УДК 628.74

МОДЕЛИРОВАНИЕ ДИНАМИКИ ОПАСНЫХ ФАКТОРОВ ПОЖАРА В ЛЕСТНИЧНОЙ КЛЕТКЕ ПЯТИЭТАЖНОГО ЗДАНИЯ

Студентка гр.113021 Широкая О.С. Д-р физ.-мат. наук, доцент Невдах В.В. Белорусский национальный технический университет

Успешная эвакуация и другие действия по ликвидации опасности для людей в случае возникновения пожара в многоэтажном здании возможны только на первом, начальном этапе его развития, пока не достигнуты условия, несовместимые с жизнью человека.

Цель настоящей работы: промоделировать поведение опасных факторов пожара в лестничной клетке, как части пути эвакуации из пятиэтажного здания.

Модель лестничной клетки разработана с помощью графического интерфейса PyroSim. Лестничная клетка пятиэтажного здания имеет размеры 7,5х3,0х18,3 м. Стены и потолок толщиной 0,2 м, пол - 0,3 м, лестница сделаны из бетона. На лестничных площадках каждого этажа имеются двустворчатые деревянные двери для выхода на этажи, моделируемые помещениями размерами 7,5х5,0х3,4 м, в которых помещался источник пожара. Температура и задымленность воздуха на лестничной клетке контролировались детекторами температуры и дьма, расположенными на лестничных площадках перед дверями и между этажами на высоте среднего роста человека. Детекторы для контроля изменения давления воздуха в лестничной клетке размещены в лестничном проеме.

В работе промоделированы начальные стадии пожаров длительностью 300с с источником мощностью 1055 кВт, расположенным на первом и пятом этажах здания, при закрытой лестничной клетке и в условиях естественной вентиляции через выходные двери. Получены зависимости пространственных распределений температуры, затемнения и изменения давления воздуха от времени. В докладе обсуждаются различия в динамике заполнения лестничной клетки дымом и изменения температуры воздуха, наблюдаемые при возникновении пожара на разных этажах, а также влияние естественной вентиляции на характер изменения опасных факторов пожара.

Результаты работы могут быть использованы при разработках систем управления эвакуацией людей из пятиэтажных зданий.

Литература

1. Fire Dynamics Simulator (Version 5). Technical Reference Guide / K. McGrattan [et all] // NIST Special Publication 1018-5. - 2009. - 94 p.