масса штока и соединённых с ним деталей) и учитывают инерционные, нагрузки, скоростные И позиционные силы давления, 30НЫ нечувствительности обусловленные клапанах, силами В трения. Математическая модель позволяет исследовать служебные и экстренные режимы работы следящего контура.

УДК 629.7

Выбор конструктивных параметров пневматических глушителей

Бартош П.Р., Кишкевич П.Н. Белорусский национальный технический университет

Шумы механического происхождения возникают при ударах поршней, золотников, клапанов, вибрации трубопроводов и т.п. Снижение их уровня достигается в результате оптимизации конструктивных параметров этих устройств или введения тормозных и амортизирующих устройств. Наиболее сложной задачей является борьба с шумами аэродинамического происхождения, возникающими в основном из-за турбулентного смешения сжатого воздуха с окружающей средой при выхлопе. Поскольку давление сжатого воздуха в промышленных пневмосистемах составляет 0,4 ... 0,6 МПа, истечение сжатого воздуха в атмосферу при выхлопе происходит, как правило, в надкритическом режиме со скоростью, близкой к скорости звука. Для снижения уровня шума сжатого воздуха при выхлопе применяют активные И реактивные глушители. Наибольшее распространение получили активные глушители (глушители трения). Исходные данные для расчета пневмоглушителей: эффективная площадь f_{ν} пропускная способность e_{v} ; шумовая характеристика; присоединительные размеры; габаритные размеры; масса глушителя. В результате расчета необходимо получить значения параметров пористой части глушителя (диаметра \mathcal{A} , длины l и толщины h стенки звукопоглощающего элемента), а также размеры d частиц, из которых она изготовлена.

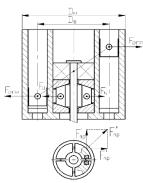
Порядок расчета металлокерамических пневмоглушителей:

- 1. Выбирается толщина h стенки пористого элемента;
- 2. Выбирается наружный диаметр \mathcal{I} элемента;
- 3. Определяется внутренний диаметр \mathcal{I}_{e} ;
- 4. Выбирается размер спекаемых частиц d;
- 5. Определяется длина l образующей внутренней поверхности глушителя по формуле

$$l = \frac{f_{\circ}\sqrt{h}}{\ddot{A} \cdot d}.$$

Затем выполняется проверочный расчет с определением шумовой характеристики глушителя, масса пористой его части

$$m = v_1 \rho (1 - \varepsilon),$$


где ε - пористость; v_I - объем пористой части.

УДК 621.6

Устойчивость блока цилиндров в аксиально-поршневых гидромашинах

Бойко Б.С., Сафонов А.И. Белорусский национальный технический университет

Решение проблемы компенсации опрокидывающего момента, действующего на блок цилиндров и возникающего под действием центробежных сил поршней в аксиально-поршневой гидромашине, является исключительно важным для увеличения КПД и повышения надёжности и долговечности гидромашины.

Как известно из зарубежных исследований, 93% отказов и выходов гидромашин из строя связано с так называемым «клином» между плоским золотником и торцом блока цилиндров. Клин образуется вследствие опрокидывающего момента и несёт с собой как значительное уменьшение объёмного КПД, так и быстрый износ золотника и поверхности блока цилиндров из-за неравномерности нагрузок. Конструкция центробежного механизма устраняет перекос блока под действием опрокидывающего момента. Грузы механизма выполнены в виде

клиньев, которыми они взаимодействуют с коническими поверхностями опорных элементов. Один опорный элемент упирается в наружную обойму радиального подшипника, другой жёстко закреплён в блоке. Грузы размещены в центральной расточке блока цилиндров и разжаты один от другого пружинами, создающими усилие предварительного поджима блока цилиндров.

При вращении блока цилиндров на грузы действуют центробежные силы. В результате грузы стремятся переместиться радиально от оси вращения и создают усилие прижима блока цилиндров к золотнику, величина которой зависит от скорости вращения блока цилиндров.

Осевое усилие центробежного механизма вычисляется по формуле: