Изменения материала зоны сварки при изменениях состава сгустка микрочастиц

Ушеренко С.М., Тарасевич А.Л., Панько А.Н. Белорусский национальный технический университет

Установлена возможность синтеза новых химических элементов в рамках эффекта сверхглубокого проникания (СГП). Особый интерес вызван возможностью синтеза в зонах сварки экзотических химических элементов – лантаноидов.

Использование эффекта генерации дополнительной энергии позволяет реализовать возможность синтеза новых химических элементов. В зоне сварки металлических материалов (зоны локального плавления с изменённым уровнем свойств) - возможно создание новых металлических композитов. Внимание к аномалии синтеза новых химических элементов акцентируется на изменении импульсов давления. В современных условиях эффекты слипания ядер атомов стали эффективным инструментом создания новых материалов. Такой подход позволяет создать новый вариант процесса динамического массопереноса и синтеза новых химических элементов. В условиях такого воздействия обнаружены аномалии зоны сварки.

Оригинальным вариантом изменения уровня состава и свойств является прошивка объемов сваренных стальных заготовок сгустками микрочастиц (размеры меньше чем 100 мкм) [1]. Известно, что специфической особенностью процесса сверхглубокого проникания сгустков микрочастиц в объем твердого тела является генерация дополнительной энергии и за счет этого эффекта дополнительное проникание ударников [2].

Аномалии синтеза новых химических элементов в объеме стали наблюдали при изменениях уровня динамического воздействия. При кумуляции энергии в локальных зонах реализуются качественные изменения в структуре и, соответственно, в свойствах материала. В зоны сварки дополнительную энергию можно вводить различными способами: в форме термической активация; в виде упругопластической деформации (механическая активация); в виде облучения.

Эффекты слипания атомных ядер являются эффективным инструментом для создания новых материалов. Импульсная перестройка материалов позволяет создать новые изменения в области механики деформируемого твердого тела. Генерируемая при проникании сгустков микроударников в стальную преграду энергия позволяла изменять атомы, например, синтезировать изотопы Mn^{55} и Fe^{55} . Пульсации энергии внутри металлического твердого тела проявляются в форме «солитонов» высокого давления [1].

В экспериментальных исследованиях в качестве рабочего вещества использовали частицы карбидов кремния, окиси алюминия, свинца и меди. В режиме СГП сгустки частиц свинца или окиси алюминия формировали в объеме стали армирующие волокна. Сталь преобразовывалась в композиционный стальной материал. Применение сгустков из микрочастиц Рb для насыщения стали 40 было основано на том, что в этих экспериментах химический элемент Рb являлся маркером. В синтезированном армирующем волокне наблюдали разброс концентрации синтезированного марганца в диапазоне 32 – 40 масс. %, алюминия в диапазоне до 13,99 масс. %, свинца в диапазоне 16,11 – 19,03 масс. %.

Была создана зона сварки между сталью 10 и сталью $110\Gamma13$. Образец длиной 110 мм был подвергнут динамическому воздействию сгустком микрочастиц SiC. Результаты анализа показаны на рисунках 1 и 2.

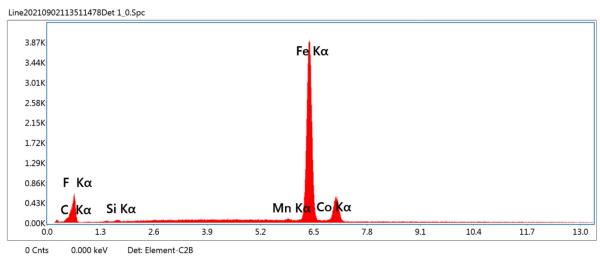


Рисунок 1 - Результат микроанализа материала зоны сварки в зоне Сталь 10 -Сталь $110\Gamma13$ после прошивки сгустком SiC.

Таблица 1. Состав материала зоны сварки после прошивки сгустком частиц SiC

Element	Weight %	Atomic %	Net Int.	Kratio	Z	Α	F
CK	1.98	8.24	6.16	0.0053	1.3062	0.2029	1.0000
FK	2.13	5.60	43.32	0.0137	1.1706	0.5499	1.0000
SiK	0.44	0.79	7.15	0.0020	1.1548	0.3870	1.0029
MnK	0.63	0.58	8.38	0.0070	0.9712	0.9955	1.1388
FeK	93.36	83.56	980.93	0.9239	0.9879	1.0009	1.0008
CoK	1.46	1.23	13.00	0.0139	0.9667	0.9850	1.0026

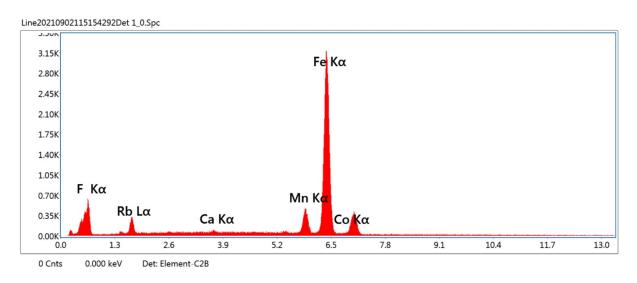


Рисунок 2 - Результат микроанализа материала зоны сварки в зоне Сталь 10- Сталь $110\Gamma13$ после прошивки сгустком SiC + Cu.

Таблица 2 - Состав материала зоны сварки после прошивки сгустком частиц SiC + Cu

Element	Weight %	Atomic %	Net Int.	Kratio	Z	Α	F
FK	2.92	8.23	34.29	0.0122	1.1842	0.3521	1.0000
RbL	4.54	2.84	31.85	0.0222	0.8978	0.5466	0.9997
CaK	0.57	0.75	9.35	0.0058	1.1119	0.8910	1.0369
MnK	8.83	8.59	99.25	0.0930	0.9831	0.9903	1.0822
FeK	81.94	78.48	772.02	0.8172	1.0002	0.9947	1.0024
CoK	1.21	1.10	9.60	0.0115	0.9788	0.9681	1.0047

При экспериментальном исследовании процесса прошивки сваренных стальных образцов Сталь 10 — Сталь $110\Gamma13$, подвергнутых динамическому нагружению в режиме сверхглубокого проникания сгустками микрочастиц SiC и SiC + Cu, были получены следующие основные экспериментальные результаты:

- 1. При прошивке сварной конструкции сгустками микрочастиц SiC в режиме СГП было установлено, что состав зоны сварки после динамической обработки включал в себе углерод 1,98 %, кремний 0,44%, марганец 0,63%, а железо 93,3%.
- 2. При прошивке сварной конструкции сгустками микрочастиц SiC + Cu в режиме СГП было установлено, что состав зоны сварки после динамической обработки включал в себе углерод 0%, рубидий 4,54%, марганец 0,83%, а железо 81,9%.
- 3. Наиболее существенными отличиями результатов обоих экспериментов являются: во втором варианте отсутствовал углерод (из сталей 0 %), концентрация железа уменьшилась на 10%, а также был синтезирован лантаноид рубидий -4,5%.

Литература

1. Динамическая модификация металлов/ Е.И. Маркович, Ю.С.Ушеренко, С.М. Ушеренко; под общ. ред. Е.И. Маруковича; Национальная академия наук Беларуси, Институт технологии металлов. – Минск: Беларуская наука, 2021. – 153 с.