Влияние дефектов кристаллического строениясталей на абразивную износостойкость стали

Студент гр. 81А-19 Хакимов С.Б. Ассистент, Мирзарахимова З.Б. Старший преподаватель, Пардаева Г.Т. Ташкентский государственный технический университет, Узбекистан, г.Ташкент

В предыдущих исследованиях [2] было установлено, что повышение температуры закалки или нормализации стали способствует повышению плотности дефектов кристаллического строения. Как видно из результатов (рис.1) испытаний отпущенных сталей с равным содержанием углерода для каждой марки стали (35, 45, У8), наблюдается своя линия зависимости износа от плотности дефектов кристаллического строения. При равной величине β (220) износостойкость сталей значительно различается. Ступеньки между линиями объясняются различием включений карбида в матрице отпущенных сталей. Из рисунка видно, что разрывы между величиной износовтерм улучшенном состоянии сталей меньше, чем после среднего отпуска (350°C). Это означает, что влияние на абразивную износостойкость стали карбидных частиц, ослабевает с их коагуляцией и увеличением меж карбидного расстояния.

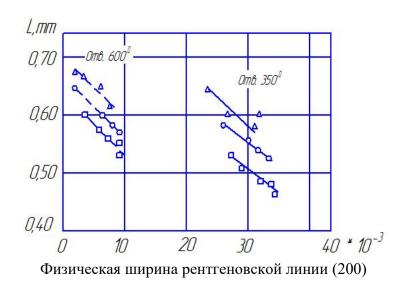


Рис. 1 - Зависимость абразивного износа (L) сталей Δ -35, о -45, \Box -У8 от физической ширины рентгеновской линии.

Влияние межкарбидного расстояния на величину износа изучали на термоулучшенных образцах сталей. Размеры частиц цементита и расстояния между их центрами определяли на электронномикроскопическких снимках реплик. Межцементитные расстояния для сталей 35, 45 и У8 составляли 0,96; 0,83; 0,68 мкм соответственно при среднем диаметре частиц 0,18-0,20 мкм. Полагая, что при данных размерах микрочастиц они являются недеформируемыми, уменьшение величины абразивного износа (Δ L) износа за счёт присутствия дисперсных частиц цементита при равной плотности дислокаций можно описать уравнением Срована

$$\Delta L = K*1/\lambda$$

где K - константа материала, для изученных сталей равна 0,1305 λ - среднее расстояние между частицами цементита, мкм.

С целью выяснения влияния температуры закалки на кинетику образования и величину карбидных частиц были проведены эксперименты на образцах стали 45, закаленных от различных температур и отпущенных при 600^{0} С. Результаты исследования кинетики распада пересыщенного твердого раствора-мартенсита при отпуске показали, что на дилатометрических кривых, снятых с образцов, закаленную при 860^{0} С, первый перегиб наблюдается в интервале $122\text{-}165^{0}$ С, а второй - при 270^{0} С. На динамограммах образцов, закаленных с 1100^{0} С первый перегиб, начинается уже при 108^{0} С, а второй при 250^{0} С. Завершается процесс выделения карбидных частиц у обоих образцов при одной и той же температуре - 405^{0} С (табл.1).

Таблица 1 - Температура образования карбидов железа в стали 45 при отпуске

Периоды	Температура закалки, 0 С	
	860	1100
Начало образования ε - карбида	122	103
Конец образования є - карбида	165	165
Начало образования цементита	270	250
Конец образования цементита	405	405

Таким образом, повышение температуры закалки стали 45 до 1100^{0} C способствует более раннему распаду перенасыщенного твердого раствора, как в области образования ε - карбида (на 14^{0} C), так и области образования цементита (на 20^{0} C).

Наблюдаемое объясняется увеличением плотности дислокаций с повышением температуры закалки стали, с максимум при 1100^{0} C [3], и сегрегацией атомов углерода на дислокации. Чем выше плотность дислокаций, тем больше сегрегаций на них атомов углерода (0,16-0,18%), которые являются потенциальными источниками для образования карбидов железа. Это подтверждается экспериментальными данными. Встали 45, закаленной от 860^{0} C, физическая ширина рентгеновской линии β (220), косвенно характеризующей плотность дислокаций, равна $53*10^{-3}$ радиан, а содержание углерода в твердом растворе около 0,30%, у образца закаленной от 1100^{0} C соответственно $63*10^{-3}$ радиан и 0,20%.

Изменение температурных интервалов распада мартенсита должны были отразиться и на морфологии карбидов железа. Электронно-микроскопические исследования показали, что выделение дисперсных карбидных частиц у образцов, закаленных от 1100^{0} C, имеет четко выраженную ориентацию по отношению к бывшим мартенситным иглам, чего нельзя сказать о выделение карбидов у образцов, закаленных от 860^{0} C.

Интересно отметить, что повышение температуры отпуска до 680° С приводит к резкому укрупнению и коагуляции карбидов в образцах, закаленных от стандартной температуры, в то время как в образцах, закаленных с 1100° С, они охраняют свою ориентированность и имеют меньше тенденции к росту. Наблюдаемое объясняется взаимной стабилизацией полигонизованных дислокаций с включениями карбидов, что и препятствует коагуляции и укрупнению последних. Чем выше плотность дислокаций встали, тем меньше вероятности роста и коагуляции карбидных частиц (у образца, закаленной от 1100° С).

Эксперименты по изучению распределения карбидов по размерам в образцах, отпущенных при 600^{0} С, показали (рис.2), что доля мелких карбидов (до 0,1 мкм) после закалки от 1100^{0} С составляет 45%, а в образцах, стандартно закаленных - 31,4%. Крупные же карбиды (0,4-0,5 мкм) в образцах, закаленных от 1100^{0} С вообще не встречаются, в то время как после стандартной закалки (860^{0} С) их доля составляет 5-10%.

Таким образом, повышение температуры закалки до 1100^{0} С способствует при отпуске более раннему образованию карбидов. Кроме того, образовавшиеся карбиды железа являются более дисперсными и стабильными, чем встали, закаленной от стандартной температуры. Это является следствием увеличения протяженности субграниц, в которых сегрегируют атомы углерода и образуются карбиды железа.

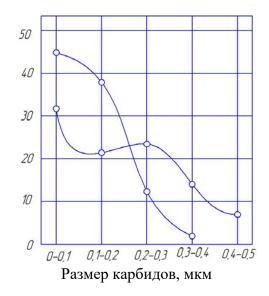


Рисунок 2 - Распределение карбидов железа (Fe_3C) по размерам в закаленной и отпущенной при 600^{0} C стали 45. Закалка от: $1-860^{0}$ C, $2-1100^{0}$ C.

Список использованных источников

- 1. Инагамова Д.А., Мухамедов А.У. Влияние наследственности исходной структура при фазовой перекристаллизации стали на ее износостойкость // "Техника и технология" Москва, 2011. №1. С.42-45.
- 2. Мухамедов Т.А., Шамахсудов С.М. Соотношения между абразивной износостойкостью и параметрами структуры стали // Изв. АН УзССР, сер. техн. наук, 1989 №1, С.61-65.