 NOJHOU Mepe. ABmopam U38eCmHbl
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pabomut M. U. TopbyHosa-Ilocadosa, M. A. Cumsynudu, I. 4. [Tonosa,
C. /I. Cementoka, C. H. Knenukosa, 8 KOmopblx pa3jauuHbLMU NOO-
xodamu nposedeHbl UCCIE008AHUS NO pAcUemy cemuamslx naum u
NPOCMPAHCMBEHHBIX MOHOJUMHBIX HYHOAMEHMO8, KAK CUCMeMbl
nepexpecmHblX leHm Ha ynpy20M 0CHO8AHUU.

IIpednazaemasns memoouka 0CHOBAHA HA 8APUAUUOHHOM Memo-
de Pumua u cmewaHHom memode CMpoOUMeNbHOU MeXAHUKU C UC-
nonv3osanuem PyHxkyuil sausHus KemoukuHa. /lns onpedeneHus
K03 PuyueHmMo8 KAHOHUUECKUX YPABHEHUI U c800600HbIX UNEHO8
CMEUlaHHO20 Memodd CMpOUMEeNbHOU MeXaHUuKUu uepe3 Cnocob
JKemoukuHa e pacueme UCNONBL3YIOMCS COOMHOWEHUS npoaubos
C 3auiemMaeHHOTl 8 UeHMpe NUMbL HOPMAJLBIO.

YucneHHas peanusayus HOB020 YHUBEPCANbHO20 N00X00a Bbl-
NoJIHeHA HA npumepe CUMMEMPUUHO HAPYHCEHHOU PABHOMEpPHO-
pacnpedesieHHOU HA2PY3KOU NPAMOY201bHOU HyHOaAMeHMHOU nau-
mblL ¢ omeepcmMusAMU HA YNPY20M 00HOPOOHOM U30MPONHOM CJLOe.
ITpusoodsamcs epaguueckue pezyabmamsl pacuema 051 0cadokK PyH-
JdameHmMHOIl cemuamotil numMsl U pacnpeodesieHuUst KOHMAKMHbLX HA-
npaxceHutl nod naumotl.

KirroueBbie c1oBa: GyHZaMeHTHas1 ceTyaTas IUIUTa, YIPyroe oc-
HOBaHWe, YIIPYroe IOJYIIPOCTPAaHCTBO, YIIPYTHil OAHOPOAHBINA H30-
TPOIIHBIN CJIOM, BapHallMOHHBIN MeTo/ PuTiia, crioco6 YKeMouKrHa,
CMeIIaHHBIM METO/] CTPOUTENbHOM MeXaHWKH, GpyHKIWU BIUSAHUA,
0Ca/IK, KOHTaKTHbIE HATIPSIXKEHUS.

JAna unurupoBaHusa: bocakoB, C. B. Pacuer ¢yHgameHT-
HBIX CeTYaThIX IUIUT Ha yrpyrom cioe / C. B. Bocakos, O. B.
KosynoBa // IIpoGieMbl COBpEMEHHOro OeTOHa U >KeIe300eTo-
Ha : ¢6. Hay4d. Tp. / VH-T BenHUUC; peakon.: O. H. JlemkeBu4
[ ap.]. — Munck, 2020. — Beim. 12. — C. 11-27. https://doi.org/
10.35579,/2076-6033-2020-12-01 (aHm. g3.).

INTRODUCTION

Calculation of structures on elastic bases is a branch of
structural mechanics. The problem of calculation of these
structures comprises the determination of reaction pressures
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(contact stresses) arising under the bed of foundation structures,
and the determination of structure settlements. Also, determining
the stress-strain state of a structure itself, lying on an elastic base
[1, 2], is among the primary problems.

The history of development of the procedures for calculation of
structures on an elastic base demonstrates that, due to the scientific
and technical progress, methods for calculation of aforementioned
structures were improved and refined [1-6]. This can be traced
on various models of the elastic base that were used to simulate
real soils in their natural occurrence or in an artificial base when
setting up fundamentally new problems of structural analysis.

Variety of practical tasks results in ambiguous modelling of the
elastic base. Choosing a computational model of the elastic base
for various types of soils is especially difficult. The overview of
models of the elastic base for calculation of solid-state foundation
beams, beam slabs and foundation slabs is available in [7, 8].
The monograph by Semenyuk S.D., within the scope of the static
calculation of cross tapes for shallow foundations, provides
systematic description and classification of models of the elastic
base [9] with further practical applications.

While the hypothesis of linear distribution of reactive stresses
[1, 2, 5] was initially considered to be satisfactory, then, with the
extensive construction of railway tracks and pontoon structures,
the Fuss-Winkler-Zimmerman model gained momentum [10,
11]. However, it was also found to be inadequate for the real
behaviour of cohesive soils. This has resulted in the elastic half-
space model (for the problem formulation in spatial terms) and
the generally-known Boussinesq’s solution for this model [2,
12], and, for the flat-type problem formulation, the elastic half-
space model with the Flamant solution [2, 8], respectively. Later,
various modifications and combinations of the aforementioned
models arose. The combination of the elastic half-space model and
Winkler model is quite successfully appropriate for calculation of
structures on layered non-homogeneous bases. These bases are
used in arrangement of foundations on sandy cushions, and they
are simulated by combined models [13, 14].
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In mechanical terms, calculation of structures on the elastic
base means solving the contact problem of contacting bodies [15].
These problems are reduced to solving the integral equations,
with their solution being the function of the integral equation
kernel and the shape of contacting bodies [16]. With simple forms
of contacting bodies, the most difficult task is to determine the
integral equation kernel also referred to as the Green function for
contacting bodies [6, 15, 16]. The Green function is a function of
displacements of points on the elastic base surface resulting from
an impact of the concentrated unit force [6].

In engineering practice, solving each contact problem through
the integral equations is reasonable due to extensive mathematical
calculations. Therefore, Zhemochkin method [17] reducing the
contact problem to the structural mechanics problem [20, 21] is
used successfully for practical purposes.

The matters of calculation of foundation mesh slabs and the
system of cross tapes on an elastic base have not been fully studied so
far. Authors are familiar with the works of M. I. Gorbunov-Posadov
[2], I. A. Simvulidi [18], G. Ya. Popov [19], S. D. Semenyuk [9],
S. N. Klepikov [4], where various approaches are used to conduct
researches in calculation of mesh slabs and spatial monolithic
foundations as a system of cross tapes on an elastic base.

Below, the common approach is used for calculation of mesh
slabs on a linearly deformable base that was proposed by the
authors previously and tested numerically for the elastic half-
space in the article [23]; also, it can be developed, taking physical
nonlinearity of slab material into consideration [22]. This general-
purpose approach is based on Zhemochkin method [17], making
it possible to calculate, in unified terms, mesh slabs or the system
of cross tapes, irrespective of their shape and stiffness, at various
models of an elastic base for any vertical loads. The numerical
implementation of the approach proposed is made by means of the
example of a rectangular foundation slab with holes, on an elastic
homogeneous isotropic base, loaded symmetrically by a uniformly
distributed load.
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The problem formulation and the linear calculation algorithm.
The rectangular foundation slab is studied as a mesh slab on an elastic
base, with the dimensions of LxB and with the uniform thickness of h,
with rectangular holes (there dimensions are a) and b), loaded by the
vertical load (Figure 1).

L

+

Figure 1. Rectangular foundation slab with holes, or mesh slab

The following hypotheses and assumptions are accepted:

- for a mesh slab or a foundation made of cross tapes, the thin slab
bending hypotheses [15] are true;

- ties between the slab and the elastic base can be both in
compression and in tension;

- shear stresses in the zone of contact between the slab and the
base are disregarded;

- the length a and width b of holes in a slab meet the relation

5o (Min(L,B)’(MingL,B)D 6.

a

These relations are usually applied in practice of construction of
shallow foundations built as an in-situ concrete slab with holes, i.e. a
mesh slab.

In the work proposed, the problem is formulated to calculate
contact stresses under the mesh slab bed, the mesh slab settlements
and internal forces in a slab resulting from vertical load.

Solving the problem. We use Zhemochkin method [17] to solve
the problem. We divide the slab into equal rectangular fragments
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and put a tie in the centre of each fragment to implement contact
between the slab and the elastic base. It should be noted that the tape
width must be divided into two or more fragments to take the effect
of torques into consideration. We assume that the force in a tie results
in a uniform distribution of contact stresses within each fragment.

We compose the system of linear algebraic equations (SLE) for
the mixed method of structural mechanics

ré‘qu +"'+51,an +u,— Py, —¢yx1 +A =0

5n’1X1+...+5n,an+u0+¢xyn ¢yx +A, , =0

S X, +R=0

i=1 , (D
Zn:Xz’yi +MxR :O
i=1

Zn:Xl.xi +M =0,

i=1

where & . is a mutual displacement of the cross-cut tie with the
number i resultmg from the impact of unit forces applied in the j™
Zhemochkin tie used to implement the contact between the slab and
the elastic base. It is a sum of two items [17]: X, is an unknown force
in the i Zhemochkin tie; u, ¢, @, are unknown vertical and angular
displacements in the restramt inserted in the centre of the slab; x,
¥, are the coordinates of the centre of the rectangular Zhemochkm
fragment with the number i; A, is a displacement of the point i in
the mesh slab with the restrained normal due to the impact of the
external load F; R, M, M, are the resultant of the external load and
the torque of the resultant about the axis X and Y respectively; n is the
number of Zhemochkin fragments.
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The coefficients at unknown values §,; in the SLE for the elastic
half-space with the modulus of elasticity E and the Poisson ratio v,
are calculated using the equation [17]

1_ 2 2
O, :ﬁﬁzk"'L_WEk’ (2)
v rmEA T D¢

where W, is a vert1ca1 displacement of the middle of the ith
fragment in the mesh slab with the restrained normal due to the
impact of the unit force applied in the point k of the mesh slab; L
is the slab size along the direction of the axis OX; Ax is the size of
the Zhemochkin fragment along the axis OX; F,, is the dimensionless
function for determination of the vertical dlsplacement of the
point i on the surface of the elastic base due to the impact of
the unit force distributed over the fragment with the number k;
v,, E,are the Poisson ratio and the modulus of elasticity of the elastic
base.

The dimensionless function F,, in the equation (2) are calculated
using the equations from the monograph [14], namely

2 2
F=2 2 lun| S St | en| 1 [t ||
’ b c c b b b

Fa- L (3)
;= x|
For an elastic homogeneous isotropic layer pivotally connected
with the non-deformable base, vertical displacements of the elastic
layer surface due to the concentrated force P are calculated using the
equation (2.13) from the monograph [6]

PA-V)|1 1& T+ [ 2h
W(R)=——2| —+-Sqg ’_p
nE, YR e @

R h Ja—e 2
0 h=0 R. 2
( : ]
hh

19



where R = \/xz + y2 is the radius vector of moving points with
the coordinates (x, y) on the analysed surface of the elastic layer;

h is the elastic layer thickness, m;

I' (n+1) is the gamma function [17];

P (LJ is the Legendre polynomial [17];

VR? +4h’

a, are indefinite coefficients for expansion in series.

The following values were calculated in the monograph [6]: a, =
-1;a,=-3/2;a,=-1;a,=-1/3;a,= 1/18;...

After integration (4) over the area of the rectangular fragment
with the sizes of Ax-Ay, we obtain the equations for calculation of
displacements of the centre of Zhemochkin fragment with the number
i due to the impact of the concentrated force equal to 1, applied in the
centre of the fragment with the number k.

The first addend in the equation (4) determines the function of
vertical displacements for the elastic homogeneous isotropic half-
space (Boussinesq’s solution), it is integrated precisely (it is singular);
other addends are not singular and not integrated. For practical
calculations in the equation (4), the series [6] can be limited to five
terms only.

The following equation for displacement of the point M (x, y)
was also derivegl in the monograph [6]

d, x b (- bY + (3, A7
Ay X - a+\/(x —a)’ +(y,— d)

+y,*6‘]nxi_a+\/(xi—a)'+(}’i—C)'
IV(JC y) ]*Vé Ay xi_b+\/(xi_b)2 +(yf_c)2 N )
UGN ¢) - - 5

TEEOAX +xi7b]nyi_d+'\/(xi_b)‘+(yf_d)‘
Ay yi—c+\/(xi—b)2+(yf—c)2

Y-ap yl.—ch\/(xl.—a)2 +(y,—¢)
Ay —d+ (o —a) +(y,~d)
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+1—v5 Zan I'(n+1) _p : 2h ___|
nEh 15 4+(xl,ka)2+(yifyk)2 2 \/(xika)‘ (V= y) Al
h2

Let’s write the equation (5) in terms of the dimensionless function
F;;, namely

1-v]
W(x;;yi):_OIF > (6)
nEAx
where -
.,"‘l; _dhl x!. *b ‘Fr\/(xz 75)2 +(-yz 7d)2 +
A:l'. xz - a+\/(xz _a)2 +(v1‘z _d)2
e —a+://(x! )+ - |
Vx4 J(x —b) 4+ (3, —c)
F - NG O @
x,~b ¥, —d+(x —BY + (3, —d)
T+ i ]Il +
A}:‘ J"{ —Cc+ \/(xz _b)2 + (J"i - 0)2
+x1 _a]ll J-"!. _c+\/(xi _CT)2 +(J.z _6)2
LN y—de a0
+% ' a, F(n+l) n+11Dn[ 5 2 2 2 |
) (4+(x,-—xk)2+(yi—}’k)2J2 \/(xz’_xk) 0 y) + 4k
hZ

The greatest difficulties arise from determination of deflections of
a mesh slab with the normal restrained in its center. Supposing that
the slab is solid, we could use the solution given in the monograph [9].

Therefore, in the work under consideration, to calculate the
deflections of a mesh slab with the normal restrained in its center, the
Ritz method was applied where, as the basis functions, the first five
partial Clebsch solutions [6] were accepted, meeting the boundary
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conditions in terms of displacements in the restraint. Therefore, the
following deflection function was accepted for calculation of the
deformation energy [6]

_ i yZ x2 y2 Xa/ xZ y y x2 yZ
W(x’y)_A"[a+ ]+A(g2 sz+A R (a b2]+A b(a sz, (8)

where Ai are unknown coefficients calculated according to the
Ritz method [21], subject to the condition of the minimum of the po-
tential energy of the slab with the reatrained normal and the concen-
trated force applied to it.

Then, the system (1) was prepared and solved, and calculated forc-
es in Zhemochkin ties were used to calculate the mesh slab settlements;
they, in turn, were used to calculate torques and transverse forces in
slab sections according to known equations [15] and to calculate con-
tact stresses in the zone of contact of the slab with the elastic base.

Calculation results. Let’s calculate the square reinforced-con-
crete slab with the plan dimensions 13 m x 13 m, with four square
holes, a = b =5 m. The flexural stiffness of the slab is D = 5000 kN-m.
The slab is placed on the elastic half-space and the elastic homogene-
ous isotropic layer, pivotally connected with the non-deformable base
with constant parameters of elasticity, v, =0.35 and E, = 20 MPa,
affected by the uniformly distributed load, 10 kPa.

“ W//W//—fx\m@\_

E
|
S \«\\v/ﬂ//m/ﬁ

Figure 2. Equal displacement curves (m) for the mesh slab on the elastic half-space
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The slab was subdivided into 156 equal rectangular Zhemochkin
fragments and in two fragments along the tape width.

See Figures 2, 3 for equal displacement (settlement) curves for
the mesh slab, and Figures 4, 5 for equal contact stress curves for the
mesh slab, with different models of the elastic base (see Figures 2, 4
for the elastic half-space, and Figures 3, 5, for the elastic layer).

Figure 4. Equal contact stress curves (kPa) for the mesh slab on the elastic half-space
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Figure 5. Equal contact stress curves (kPa) for the mesh slab on the elastic isotropic layer

SUMMARY AND CONCLUSIONS

1. The article offers non-sophisticated but general-purpose
approach, based on the Zhemochkin method, for calculation of
a mesh slab on an elastic base affected by the vertical load. The
example described provides the solution both for the elastic half-
space and the elastic isotropic layer. This result confirms the fact that
the dimensionless function F;; in the equation (2) is a characteristic
of the elastic base model, and its variation in accordance with [17]
allows calculations of mesh slabs with various elastic base models.

2. To calculate the mesh slab according to Winkler model, the
equation for the influence function (2) is assumed to be F}’ ;=0,i#k

and F, ;= A . ) ) o
bR Ax Ay where K is the Winkler bedding coefficient for
the base.

3. Using the results given in authors’ work [22], the approach of-
fered can be generalized to the calculation of the mesh slab, with its
material’s physical non-linearity taken into consideration.
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