_____ ФИЗИЧЕСКАЯ ____ ОПТИКА

УДК 535.621.3.049.77

КОНЦЕНТРАЦИЯ ЭНЕРГИИ ВНУТРИ ПЛАЗМОННЫХ НАНОЧАСТИЦ ЗОЛОТА И СЕРЕБРА, НАХОДЯЩИХСЯ В ВОЗДУХЕ, ПОД ДЕЙСТВИЕМ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

© 2017 г. Л. Г. Астафьева^{*a*,*}, В. К. Пустовалов^{*b*}, В. Фритче^{*c*}

^а Институт физики им. Б.И. Степанова НАН Беларуси, 220072 Минск, Беларусь ^bБелорусский национальный технический университет, 220013 Минск, Беларусь ^cИнститут фотонных технологий (IPHT), 07745 Иена, Германия *E-mail: astafev@dragon.bas-net.by Поступила в редакцию 23.05.2017 г.

Выполнено моделирование распределения интенсивности лазерного излучения внутри сферических наночастиц золота и серебра, находящихся в воздухе, в интервале радиусов наночастиц 10– 100 нм под действием лазерного излучения с длинами волн 400, 532 и 800 нм и проведен анализ результатов. Установлен эффект высокой концентрации энергии внутри освещенной (передней) и теневой (задней) полусферах наночастиц золота и серебра для выбранных значений размеров наночастиц и длин волн излучения. Эти результаты могут быть использованы в нанофотонике новых плазмонных устройств (концентраторов, антенн и других) и фотонных компонент.

DOI: 10.7868/S0030403417110022

ВВЕДЕНИЕ

Большой интерес при исследовании взаимодействия оптического (лазерного) излучения с наноструктурами вызывает эффект концентрации интенсивности излучения (часто называемого усилением) около плазмонных наноструктур. Множество публикаций посвящено изучению эффекта концентрации интенсивности излучения в ближнем поле наноструктур для нанофотоники и наноэлектроники [1-11]. Способность плазмонных наноструктур концентрировать излучение вне и внутри объема наночастицы и манипулировать светом даже ниже классического предела дифракции способствовала их применению в нанофотонике. Плазмонные наноструктуры, антенны и концентраторы света могут изменить представление о взаимодействии излучения с веществом на фундаментальном уровне.

Объединение существующих микро- и наноэлектронных устройств с плазмонными структурами способствовало созданию ближнепольного оптического и лазерного микроскопов, новых наноразмерных фотонных компонент, фотодетекторов и т.д.

Недавно усилия многих исследователей были сосредоточены на исследованиях металлических наночастиц из-за их уникальных зависящих от размеров физических и химических свойств. Металлические наночастицы используются во многих областях науки и технологий, включая нанофотонику и наноэлектронику, катализ, новые материалы и нелинейные устройства.

Проявляется интерес к изучению взаимодействия оптического (лазерного) излучения с наночастицами, основанный на возможности концентрации излучения внутри плазмонных металлических наночастиц, помещенных в различные среды. Исследования распределения интенсивности внутри и вне диэлектрических микрочастиц и частиц аэрозоля, освещенных электромагнитным излучением, были выполнены в [12–14]. Но отсутствуют данные и их анализ относительно концентрации интенсивности излучения внутри плазмонных наночастиц.

Настоящая работа представляет результаты компьютерного моделирования распределений интенсивности лазерного излучения внутри сферических наночастиц из золота и серебра с радиусами в пределах 5—100 нм под действием излучения с различными длинами волн (400, 532 и 800 нм). Наночастицы расположены в воздухе. Установлен эффект концентрации интенсивности энергии в освещенной и теневой полусферах наночастиц золота и серебра для выбранных размеров частиц и длин волн излучений.

Рис. 1. Распределения относительной интенсивности излучения I_n внутри наночастиц золота с радиусами $r_0 = 10$ (1), 20 (2), 40 (3), 60 (4), 80 (5), 100 (6) нм (а, б, в) и зависимости K_{abs} (сплошная линия), K_{sca} (штриховая линия), K_{ext} (штрих-пунктир) от радиусов наночастиц r_0 (г, д, е) для длин волн $\lambda = 400$ нм (а, г), 532 нм (б, д), 800 нм (в, е). Вертикальные линии 1-6 (г, д, е) показывают значения K_{abs} , K_{sca} , K_{ext} , соответствующие зависимостям $I_n(r/r_0)$ (1-6) для выбранных значений r_0 .

РЕЗУЛЬТАТЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ РАСПРЕДЕЛЕНИЙ ИНТЕНСИВНОСТИ ИЗЛУЧЕНИЯ ВНУТРИ НАНОЧАСТИЦ ЗОЛОТА И СЕРЕБРА

Рассмотрим взаимодействие плоской электромагнитной волны оптического (лазерного) излучения со сферическими наночастицами золота и серебра на основе компьютерного моделирования для исследования распределений интенсивности лазерного излучения внутри наночастиц. Наночастицы расположены в воздухе с показателем преломления $n_{\lambda} = 1.0$.

Оптические постоянные золота и серебра взяты из [15]. Интенсивность излучения I нормирована на интенсивность падающей волны I_0 у освещенной поверхности наночастицы, $I_n = I/I_0$ (рис. 1–3) и нормированная интенсивность I_n определяется в произвольных единицах. Метод компьютерного моделирования распределений внутренних полей в наночастицах представлен в [12–14, 16]. Факторы эффективности поглощения K_{abs} , рассеяния K_{sca} , ослабления K_{ext} [2] излучения наночастицами были рассчитаны на основе теории Ми [2].

В работе рассмотрены распределения интенсивностей в поперечном сечении наночастиц под действием излучения с различными длинами волн λ. Полусфера, обращенная в сторону падающего излучения, называется освещенной. Противоположная полусфера называется теневой.

Рис. 2. Распределения относительной интенсивности излучения I_n внутри наночастиц серебра с радиусами $r_0 = 10$ (1), 20 (2), 40 (3), 60 (4), 80 (5), 100 (6) нм (а, б, в) и зависимости K_{abs} (сплошная линия), K_{sca} (штриховая линия), K_{ext} (штрихпунктир) от радиусов наночастиц r_0 (г, д, е) для длин волн $\lambda = 400$ нм (а, г), 532 нм (б, д), 800 нм (в, е). Вертикальные линии I-6 (г, д, е) показывают значения K_{abs} , K_{sca} , K_{ext} , соответствующие зависимостям $I_n(r/r_0)$ (I-6) для выбранных значений r_0 .

Рисунок 1 представляет распределения интенсивности излучения I_n вдоль выбранного диаметра внутри сферических наночастиц золота с радиусами $r_0 = 10, 20, 40, 60, 80, 100$ нм (рис. 1а, 1б, 1в) и зависимости факторов эффективности поглощения K_{abs} , рассеяния K_{sca} , ослабления K_{ext} от радиусов r_0 в интервале 5–100 нм (рис. 1г, 1д, 1е) для длин волн излучения $\lambda = 400$ (а, г), 532 (б, д), 800 нм (в, е). Выбранный диаметр сферической наночастицы – это диаметр, совпадающий с направлением распространения лазерного излучения.

Для длины волны падающего излучения 400 нм интенсивность I_n уменьшается практически линейно вдоль выбранного диаметра от освещенной к теневой поверхности для малых наночастиц золота с радиусами $r_0 = 10$, 20 нм из-за ослабления интенсивности излучения внутри наносферы. Интенсивность уменьшается от освещенной поверхности к центральной части наночастицы и имеет здесь минимальное значение для $r_0 \ge 40$ нм. Затем интенсивность I_n увеличивается в теневой полусфере. Фактор эффективности ослабления K_{ext} возрастает до максимального значения $K_{\text{ext}} \sim 3.5$ при $r_0 = 60$ нм и слегка убывает при увеличении r_0 . Значение K_{abs} больше, чем K_{sca} для области 10–70 нм.

Ситуация изменяется для наночастиц золота, освещаемых лазерным излучением с длиной волны $\lambda = 532$ нм. Это излучение близко к длине волны плазмонного резонанса для таких наночастиц. Относительная интенсивность I_n незначительно убывает вдоль диаметра от освещенной полусферы к теневой для малых радиусов наночастиц $r_0 =$

Рис. 3. Пространственные распределения относительной интенсивности I_n (отн. ед.) излучения с длиной волны $\lambda = 532$ нм внутри сферической наночастицы золота (а, б, в) и с длиной волны $\lambda = 400$ нм внутри наночастицы серебра с $r_0 = 20$ (а, г), 60 (б, д), 100 нм (в, е). Стрелки показывают направление распространения падающего лазерного излучения.

= 10, 20 нм. Однако в случае $r_0 > 40$ нм относительная интенсивность I_n уменьшается от освещенной поверхности к центру и имеет минимальное значение в центре наночастицы. Далее интенсивность увеличивается в теневой полусфере и достигает значений, которые выше, чем $I_n = 1.0$ у освещенной поверхности. Распределение интенсивности для $r_0 = 80$, 100 нм имеет особый характер, поскольку в этих случаях значения интенсивности I_n имеют существенные максимумы $I_n(r/r_0 = 1) \approx 1.2$, 2.2 соответственно, что больше значения $I_n(r/r_0 = 1)$ для других радиусов наночастиц. Максимальные значения относительной интенсивности I_n располагаются около теневой поверхности наночастиц с немонотонной зависимостью $I_n(r/r_0 = 1)$ при увеличении значений r_0 . Таким образом, результат для $\lambda = 532$ нм отличается от случая $\lambda = 400$ нм.

Фактор эффективности ослабления K_{ext} возрастает до максимального значения ~5.2 при $r_0 =$ = 70 нм, после чего уменьшается с ростом r_0 . Значения K_{abs} больше, чем K_{sca} для области размеров $r_0 = 10-60$ нм. Следует отметить, что максимальные значения I_n (при $r_0 = 80$, 100 нм) связаны с минимальными значениями K_{ext} при $r_0 = 80$, 100 нм. Поэтому неоднородные распределения внутренней относительной интенсивности I_n в теневой полусфере наночастицы определяются плазмонным резонансом зависимости $K_{\text{ext}}(r_0)$.

Для длины волны $\lambda = 800$ нм относительная интенсивность I_n убывает от освещенной поверхности наночастицы к ее центру. Интенсивность I_n имеет минимальное значение в центральной части и после возрастает до относительных значений $I_n \sim 0.6-0.9$ для всех значений r_0 в интервале 10-100 нм. Характер распределения интенсивности внутри наночастиц золота является неоднородным с максимальным значением интенсивности около освещенной поверхности наночастиц. Распределения $I_n(r/r_0)$ практически симметричны относительно центра наночастицы $r/r_0 = 0$. В этом случае $K_{\rm ext}$ и $K_{\rm sca}$ монотонно возрастают, они существенно больше и не имеют минимальных значений в интервале $r_0 = 10-100$ нм.

Рисунок 2 представляет распределения нормированной интенсивности излучения I_n вдоль диаметра внутри сферических наночастиц серебра с радиусами $r_0 = 10, 20, 40, 60, 80, 100$ нм (рис. 2а, 26, 2в) и зависимости факторов эффективности поглощения K_{abs} , рассеяния K_{sca} , ослабления K_{ext} от радиусов r_0 в интервале 10–100 нм (рис. 2г, 2в, 2е) для длин волн излучения $\lambda = 400$ нм (а, г), 532 нм (б, д), 800 нм (в, е). Все обозначения такие же, как на рис. 1.

Для длины волны $\lambda = 400$ нм относительная интенсивность I_n имеет минимум в центральной части для всех наночастиц. Интенсивность I_n резко возрастает в теневой полусфере наночастиц с размерами $r_0 = 60$ и особенно для $r_0 = 80$ нм и достигает значений, в 10 раз превышающих значения I_n в центре наночастицы с $r_0 = 80$ нм. Факторы эффективности поглощения K_{abs} , рассеяния K_{sca} и ослабления K_{ext} испытывают осцилляции в зависимости от r_0 . Минимальные значения K_{abs} , K_{sca} и $K_{\rm ext}$ располагаются при $r_0 \sim 80$ нм и коррелируют с максимальным значением I_n в теневой полусфере для $r_0 = 80$ нм. Это означает, что рост I_n в теневой полусфере наночастиц определяется плазмонным резонансным эффектом в наночастицах серебра.

Увеличение интенсивности I_n в теневой полусфере наночастиц серебра наблюдается при $r_0 > 20$ нм и для $\lambda = 532$ нм. Значение I_n равняется

ОПТИКА И СПЕКТРОСКОПИЯ том 123 № 5 2017

~1.4 для $r_0 = 100$ нм. Факторы эффективности $K_{\rm sca}$ и $K_{\rm ext}$ намного больше, чем фактор эффективности поглощения $K_{\rm abs}$ в рассматриваемом интервале r_0 . Факторы $K_{\rm sca}$ и $K_{\rm ext}$ имеют убывающую часть только при $r_0 > 84$ нм, что коррелирует с максимумом I_n для $r_0 \approx 100$ нм.

Для длины волны $\lambda = 800$ нм относительная интенсивность I_n уменьшается от освещенной поверхности наночастицы к ее центру. Интенсивность I_n имеет минимальное значение в центральной части и после возрастает до относительных значений $I_n \sim 0.6-0.95$. Значения K_{sca} , $K_{\text{ext}} \geq K_{\text{abs}}$ и данный фактор не приведен на рис. 2e; K_{sca} , K_{ext} увеличиваются с ростом r_0 в интервале 10–100 нм.

Таким образом, распределения относительной интенсивности внутри наночастиц золота и серебра для длин волн $\lambda = 400, 532, 800$ нм имеют некоторые общие и специфические черты. Интенсивность І_n имеет максимальные значения на обеих поверхностях наночастиц и минимальные значения в центральной части для $r_0 > 20$ нм. Распределение I_n практически однородно внутри наночастиц золота и серебра для малых радиусов $r_0 = 10$ нм для всех упомянутых выше длин волн. Резкое увеличение интенсивности I_n в теневой полусфере наночастиц золота ($r_0 = 80, 100$ нм, $\lambda =$ = 532 нм) и серебра (r_0 = 80 нм, λ = 400 нм) коррелирует с расположением минимальных значений $K_{\rm sca}, K_{\rm ext}$ на координатной оси r_0 . Такие распределения интенсивности внутри наночастиц можно объяснить плазмонными свойствами наночастиц золота и серебра [1–11].

Рисунок 3 представляет пространственные распределения интенсивности *I_n* с длиной волны $\lambda = 532$ нм внутри сферических наночастиц золота (рис. 3а, 3б, 3в) и I_n с длиной волны $\lambda = 400$ нм внутри наночастиц серебра (3г, 3д, 3е) с $r_0 = 20$ (а, г), 60 (б, д), 100 нм (в, е). Эти картины описывают пространственное распределение интенсивности внутри полного объема наночастиц и показывают преобразования особенности распределений внутренних полей внутри наночастиц золота и серебра различных размеров. Максимальные значения интенсивности для наночастиц серебра существенно выше, чем для наночастиц золота. Например, в случае наночастиц серебра с $\lambda = 400$ нм и $r_0 = 20$ нм максимальное значение интенсивности в 6 раз больше, чем для $\lambda = 532$ нм и наночастиц из золота с $r_0 = 20$ нм. Появление минимальных значений $K_{\rm sca}^{\rm min}$, $K_{\rm ext}^{\rm min}$ для наночастиц золота, $\lambda = 532$ нм и наночастиц серебра, $\lambda = 400$ нм приводит к значительной концентрации оптической интенсивности, определяемой эффектом плаз-

интенсивности, определяемой эффектом плазмонного резонанса излучения в наночастицах. По рис. 3 можно наблюдать трансформацию пространственного распределения излучения в зависимости от радиусов, длин волн излучения и оптических свойств наночастиц металлов.

ЗАКЛЮЧЕНИЕ

На основе компьютерного моделирования проведено комплексное исследование распределений интенсивности излучения внутри наночастиц золота и серебра с радиусами 10–100 нм, находящихся в воздухе, под действием лазерного излучения с длинами волн $\lambda = 400$, 532, 800 нм. Главное отличие нашего исследования от имеющихся в литературе состоит в изучении распределения интенсивности внутри плазмонных наночастиц, размещенных в воздухе, в отличие от исследований распределений интенсивности внешних ближних или дальних полей наночастиц [1–11].

Установлены четыре характерных распределения интенсивности лазерного излучения I_n внутри наночастиц золота и серебра для длин волн 400, 532 и 800 нм:

а) почти однородное распределение относительной интенсивности I_n (или малое снижение I_n) вдоль выбранного диаметра наночастицы с увеличением r/r_0 внутри наночастиц золота и серебра реализуется для $r_0 \le 20$ нм при всех длинах волн, упомянутых выше с точностью почти 20-30%(рис. 1, 2);

б) максимальное значение интенсивности I_n наблюдается около освещенной поверхности наночастицы золота для длины волны 400 нм (рис. 1a);

в) максимальное значение интенсивности I_n локализуется у теневой поверхности для наночастиц золота с $r_0 = 80$, 100 нм для длины волны излучения 532 нм (рис. 16) и для наночастиц серебра с длиной волны 400 нм ($r_0 = 60$, 80 нм), 532 нм ($r_0 = 100$ нм) (рис. 2a, 2б);

г) практически все максимальные значения интенсивности I_n одновременно наблюдаются около освещенной и теневой поверхностей наночастиц золота и серебра для длины волны 800 нм и реализуются при рассмотренных значениях радиусов в интервале 10–100 нм (рис. 1в, 2в).

Общей особенностью концентрации света внутри наночастиц золота и серебра является образование примерно симметричного распределения интенсивности с увеличением λ в освещенной и теневой полусферах наночастиц. В то время как минимальное значение I_n локализуется в центральной части наночастиц золота и серебра во всех упомянутых случаях.

Процессы взаимодействия излучения со сферическими наночастицами сопровождаются формированием распределений интенсивности внутри наночастиц. Они включают комбинированное действие поглощения, рассеяния и ослабления излучения наночастицами золота и серебра, дифракцию излучения на сферической наночастице, плазмонный резонансный эффект и влияние радиусов наночастиц и показателя преломления окружающей среды для конкретной длины волны излучения. В некоторых случаях один или более упомянутых процессов становятся преобладающими над другими процессами. Результирующие распределения интенсивности I_n представлены на рис. 1–3.

Поглощение энергии излучения и неоднородное нагревание наночастицы под действием коротких импульсов лазерного излучения могут привести к термоэлектронной эмиссии с поверхности теневой полусферы наночастицы.

Неоднородное распределение интенсивности внутри наночастиц может привести к существенным последствиям, таким как неоднородное нагревание объема наночастицы короткими лазерными импульсами, плавление поверхностного слоя наночастицы с изменением ее формы. Неоднородное поверхностное испарение наночастицы может вести к оптическому пробою и фрагментации наночастицы.

Рисунки 1-3 демонстрируют интересную возможность изменения распределения энергии внутри наночастиц золота и серебра при изменении металла, радиусов и длины волны падающего излучения. Например, возможность управлять расположением области максимальной концентрации интенсивности (энергии) в наночастице золота путем изменения длины волны воздействующего излучения (рис. 1a, 1б, 1в). Для $r_0 = 80$, 100 нм и $\lambda = 400$ нм интенсивность излучения сконцентрирована в основном в освещенной полусфере (рис. 1а), для $\lambda = 800$ нм интенсивность излучения концентрируется одновременно около поверхности в обеих полусферах (рис. 1в), для $\lambda =$ = 532 нм интенсивность излучения сконцентрирована в основном в теневой полусфере (рис. 1б).

В случае наночастиц серебра такая возможность отсутствует. Для $\lambda = 532$ и 800 нм интенсивность распределяется одинаково в освещенной и теневой полусферах (рис. 26, 2в), для $\lambda = 400$ нм интенсивность излучения концентрируется в основном в теневой полусфере (рис. 2а) при $r_0 = 80$ нм.

Способность регулировать распределение локализации интенсивности (энергии) внутри наночастиц золота и серебра для выбранных значений размеров наночастиц и длины волны излучения представляет уникальный доступ к перестройке взаимодействия света с веществом в субмикронном диапазоне. Эти результаты могут быть использованы в нанофотонике и наноэлектронике для конструирования новых плазмонных устройств (концентраторы, антенны и т.д.) и для различных фотонных компонент.

Исследования частично финансировались грантами WTZ Base (BMBF FKZ 01DK15012) и ImSpec (BMBF FKZ 13N12836).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kreibig U., Vollmer M.* Optical Properties of Metal Clusters. Springer: Heidelberg, 1995.
- 2. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small NPs. N. Y.: Wiley, 1983; Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. М.: Мир, 1986. 664 с.
- 3. *Maier S.* Plasmonics: Fundamentals and Applications. Heidelberg: Springer, 2007.
- 4. Stockman M. // Opt. Express. 2011. V. 19. P. 22029.
- Sonnefraud Y., Koh A., McComb D., Maier S. // Laser Photon. Rev. 2012. V. 6. P. 277.
- *Zheludev N.* // J. Optics A: Pure Appl. Opt. 2006. V. 8. P. S1.

- Schuller J.A., Barnard E.S., Cai W., Jin Y.C., White J.S., Brongersma M.J. // Nature Mater. 2010. V. 9. P. 193.
- 8. Colombo C., Krogstrup P., Nygård J., Brongersma M.L., Fontcuberta A. // New J. Phys. 2011. V. 13. P. 123026.
- Kauranen M., Zayats A. // Nature Photon. 2012. V. 6. P. 737.
- Pustovalov V.K., Babenko V.A. // Las. Phys. Lett. 2004.
 V. 1. P. 516.
- Demichel O., Petit M., Colas des Franks G., Bouhelier A., Hertz E., Billard F., De Fornel F., Cluzel B. // Opt. Express. 2014. V. 22. P. 15088.
- 12. Astafyeva L.G., Babenko V.A. // J. Quant. Spectr. Rad. Transfer. 2004. V. 88. P. 9.
- Astafyeva L., Ledneva H. // Appl. Opt. 2006. V. 45. P. 3878.
- Li C., Cattawar G.W., Zhai P.-W. // Opt. Express. 2005. V. 13. P. 4554.
- Johnson P.B., Christy R.W. // Phys. Rev. B. 1972. V. 6. P. 4370.
- Babenko V.A., Astafyeva L.G., Kuzmin V.N. Electromagnetic scattering in disperse media. Berlin: Springer-Praxis, 2003.