Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Высшая математика № 1»

СБОРНИК ЗАДАНИЙ ПО МАТЕМАТИКЕ ДЛЯ СТУДЕНТОВ ПЕРВОГО КУРСА ИНЖЕНЕРНО-ТЕХНИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ

Учебное электронное издание

Минск 2011

Составители:

А. Н. Андриянчик, Н. А. Микулик, Л. А. Раевская, Н. И. Чепелев, Т. И. Чепелева, Е. А. Федосик, В. И. Юринок, Т. С. Яцкевич

Рецензенты А. Д. Корзников, Н. С. Коваленко

Сборник заданий по математике для студентов первого курса В 93 инженерно-технических специальностей втузов / сост.: А.Н. Андриянчик [и др.]. – Минск: БНТУ, 2011. – 156 с.

В сборнике заданий для аудиторной и самостоятельной работы студентов приведены задачи и упражнения по основным разделам высшей математики в соответствии с действующей программой. В качестве основных рассматриваются 18 практических занятий для каждого из четырех семестров. К задачам, предназначенным для самостоятельной работы, предлагаются ответы, что поможет студенту контролировать правильность решаемых примеров.

Приведены варианты типовых расчетов, являющихся обязательным элементом учебных планов соответствующих специальностей БНТУ.

Издание является дополнением к существующим задачникам, будет полезным как для студентов дневной, так и заочной формы обучения и послужит лучшей организации их самостоятельной работы.

Белорусский национальный технический университет пр-т Независимости, 65, г. Минск, Республика Беларусь Тел.(017)292-77-52 факс (017)292-91-37

E-mail: tchepeleva@gmail.com
http://www.bntu.by/fitr-vm1.html

Регистрационный № ЭИ БНТУ/ФИТР48-6.2011

© Андриянчик А.Н., Микулик Н.А., 2011 © Чепелева Т.И., компьютерный дизайн, 2011 © БНТУ, 2011

СОДЕРЖАНИЕ

I. ЛИНЕЙНАЯ A	ЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ.
ВВЕДЕНИЕ	В МАТЕМАТИЧЕСКИЙ АНАЛИЗ.
	ЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ
ПЕРЕМЕНОЙ	6
Занятие 1.	Декартова и полярная системы координат.
	Построение графиков6
	Действия над матрицами. Вычисление
	определителей
	Обратная матрица. Решение невырожденных
	систем матричным методом12
	Формулы Крамера. Ранг матрицы15
	Решение произвольных и однородных систем 18
Занятие 6.	Векторы. Линейные операции над векторами.
	Скалярное произведение векторов22
	Векторное и смешанное произведения векторов 24
	Прямая на плоскости
	Прямая и плоскость в пространстве28
	Кривые 2-го порядка на плоскости. Поверхности
	2-го порядка30
Занятие 11.	Функция. Предел последовательности и предел
	функции33
	Сравнение бесконечно малых функций.
	Непрерывность функций. Точки разрыва37
Занятие 13.	Дифференцирование функций. Логарифмическая
	производная39
	Дифференцирование функций, заданных
	параметрически и неявно. Дифференциал
	функции41
Занятие 15.	Производные и дифференциалы высших порядков
	44
Занятие 16.	Правило Лопиталя-Бернулли. Формула Тейлора
	46
	Монотонность функций. Экстремум. Наибольшее
	и наименьшее значения функции48
Занятие 18.	Выпуклость и вогнутость графиков функций.
	Асимптоты. Построение графиков функций 50

Типовой расчё	т № 1.Элементы			
	аналитическ		и	
Типовой расчё	1 1 1		роизводная и	
			ованию функци	
	построению	графиков		66
				U
	ЬНОЕ ИСЧИСЛЕ			
ПЕРЕМЕННОЙ.			ИСЧИСЛЕН	
	СКОЛЬКИХ ПЕРЕ			
, ,	АЛЬНЫЕ УРАВНЕН			
Занятие 1.	Комплексные чи			
	Простейшие прием			
Занятие 2.	Интегрирование с			
	неопределенном и			
Занятие 3.	Интегрирование			
_	интеграле			
Занятие 4.	Интегрирование ра			
Занятие 5.	Интегрирование т			
	и простейших ирра			
Занятие 6.	Вычисление опред			
Занятие 7.	Приложения опред			
Занятие 8.	Несобственные ин			
Занятие 9.	Частные производ			
	функций нескольк			
	и дифференциалы			
Занятие 10.	Производные сле	1.5		
	переменных. Про			
2 11	неявно			
Занятие 11.	Касательная плоск			
2 12	Производная по на			
Занятие 12.	Экстремум функт			
	Наибольшее и на			
	нескольких перем			
n 12	Условный экстрем			
Занятие 13.	Интегрирование ,		• •	
	первого порядка с			
			альных уравне	
	первого порядка			.118

тие 14. Интегрирование линейных дифференциальны	Занятие 14.
уравнений и уравнений Бернулли. Уравнения	
полных дифференциалах12	
тие 15. Дифференциальные уравнения высших порядког	Занятие 15.
допускающие понижение порядка12	
•	Занятие 16.
дифференциальных уравнений с постоянным	
коэффициентами. Метод Лагранжа124	
* *	Занятие 17.
уравнения с постоянными коэффициентами	
правой частью специального вида	
тие 18. Решение систем дифференциальных уравнений	Занятие 18.
Метод исключения12	
овой расчёт № 3.Неопределенный и определенны	Типовой расч
интегралы13	1
овой расчёт № 4.Обыкновенные дифференциальны	Типовой расч
уравнения и системы дифференциальны	1
уровней14	
ЕРАТУРА150	ПИТЕРАТУ

І. ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕНОЙ

Занятие 1

Декартова и полярная системы координат. Построение графиков

Аудиторная работа

1.1. Построить графики функций:

a)
$$y = 2^{\log_2 \cos x}$$
.

6)
$$y = \frac{x^3 - x^2}{2|x-1|}$$
.

B)
$$y = \begin{cases} 2^{x-1}, & 0 < x \le 2, \\ -x^2 - 2x, & -3 < x \le 0. \end{cases}$$

$$\mathbf{r)} \ \ y = 2x - |x - 2| + 1.$$

$$\mathbf{J}(y) = \sqrt{\frac{1 - \cos 2x}{2}}.$$

e)
$$y = \sin |x| - 1$$
.

ж)
$$y = \log_{1/2} x^2 + 1$$
.

3)
$$y = \frac{1}{|x|+1}$$
.

1.2. Построить графики функций, заданных параметрически:

a)
$$x = -1 + 2t$$
, $y = 2 - t$.

6)
$$x = t$$
, $y = t^2 - 4$.

B)
$$x = 2\cos t, \ v = \sin t.$$

$$\Gamma$$
) $x = 1 - t^2$, $y = t - t^3$.

д)
$$x = at^2$$
, $y = bt^3$.

e)
$$x = 2\cos^3 t$$
, $y = 2\sin^3 t$.

ж)
$$x = -1 + 2\cos t$$
, $y = 3 + 2\sin t$. **3)** $x = 2(t - \sin t)$, $y = 2(1 - \cos t)$.

1.3. Записать уравнения кривых в полярных координатах:

a)
$$v = x$$
.

6)
$$y = 1$$
.

B)
$$x^2 + y^2 = 4$$
.

д)
$$x + y - 1 = 0$$
.

e)
$$x^2 - y^2 = a^2$$
.

1.4. Построить графики функций:

a)
$$r = 1$$
.

6)
$$r = 2\phi$$
.

B)
$$r \cos \varphi = 2$$
.

$$\Gamma$$
) $r = e^{\varphi}$.

$$\pi$$
) $r = 4\cos \varphi$.

e)
$$r = 3 \sin 2\phi$$
.

ж)
$$r=2(1+\cos\varphi)$$

ж)
$$r = 2(1 + \cos \varphi)$$
. **3**) $r = \frac{6}{3 + 2\cos \varphi}$. **4**) $r = \frac{2}{1 + \sin \varphi}$.

u)
$$r = \frac{2}{1 + \sin \varphi}$$

$$\kappa$$
) $r = 2\cos 3\varphi$.

$$\pi$$
) $r^2 = 36 \sin 2\varphi$.

Домашнее задание

1.5. Построить следующие кривые:

a)
$$y = |x^2 - x - 2|$$
. **6)** $y = x + |x + 3|$. **B)** $x = t^2 + 1$, $y = t$.

6)
$$v = x + |x + 3|$$

B)
$$x = t^2 + 1$$
, $y = t$

r)
$$x = t^3$$
, $y = t^2$. **d)** $r = 2\sin\varphi$. **e)** $r = 3(1 - \sin\varphi)$.

д)
$$r = 2\sin \varphi$$

e)
$$r = 3(1 - \sin \varphi)$$

ж)
$$r = 4\cos 2\varphi$$

ж)
$$r = 4\cos 2\varphi$$
. 3) $r = \frac{3}{1-\cos\varphi}$.

Ответы

1.3. a)
$$\varphi = \frac{\pi}{4}$$

1.3. a)
$$\varphi = \frac{\pi}{4}$$
. **1.3. 6)** $r = \frac{1}{\sin \varphi}$.

1.3. B)
$$r = 2$$
.

$$1.3. r) $r = 2\sin \varphi$$$

1.3. г)
$$r = 2\sin\varphi$$
. 1.3. д) $r = \frac{1}{\sin\varphi + \cos\varphi}$. 1.3. е) $\rho^2 = \frac{a^2}{\cos 2\varphi}$.

1.3. e)
$$\rho^2 = \frac{a^2}{\cos 2\varphi}$$

Занятие 2

Действия над матрицами. Вычисление определителей Аудиторная работа

2.1. Найти 2A+3B-C, если

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 1 & -3 \\ -4 & 3 & 5 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 & 0 \\ 2 & -3 & 4 \\ 1 & -5 & 6 \end{pmatrix}, C = \begin{pmatrix} 3 & 4 & 5 \\ 1 & -3 & 2 \\ 8 & -6 & 7 \end{pmatrix}.$$

2.2. Найти матрицу X, если

$$2 \cdot \begin{pmatrix} -1 & 3 \\ 2 & 4 \\ 0 & 5 \end{pmatrix} + \frac{1}{3}X = \begin{pmatrix} 1 & -7 \\ 2 & 8 \\ -3 & 9 \end{pmatrix}.$$

2.3. Даны матрицы A и B. Найти AB и BA, если:

a)
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \\ 4 & 0 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 & 7 & 1 \\ 3 & 2 & -4 \\ 1 & -3 & 5 \end{pmatrix}.$$

6)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 3 & -1 & 5 \end{pmatrix}, B = \begin{pmatrix} 0 & 7 \\ 3 & 4 \\ 1 & 0 \end{pmatrix}.$$

B)
$$A = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}, B = \begin{pmatrix} 5 & -2 & 3 \end{pmatrix}.$$

2.4. Вычислить

$$\begin{pmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 \\ 2 & -2 \\ 5 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} .$$

2.5. Является ли матрица $A = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$ корнем многочлена $f(x) = x^2 - 3x + 5$?

2.6. Решить уравнение

$$\begin{vmatrix} x & x+1 \\ -4 & x+1 \end{vmatrix} = 0.$$

2.7. Вычислить определители по правилу Саррюса и разлагая по элементам 1-й строки:

$$\begin{array}{c|cccc} & 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}.$$

2.8. Вычислить определители, разлагая по элементам ряда:

$$\mathbf{a)} \begin{vmatrix} 2 & 5 & 0 & 4 \\ 1 & 7 & 0 & 2 \\ 3 & 8 & 1 & 6 \\ 4 & 9 & 3 & 8 \end{vmatrix}.$$

$$\mathbf{6)} \begin{vmatrix}
2 & 4 & -1 & 2 \\
-1 & 2 & 3 & 1 \\
2 & 5 & 1 & 4 \\
1 & 2 & 0 & 3
\end{vmatrix}.$$

2.9. Вычислить определители методом приведения их к треугольному виду:

a)
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 4 \\ 1 & -1 & 7 & 4 \\ 1 & -2 & 5 & 9 \end{vmatrix}$$
.

$$\mathbf{6)} \begin{vmatrix} 2 & 1 & -5 & 1 \\ 1 & -3 & 0 & -6 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}.$$

2.10. Вычислить определители, предварительно упростив их:

$$\mathbf{a)} \begin{vmatrix} -3 & 2 & 1 & 0 \\ 2 & -2 & 1 & 4 \\ 4 & 0 & -1 & 2 \\ 3 & 1 & -1 & 4 \end{vmatrix}.$$

$$\begin{vmatrix} 1 & 2 & 3 & 1 & 5 \\ 0 & 1 & 0 & 5 & 1 \\ 2 & 1 & 2 & 3 & 2 \\ 0 & 3 & 0 & 1 & 3 \\ 3 & 2 & 1 & 3 & 4 \end{vmatrix} .$$

$$\mathbf{B}) \begin{vmatrix}
1 & 5 & -2 & 13 \\
0 & 2 & 7 & 1 \\
2 & 10 & -1 & 5 \\
-3 & -15 & -6 & 13
\end{vmatrix}.$$

$$\mathbf{r)} \begin{vmatrix} 3 & 1 & 2 & 4 \\ 0 & 0 & -1 & 6 \\ 2 & 1 & 3 & 1 \\ 2 & -2 & 3 & 1 \end{vmatrix}$$

д)
$$\begin{vmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{vmatrix}.$$

e)
$$\begin{vmatrix} 2 & 3 & -1 & 4 \\ 1 & 2 & 3 & 5 \\ -1 & 2 & 0 & 1 \\ 5 & 8 & 1 & 1 \end{vmatrix}$$

Домашнее задание

2.11. Найти $(A+3B)^2$, если

$$A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & -8 \\ -3 & 6 & 9 \end{pmatrix}, B = \begin{pmatrix} -2 & 1 & -1 \\ 1 & 0 & 2 \\ 4 & -1 & 0 \end{pmatrix}.$$

2.12. Найти те из произведений AB, BA, AC, CA, BC, CB, которые имеют смысл, если

$$A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 & 2 & 0 \\ -1 & 2 & 0 & 0 \\ 1 & 2 & 1 & 0 \end{pmatrix}.$$

2.13. Найти значение многочлена f(A) от матрицы A, если $f(x) = 2x^2 - 2x + 7$,

$$A = \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}.$$

2.14. Решить уравнение

$$\begin{vmatrix} x^2 & 1 & 4 \\ x & -1 & 2 \\ 1 & 1 & 1 \end{vmatrix} = 0.$$

2.15. Найти det(AB) и проверить, что $det(AB) = det A \cdot det B$, если

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & 3 \\ 2 & 1 & 1 \\ 4 & -3 & 2 \end{pmatrix}.$$

2.16. Вычислить определители, разлагая их по элементам ряда:

a)
$$\begin{vmatrix} 2 & -1 & 1 & 0 \\ 0 & 1 & 2 & -1 \\ 3 & -1 & 2 & 3 \\ 3 & 1 & 6 & 1 \end{vmatrix}$$
.

2.17. Вычислить определители методом приведения треугольному виду:

a)
$$\begin{vmatrix} 2 & 1 & 5 & 1 \\ 3 & 2 & 1 & 2 \\ 1 & 2 & 3 & -4 \\ 1 & 1 & 5 & 1 \end{vmatrix}.$$

$$\mathbf{6}) \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}.$$

2.1.
$$\begin{pmatrix} -4 & -1 & -9 \\ 9 & -4 & 4 \\ -13 & -3 & 21 \end{pmatrix}$$
. **2.2.** $\begin{pmatrix} 9 & -39 \\ -6 & 0 \\ -9 & -3 \end{pmatrix}$.

$$\mathbf{2.2.} \begin{pmatrix} 9 & -39 \\ -6 & 0 \\ -9 & -3 \end{pmatrix}.$$

2.3.a)
$$AB = \begin{pmatrix} 4 & 1 & 11 \\ 0 & -11 & 19 \\ 13 & 13 & 29 \end{pmatrix}, \qquad BA = \begin{pmatrix} 6 & -7 & 30 \\ -13 & -2 & -8 \\ 21 & 3 & 18 \end{pmatrix}.$$

$$BA = \begin{pmatrix} 6 & -7 & 30 \\ -13 & -2 & -8 \\ 21 & 3 & 18 \end{pmatrix}.$$

2.3. 6)
$$AB = \begin{pmatrix} 3 & 11 \\ 2 & 17 \end{pmatrix}, \qquad BA = \begin{pmatrix} 21 & -7 & 35 \\ 15 & -1 & 20 \\ 1 & 1 & 0 \end{pmatrix}.$$

2.3. B)
$$AB = \begin{pmatrix} 15 & -6 & 9 \\ 20 & -8 & 12 \\ 10 & -4 & 6 \end{pmatrix}, \qquad BA = \begin{pmatrix} 13 \end{pmatrix}.$$
 2.4. $\begin{pmatrix} -1 \\ -8 \\ -1 \end{pmatrix},$

2.6.
$$x = -1$$
; $x = -4$. **2.7. a)** 0.

6) 0.

б) 16

2.9. a) 20.

2.10. a) 38.

6) 168.

B)
$$-192$$
. **r)** 75.

e) 300.

$$\mathbf{2.11.} \begin{pmatrix} 96 & 12 & 2 \\ -18 & 54 & -8 \\ 51 & 105 & 111 \end{pmatrix}.$$

2.12.
$$BA = \begin{pmatrix} -2 & 0 & -2 \\ 3 & -1 & 5 \end{pmatrix}$$
, $AC = \begin{pmatrix} 4 & 5 & 5 & 0 \\ 2 & 6 & 6 & 0 \end{pmatrix}$.

2.13.
$$\begin{pmatrix} 7 & 0 \\ -4 & 11 \end{pmatrix}$$
. **2.14.** $x_1 = -1, x_2 = 2$. **2.15.** 40.

2.16. a) 0.

Занятие 3

Обратная матрица.

Решение невырожденных систем матричным методом

Аудиторная работа

3.1. Найти матрицы, обратные данным, если они существуют:

3.1. a)
$$\begin{pmatrix} -1 & 2 \\ -3 & 5 \end{pmatrix}$$
. **6)** $\begin{pmatrix} 2 & -1 & 3 \\ 4 & 2 & -5 \\ 6 & 1 & 2 \end{pmatrix}$. **B)** $\begin{pmatrix} 3 & 0 & 1 \\ -1 & 2 & 3 \\ 2 & 4 & 1 \end{pmatrix}$.

3.1. г)
$$\begin{pmatrix} -3 & 1 & 9 \\ -5 & -3 & 8 \\ -4 & -1 & 5 \end{pmatrix}$$
. **3.1. д**) $\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$.

3.2. Решить матричные уравнения:

3.2. a)
$$\begin{pmatrix} -1 & 4 \\ 3 & 3 \end{pmatrix}$$
 $X = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$.

3.2. 6)
$$\begin{pmatrix} 0 & 2 \\ -1 & 2 \end{pmatrix} \cdot X \cdot \begin{pmatrix} -1 & 2 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 1 & 2 \end{pmatrix}.$$

3.2. B)
$$\begin{pmatrix} 1 & -1 & 0 \\ 2 & 4 & -1 \\ 0 & 1 & 2 \end{pmatrix} \cdot X + \begin{pmatrix} -1 & 2 \\ -1 & 4 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} -1 & 6 \\ -1 & 2 \\ 5 & 12 \end{pmatrix}.$$

3.3. Решить системы матричным методом:

3.3. a)
$$\begin{cases} x_1 - 2x_2 + x_3 = 0, \\ 2x_1 - x_2 = 1, \\ 3x_1 + 2x_2 - x_3 = 4. \end{cases}$$
 3.3. 6)
$$\begin{cases} -2x + 2y - z + 7 = 0, \\ x - 3y + z - 6 = 0, \\ 3x + y + 2z - 7 = 0. \end{cases}$$

3.3. B)
$$\begin{cases} 3x_1 + x_2 + x_3 = 2, \\ x_1 - 2x_2 + 2x_3 = -1, \\ 4x_1 - 3x_2 - x_3 = 5. \end{cases}$$
 3.3. r)
$$\begin{cases} 2x - y + 5z = 4, \\ 3x - y + 5z = 0, \\ 5x + 2y + 13z = 2. \end{cases}$$

Домашнее задание

3.4. Найти матрицы, обратные данным, если они существуют:

3.4. a)
$$\begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}$$
. **3.4. 6)** $\begin{pmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{pmatrix}$.

3.5. Решить матричные уравнения:

3.5. a)
$$X \cdot \begin{pmatrix} 5 & 3 & 1 \\ 1 & -3 & -2 \\ -5 & 2 & 1 \end{pmatrix} = \begin{pmatrix} -8 & 3 & 0 \\ -5 & 9 & 0 \\ -2 & 15 & 0 \end{pmatrix}.$$

3.5. 6)
$$\begin{pmatrix} 5 & 4 \\ -1 & -2 \end{pmatrix}$$
 $\cdot X = \begin{pmatrix} 1 & 2 & 3 \\ -3 & -2 & -1 \end{pmatrix}$.

3.6. Проверить, являются ли системы невырожденными, и если являются, то решить их матричным методом.

3.6.a)
$$\begin{cases} 4x_1 + 2x_2 - x_3 = 0, \\ x_1 + 2x_2 + x_3 = 1, \\ x_2 - x_3 = -3. \end{cases}$$
 3.6. 6)
$$\begin{cases} 2x_1 - x_2 = 5, \\ x_1 + 4x_3 = 0, \\ x_2 + 2x_3 = -1 \end{cases}$$

3.1. a)
$$\begin{pmatrix} 5 & -2 \\ 3 & -1 \end{pmatrix}$$
.

3.1. B)
$$-\frac{1}{38} \begin{pmatrix} -10 & 4 & -2 \\ 7 & 1 & -10 \\ -8 & -12 & 6 \end{pmatrix}$$
. **3.1. r)** $-\frac{1}{49} \begin{pmatrix} -7 & -14 & 35 \\ -7 & 21 & -21 \\ -7 & -7 & 14 \end{pmatrix}$.

3.1.
$$\mathbf{r}$$
) $-\frac{1}{49} \begin{bmatrix} -7 & -14 & 35 \\ -7 & 21 & -21 \\ -7 & -7 & 14 \end{bmatrix}$

3.1.
$$\pi$$
) $-\frac{1}{3}$ $\begin{pmatrix} 2 & -1 & -1 & -1 \\ -1 & 2 & -1 & -1 \\ -1 & -1 & 2 & -1 \\ -1 & -1 & -1 & 2 \end{pmatrix}$. 3.2. a) $\begin{pmatrix} -\frac{11}{15} & 1 \\ \frac{1}{15} & 0 \end{pmatrix}$.

3.2. a)
$$\begin{pmatrix} -\frac{11}{15} & 1\\ \frac{1}{15} & 0 \end{pmatrix}$$

3.2. 6)
$$\begin{pmatrix} -\frac{3}{4} & \frac{3}{4} \\ -\frac{1}{8} & \frac{5}{8} \end{pmatrix}.$$

3.2. r)
$$\begin{pmatrix} \frac{5}{13} & 3 \\ -\frac{2}{13} & -1 \\ \frac{30}{13} & 4 \end{pmatrix}$$

3.3. a)
$$x_1 = x_2 = x_3 = 1$$
.

3.3. a)
$$x = 2$$
, $y = -1$, $z = 1$.

3.3. a)
$$x_1 = 1, x_2 = 0, x_3 = -1.$$

3.3. a)
$$x = -4$$
, $y = -2$, $z = 2$.

3.4. a)
$$\begin{pmatrix} 7 & -4 \\ -5 & 3 \end{pmatrix}$$
.

$$\mathbf{3.4.a)} \begin{pmatrix} 1 & -1 & 1 \\ -38 & 41 & -34 \\ 27 & -29 & 24 \end{pmatrix}.$$

3.5. a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}.$$

3.5. 6)
$$-\frac{1}{6} \cdot \begin{pmatrix} 10 & 4 & -2 \\ -14 & -8 & -2 \end{pmatrix}$$
.

3.6. a)
$$x_1 = 1, x_2 = -1, x_3 = 2.$$

3.6. 6)
$$x_1 = \frac{8}{3}, x_2 = \frac{1}{3}, x_3 = -\frac{2}{3}.$$

Формулы Крамера. Ранг матрицы

Аудиторная работа

4.1. Решить системы, используя формулы Крамера:

4.1. a)
$$\begin{cases} x_1 + 2x_2 = 8, \\ 3x_1 + 4x_2 = 18. \end{cases}$$

4.1. 6)
$$\begin{cases} 2x_1 - 3x_2 + x_3 = 5, \\ x_1 + 4x_2 - x_3 = -3, \\ 3x_1 + 2x_2 + 3x_3 = 1. \end{cases}$$

4.1. B)
$$\begin{cases} 2x - y + 2z = 1, \\ 3x + 2y - z = 9, \\ x - 4y + 3z = -5. \end{cases}$$

4.1. B)
$$\begin{cases} 2x - y + 2z = 1, \\ 3x + 2y - z = 9, \\ x - 4y + 3z = -5. \end{cases}$$
 4.1. r)
$$\begin{cases} 7x_1 - 2x_2 - 3x_3 + 3 = 0, \\ x_1 + 5x_2 + x_3 - 14 = 0, \\ 3x_1 + 4x_2 + 2x_3 - 10 = 0. \end{cases}$$

4.2. При каких значениях λ ранг матрицы равен двум:

4.2. a)
$$\begin{pmatrix} 1 & 3 & -4 \\ \lambda & 0 & 1 \\ 4 & 3 & -3 \end{pmatrix}.$$

4.2. 6)
$$\begin{pmatrix} \lambda & 2 & 3 \\ 0 & \lambda - 2 & 4 \\ 0 & 0 & 7 \end{pmatrix}.$$

4.3. Проверить справедливость неравенств $r_{AB} \le r_A, r_{AB} \le r_B$, если

$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \\ -3 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 2 & 4 \\ 3 & -1 & 5 \\ 2 & 0 & 1 \end{pmatrix}.$$

ранги матриц с помощью элементарных преобразований или методом окаймляющих миноров и указать какой-либо базисный минор.

4.4. a)
$$\begin{pmatrix} -1 & 2 & 4 & 5 \\ 2 & -1 & 0 & 6 \\ 2 & -4 & -8 & 4 \end{pmatrix}$$

4.4. a)
$$\begin{pmatrix} -1 & 2 & 4 & 5 \\ 2 & -1 & 0 & 6 \\ 2 & -4 & -8 & 4 \end{pmatrix}$$
. **4.4. 6)** $\begin{pmatrix} -8 & 1 & -7 & -3 & -5 \\ -2 & 1 & -3 & -1 & -1 \\ 1 & 1 & -1 & 1 & 1 \end{pmatrix}$.

4.4. B)
$$\begin{pmatrix} 1 & 3 & 5 & -1 \\ 2 & -1 & -3 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1 \end{pmatrix}$$

4.4. B)
$$\begin{pmatrix} 1 & 3 & 5 & -1 \\ 2 & -1 & -3 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1 \end{pmatrix}$$
 4.4. r)
$$\begin{pmatrix} 3 & -1 & 3 & 2 & 5 \\ 5 & -3 & 2 & 3 & 4 \\ 1 & -3 & -5 & 0 & -7 \\ 7 & -5 & 1 & 4 & 1 \end{pmatrix}$$

4.4. д)
$$\begin{pmatrix} -1 & 0 & 2 & 4 \\ 2 & 1 & 3 & -1 \\ 1 & 1 & 5 & 3 \\ -4 & -2 & -6 & 2 \\ 0 & 1 & 7 & 7 \end{pmatrix} .$$

Домашнее задание

4.5. Решить системы по правилу Крамера:

a)
$$\begin{cases} 2x + y = 5, \\ x + 3z = 16, \\ 5y - z = 10. \end{cases}$$

$$\begin{cases} x_1 + x_2 - 2x_3 = 6, \\ 2x_1 + 3x_2 - 7x_3 = 16, \\ 5x_1 + 2x_2 + x_3 = 16. \end{cases}$$

4.6. Проверить справедливость неравенства $r_{A+B} \le r_A + r_B$, если

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 3 \\ 3 & -2 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix}.$$

4.7. Найти ранги матриц и указать какой-нибудь базисный минор.

$$\mathbf{a}) \begin{pmatrix} 2 & -1 & 3 \\ 4 & -2 & 0 \\ 0 & 0 & -6 \\ -4 & 2 & 1 \end{pmatrix}$$

a)
$$\begin{pmatrix} 2 & -1 & 3 \\ 4 & -2 & 0 \\ 0 & 0 & -6 \\ -4 & 2 & 1 \end{pmatrix}$$
. 6) $\begin{pmatrix} -2 & 1 & -1 & 3 & 1 \\ 1 & 0 & 2 & -1 & 1 \\ 1 & 3 & 11 & 2 & -5 \\ -1 & 4 & 10 & 5 & -4 \end{pmatrix}$.

$$\mathbf{B}) \begin{pmatrix} 1 & 2 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 1 & 2 & -1 & 0 \\ 1 & 3 & 1 & 1 \\ 2 & 5 & 0 & 1 \end{pmatrix}.$$

4.1. a)
$$x_1 = 2$$
, $x_2 = 3$.

B)
$$x = 2$$
, $y = 1$, $z = -1$.

4.2. a)
$$\lambda = 3$$
.

4.4. a)
$$r = 3$$
, $\begin{vmatrix} -1 & 2 & 5 \\ 2 & -1 & 6 \\ 2 & -4 & 4 \end{vmatrix}$. **6)** $r = 2$, $\begin{vmatrix} -8 & 1 \\ -2 & 1 \end{vmatrix}$.

B)
$$r = 3$$
, $\begin{vmatrix} 1 & 3 & -1 \\ 2 & -1 & -3 \\ 7 & 7 & 1 \end{vmatrix}$. **r)** $r = 3$, $\begin{vmatrix} 3 & -1 & 5 \\ 5 & -3 & 4 \\ 7 & -5 & 1 \end{vmatrix}$.

6)
$$x_1 = 1$$
, $x_2 = -1$, $x_3 = 0$.

$$\mathbf{r}$$
) $x_1 = 0$, $x_2 = 3$, $x_3 = -1$.

6)
$$\lambda = 0$$
, $\lambda = 2$.

6)
$$r = 2$$
, $\begin{vmatrix} -8 & 1 \\ -2 & 1 \end{vmatrix}$.

$$\mathbf{r}) \ r = 3, \begin{vmatrix} 3 & -1 & 5 \\ 5 & -3 & 4 \\ 7 & -5 & 1 \end{vmatrix}.$$

4.4.
$$\pi$$
) $r = 2$, $\begin{vmatrix} -1 & 0 \\ 2 & 1 \end{vmatrix}$. **4.5.** a) $x = 1$, $y = 3$, $z = 5$.

4.5. 6)
$$x_1 = 3$$
, $x_2 = 1$, $x_3 = -1$. **4.7. a)** 2.

Решение произвольных и однородных систем

Аудиторная работа

5.1. Исследовать системы на совместность и в случае совместности решить их.

5.1. a)
$$\begin{cases} 2x - y + z = -2, \\ x + 2y + 3z = -1, \\ x - 3y - 2z = 3. \end{cases}$$

5.1. 6)
$$\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 6, \\ 3x_1 + 5x_2 + 2x_3 + 2x_4 = 4, \\ 9x_1 + 4x_2 + x_3 + 7x_4 = 2. \end{cases}$$

5.1. B)
$$\begin{cases} x_1 + 2x_2 - x_3 + 4x_4 + x_5 = 1, \\ 2x_1 - 3x_2 + 2x_3 + x_4 - x_5 = 3. \end{cases}$$

5.1. r)
$$\begin{cases} x_1 + 2x_2 + x_3 - 3x_4 + x_5 = 1, \\ x_1 - 3x_2 + x_3 - 2x_4 + x_5 = -3, \\ x_1 + 7x_2 + x_3 - 4x_4 + x_5 = 5. \end{cases}$$

5.1. д)
$$\begin{cases} 3x_1 - x_2 + x_3 + 2x_5 = 18, \\ 2x_1 - 5x_2 + x_4 + x_5 = -7, \\ x_1 - x_4 + 2x_5 = 8, \\ 2x_2 + x_3 + x_4 - x_5 = 10, \end{cases}$$

$$2x_2 + x_3 + x_4 - x_5 = 10$$
$$x_1 + x_2 - 3x_3 + x_4 = 1.$$

5.1. e)
$$\begin{cases} x_1 - x_2 + x_3 - x_4 = -2, \\ x_1 + 2x_2 - 2x_3 - x_4 = -5, \\ 2x_1 - x_2 - 3x_3 + 2x_4 = -1, \\ x_1 + 2x_2 + 3x_3 - 6x_4 = -10. \end{cases}$$

5.1. ж)
$$\begin{cases} x_1 - 3x_2 + 4x_3 - x_4 = 2, \\ 2x_1 + 3x_2 + x_3 + 5x_4 = 3, \\ 3x_1 + 5x_3 + 4x_4 = 6. \end{cases}$$

5.1. 3)
$$\begin{cases} x_1 - 5x_2 + 3x_3 - x_4 = 1, \\ 2x_1 - 10x_2 + 3x_4 = 0, \\ 4x_1 - 20x_2 + 6x_3 + x_4 = 2. \end{cases}$$

5.2. Решить однородную систему и найти фундаментальную систему решений.

5.2. a)
$$\begin{cases} x_1 + 2x_2 - x_3 = 0, \\ 2x_1 + 9x_2 - 3x_3 = 0. \end{cases}$$

5.2. 6)
$$\begin{cases} 3x_1 + 2x_2 + x_3 = 0, \\ 2x_1 + 5x_2 + 3x_3 = 0, \\ 3x_1 + 4x_2 + 2x_3 = 0. \end{cases}$$

5.2. B)
$$\begin{cases} 2x_1 + 2x_2 - x_3 + 3x_4 = 0, \\ x_1 + x_2 + 3x_3 - x_4 = 0. \end{cases}$$

5.2. r)
$$\begin{cases} x_1 + 4x_2 - 3x_3 + 6x_4 = 0, \\ 2x_1 + 5x_2 + x_3 - 2x_4 = 0, \\ x_1 + 7x_2 - 10x_3 + 20x_4 = 0. \end{cases}$$

5.2. д)
$$\begin{cases} x_1 + 2x_2 - 3x_3 + x_4 = 0, \\ 2x_1 + 4x_2 - x_3 - x_4 = 0, \\ 3x_1 + 6x_2 - 4x_3 = 0. \end{cases}$$

5.2. e)
$$\begin{cases} 3x_1 + x_2 - 2x_3 + x_4 - x_5 = 0, \\ 6x_1 + 3x_2 + x_3 - 2x_4 + x_5 = 0, \\ x_1 + 2x_2 - x_3 + x_4 + x_5 = 0. \end{cases}$$

Домашнее задание

5.3. Исследовать системы уравнений и в случае совместности решить их.

5.3. a)
$$\begin{cases} x_1 + 2x_2 + x_3 = -1, \\ 2x_1 + 3x_2 + 5x_3 = 3, \\ 3x_1 + 5x_2 + 6x_3 = 7. \end{cases}$$
 5.3. 6)
$$\begin{cases} x_1 - x_2 + 3x_3 = 1, \\ 2x_1 + 3x_2 - 2x_3 = 2, \\ 4x_1 + x_2 + 4x_3 = 4. \end{cases}$$

5.3. B)
$$\begin{cases} 2x_1 + 3x_2 = 1, \\ 3x_1 + 4x_2 = 1, \\ x_1 + 2x_2 = 1, \\ 4x_1 + 5x_2 = 1. \end{cases}$$
 5.3. r)
$$\begin{cases} x_1 - 5x_2 + 3x_3 - x_4 = 1, \\ 2x_1 - 10x_2 + 3x_4 = 0, \\ 4x_1 - 20x_2 + 6x_3 + x_4 = 2. \end{cases}$$

5.4. Решить системы:

5.4. a)
$$\begin{cases} x_1 + 2x_2 - x_3 = 0, \\ 3x_1 - x_2 + 2x_3 = 0, \\ 4x_1 + x_2 + 3x_3 = 0. \end{cases}$$
 5.4. 6)
$$\begin{cases} 3x_1 - x_2 + 2x_3 + x_4 = 0, \\ x_1 + 2x_2 - 4x_3 - 2x_4 = 0. \end{cases}$$

Ответы

5.1. а) Система несовместна.

5.1. 6)
$$\left\{ \left(\frac{C_1 - 9C_2 - 2}{11}, \frac{10 - 5C_1 + C_2}{11}, C_1, C_2 \right) \middle| \forall C_1, C_2 \in R \right\}.$$

5.1. B)
$$\left\{ \frac{9 - C_1 - 14C_2 - C_3}{7}, \frac{4C_1 - 7C_2 - 3C_3 - 1}{7}, C_1, C_2, C_3 \right)$$

$$| \forall C_1, C_2, C_3 \in R \right\}.$$

5.1. r)
$$\left\{ \left(\frac{-3 - 5C_1 + 13C_2 - 5C_3}{5}, \frac{4 + C_2}{5}, C_1, C_2, C_3 \right) \middle| \forall C_1, C_2, C_3 \in R \right\}.$$

5.1. A)
$$x_1 = 5$$
, $x_2 = 4$, $x_3 = 3$, $x_4 = 1$, $x_5 = 2$.

5.1. e)
$$\{(C, C+1, C+2, C+3) | \forall C \in R\}.$$

5.1. ж) Система несовместна.

5.1. 3)
$$\left\{ \left(C_1, C_2, \frac{3 - 5C_1 + 25C_2}{9}, \frac{10C_2 - 2C_1}{3} \right) \middle| \forall C_1, C_2 \in R \right\}.$$

5.2. a)
$$\left\{ \left(\frac{3}{5} C_1, \frac{C_1}{5}, C_1 \right) \middle| \forall C_1 \in R \right\}; \quad (3, 1, 5).$$

5.2. 6)
$$x_1 = x_2 = x_3 = 0$$
.

5.2. B)
$$\left\{ \left(\frac{-7C_1 - 8C_2}{7}, C_1, \frac{5C_2}{7}, C_2 \right) \middle| \forall C_1 C_2 \in R \right\}; (-1, 1, 0, 0); \left(-\frac{8}{7}, 0, \frac{5}{7}, 1 \right).$$

5.2. r)
$$\begin{cases} \left(\frac{-19C_1 + 38C_2}{3}, \frac{7C_1 - 14C_2}{2}, C_1, C_2 \right) \middle| \forall C_1 C_2 \in R \end{cases}, \\ \left(-\frac{19}{3}, \frac{7}{2}, 1, 0 \right), \left(\frac{38}{3}, -7, 0, 1 \right).$$

5.2. д)
$$\left\{ \left(C_1, C_2, \frac{3C_1 + 6C_2}{4}, \frac{5C_1 + 10C_2}{4} \right) | \forall C_1, C_2 \in R \right\}$$
.

5.2. e)
$$\begin{cases} \left(\frac{8C_1 + 9C_2}{26}, -\frac{6C_1 + 23C_2}{26}, \frac{22C_1 - 11C_2}{26}, C_1, C_2 \right) \middle| \forall C_1 C_2 \in R \right\}, \\ \left(\frac{4}{13}, -\frac{3}{13}, \frac{11}{13}, 0 \right), \quad \left(\frac{9}{26}, -\frac{23}{26}, -\frac{11}{26}, 0, 1 \right). \end{cases}$$

5.3. а) Несовместна.

5.3. 6)
$$\left\{ \left(\frac{5-7c}{5}, \frac{8c}{5}, c \right) | \forall c \in R \right\}.$$

5.3. B)
$$x_1 = -1, x_2 = 1$$
.

5.3. r)
$$\left\{ \left(c_1, c_2, \frac{3 - 5c_1 + 25c_2}{9}, \frac{10c_2 - 2c_1}{3}\right) \middle| \forall c_1, c_2 \in R \right\}$$
.

5.4. a)
$$x_1 = 0, x_2 = 0, x_3 = 0$$
.

5.4. 6)
$$\{(0,2c_1+c_2,c_1,c_2) | \forall c_1,c_2 \in R\}.$$

Векторы. Линейные операции над векторами. Скалярное произведение векторов

Аудиторная работа

- **6.1.** Определить, для каких векторов \vec{a} и \vec{b} выполняются следующие условия:
 - 1) $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$,
 - 2) $|\vec{a} + \vec{b}| = |\vec{a}| |\vec{b}|$,
 - 3) $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$,
 - 4) $|\vec{a} + \vec{b}| = 0$,
 - $5) \frac{\vec{a}}{|\vec{a}|} = \frac{\vec{b}}{|\vec{b}|}.$
- **6.2.** Даны векторы $\vec{a} = 3\vec{i} 2\vec{j} + 6\vec{k}$ и $\vec{b} = -2\vec{i} + \vec{j}$. Определить проекции на координатные оси следующих векторов:
 - 1) $-\frac{1}{2}\vec{b}$; 2) $2\vec{a}$; 3) $2\vec{a} + 3\vec{b}$.
- **6.3.** Проверить коллинеарность векторов $\vec{a}(2;-1;3)$ и $\vec{b}(-6;3;-9)$. Установить, какой из них длиннее другого и во сколько раз, как они направлены в одну или в противоположные стороны.

- **6.4.** Найти направляющие косинусы вектора $\vec{a}(6;-2;-3)$.
- **6.5.** Определить модули суммы и разности векторов $\vec{a} = 3\vec{i} 5\vec{j} + 8\vec{k}$ и $\vec{b} = -\vec{i} + \vec{j} 4\vec{k}$.
- **6.6.** Даны точки A(-1;2;1), B(2;1;-3), C(3;0;5). Подобрать точку D так, чтобы четырехугольник ABCD был параллелограммом.
- **6.7.** Найти $(\vec{m}+2\vec{n},\vec{m}-\vec{n})$, если $\vec{m}=2\vec{a}+\vec{b}$, $\vec{n}=\vec{a}-3\vec{b}$, $|\vec{a}|=|\vec{b}|=2$; $(\vec{a}, \hat{b})=\frac{\pi}{3}$.
- **6.8.** Даны вершины четырехугольника A(1;-2;2), B(1;4;0), C(-4;1;1) и D(-5;-5;3). Доказать, что его диагонали AC и BD взаимно перпендикулярны.
- **6.9.** Вычислить внутренние углы треугольника ABC, если A(1;2;1), B(3;-1;7), C(7;4;-2). Убедиться, что этот треугольник равнобедренный.
- **6.10.** Вычислить проекцию вектора $\vec{a} = 5\vec{i} + 2\vec{j} 5\vec{k}$ на ось вектора $\vec{b} = 2\vec{i} \vec{j} + 2\vec{k}$.

Домашнее задание

- **6.11.** Найти длины диагоналей параллелограмма, построенного на векторах $\vec{a}(3;-5;8)$ и $\vec{b}(-1;1;-4)$, и косинус угла между его диагоналями.
- **6.12.** Даны три вектора $\vec{a}(-2;1;1)$, $\vec{b}(1;5;0)$ и $\vec{c}(4;4;-2)$. Вычислить пр $_{\vec{c}}(3\vec{a}-2\vec{b})$.
- **6.13.** При каком значении α векторы $\vec{a} = \alpha \vec{i} 3\vec{j} + 2\vec{k}$ и $\vec{b} = \vec{i} + 2\vec{j} \alpha \vec{k}$ взаимно перпендикулярны?
- **6.14.** Векторы \vec{a} и \vec{b} образуют угол $\phi = \frac{\pi}{6}$. Зная, что $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 1$, вычислить угол α между векторами $\vec{p} = \vec{a} + \vec{b}$ и $\vec{q} = \vec{a} \vec{b}$.
- **6.15.** Найти координаты вектора \vec{b} , коллинеарного вектору $\vec{a}=(2;1;-1)$, при условии что $(\vec{a}\,,\vec{b}\,)=3$.

Ответы

6.2. 1)
$$\left(1; -\frac{1}{2}; 0\right)$$
. **2)** $\left(6; -4; 12\right)$. **3)** $\left(0; -1; 12\right)$.

6.3. Векторы противоположно направленные, вектор \vec{b} длиннее вектора \vec{a} в 3 раза.

6.4.
$$\cos \alpha = \frac{6}{7}$$
; $\cos \beta = -\frac{2}{7}$; $\cos \beta = -\frac{3}{7}$.

6.5.
$$|\vec{a} + \vec{b}| = 6;$$
 $|\vec{a} - \vec{b}| = 14.$ **6.6.** $D(0; 1; 9).$ **6.7**.-42.

6.9.
$$\cos \angle A = -\frac{12}{49}$$
; $\cos \angle B = \frac{\sqrt{122}}{14}$; $\cos \angle C = \frac{\sqrt{122}}{14}$. **6.10.** $-\frac{2}{3}$.

6.11.
$$|\vec{a} + \vec{b}| = 6$$
, $|\vec{a} - \vec{b}| = 14$, $\cos \varphi = \frac{20}{21}$.

6.12.
$$np_{\vec{c}}(3\vec{a}-2\vec{b})=-11$$
.

6.13.
$$\alpha = -6$$
.

6.14.
$$\alpha = \arccos \frac{2}{\sqrt{7}}$$
.

6.15.
$$\vec{b} = \left(1; \frac{1}{2}; -\frac{1}{2}\right)$$
.

Занятие 7

Векторное и смешанное произведения векторов

Аудиторная работа

- **7.1.** Векторы \vec{a} и \vec{b} ортогональны. Зная, что $|\vec{a}|=3, |\vec{b}|=4$, вычислить: 1) $|[\vec{a},\vec{b}]|$; 2) $|[\vec{a}+\vec{b},\vec{a}-\vec{b}]|$; 3) $|[(3\vec{a}+\vec{b}),(\vec{a}-\vec{b})]|$.
- **7.2.** Даны векторы $\vec{a} = (3; -1; -2), \vec{b} = (1; 2; -1)$. Найти координаты векторных произведений: $1)[\vec{a}, \vec{b}]; 2)[2\vec{a} + \vec{b}, \vec{b}]; 3)[2\vec{a} \vec{b}, 2\vec{a} + \vec{b}]$.
- **7.3.** Даны вершины треугольника A(1;-1;2), B(5;-6;2), C(1;3;-1). Вычислить площадь треугольника и длину высоты, опущенной из вершины B на сторону AC.

- **7.4.** Найти вектор \vec{c} , ортогональный векторам $\vec{a}=(2;-3;1)$ и $\vec{b}=(1;-2;3)$ и удовлетворяющий условию $(\vec{c},\vec{i}+2\vec{j}-7\vec{k})=10$.
- **7.5.** Установить, компланарны ли векторы \vec{a} , \vec{b} , \vec{c} , если $\vec{a}=(2;3;-1)$, $\vec{b}=(1;-1;3)$, $\vec{c}=(1;9;-11)$.
- **7.6.** Доказать, что четыре точки A(1; 2; -1), B(0; 1; 5), C(-1; 2; 1), D(2;1;3) лежат в одной плоскости.
- **7.7.** Даны вершины тетраэдра: A(2;3;1), B(4;1;-2), C(6;3;7), D(-5;-4;8). Найти объем тетраэдра и длину высоты, опущенной из вершины D.

Домашнее задание

- **7.8.** Вычислить площадь параллелограмма, построенного на векторах $\vec{a} = (0;-1;1)$ и $\vec{b} = (1;1;1)$.
- **7.9.** Лежат ли точки A(5;5;4), B(3;8;4), C(3;5;10), D(5;8;2) в одной плоскости?
- **7.10.** Выяснить, правой или левой будет тройка векторов $\vec{a}=(3;4;0),$ $\vec{b}=(0;-4;1)$, $\vec{c}(0;2;5)$.
- **7.11.** Найти длину высоты параллелепипеда, построенного на векторах $\vec{a} = \vec{i} 5\vec{j} + \vec{k}$, $\vec{b} = 4\vec{i} + 2\vec{k}$, $\vec{c} = \vec{i} \vec{j} \vec{k}$, если за основание взят параллелограмм, построенный на векторах \vec{a} и \vec{b} .
- **7.12.** Вычислить синус угла, образованного векторами \vec{a} = (2; 2; 1) и \vec{b} = (2; 3; 6) .

2)
$$(10, 2, 14)$$
. **3)** $(20, 4, 28)$. **7.3.** $\{25, 5\}$. **7.4.** $i = (7, 5, 1)$.

7.5. Компланарны. **7.7.**
$$\{154/3,11\}$$
. **7.8.** $\sqrt{6}$. **7.9.** Не лежат.

7.10. Левая. 7.11.
$$\frac{16}{3\sqrt{14}}$$
. 7.12. $\sin \varphi = \frac{5\sqrt{17}}{21}$.

Прямая на плоскости

Аудиторная работа

- **8.1.** Написать уравнение прямой, проходящей через точку A(-1;2), перпендикулярно вектору $\overline{M_1M_2}$, если $M_1(2;-7)$, $M_2(3;2)$.
- **8.2.** Написать каноническое и параметрические уравнения прямой, проходящей через точку A(3;-2) параллельно: a) вектору $\vec{S}(1;5)$; б) оси Oy.
- **8.3.** Написать уравнение прямой, проходящей через точку A(-1;8) и образующей с осью абсцисс угол, равный $\frac{3\pi}{4}$.
- **8.4.** Даны вершины треугольника ABC : A(1;2) , B(2;-2) , C(6;1) . Найти:
 - 1) уравнение стороны AB;
 - 2) уравнение высоты CH;
 - 3) уравнение медианы AM;
- 4) уравнение прямой, проходящей через вершину C параллельно стороне AB;
 - 5) расстояние от точки C до прямой AB.
- **8.5.** Найти расстояние между прямыми 12x 5y 26 = 0 и 12x 5y + 13 = 0.
 - **8.6.** Найти проекцию точки A(2;6) на прямую 3x + 4y 5 = 0.

Домашнее задание

- **8.7.** Найти уравнение прямой, проходящей через точку пересечения прямых 3x-2y-7=0 и x+3y-6=0 и отсекающей на оси абсцисс отрезок, равный 3.
- **8.8.** Найти точку O пересечения диагоналей четырехугольника ABCD, если A(-1;-3), B(3;5), C(5;2), D(3;-5).

- **8.9.** Найти уравнения перпендикуляров к прямой 3x + 5y 15 = 0, проведенных через точки пересечения данной прямой с осями координат.
- 8.10. Записать уравнение прямой, проходящей через точку A(-2; 3) и составляющей с осью Ox угол: a) 45° ; б) 90° ; в) 0° .
- точку B, симметричную **8.11.** Найти точке A(8; 12)относительно прямой x-2y+6=0.
 - 8.12. Найти один из углов между прямыми:

a)
$$2x+3y-5=0$$
 и $x-3y-7=0$;

6)
$$\begin{cases} x = 4 \\ y = t + 7 \end{cases}$$
 $u \begin{cases} x = 3t - 1 \\ y = \sqrt{3}t + 2 \end{cases}$.

8.1.
$$x + 9y - 17 = 0$$
.

8.2. a)
$$\frac{x-3}{1} = \frac{y+2}{5}$$
, $\begin{cases} x = 3+t \\ y = -2+5t \end{cases}$

6)
$$\frac{x-3}{0} = \frac{y+2}{1}$$
, $x = 3$. **8.3.** $x+9-7=0$.

8.3.
$$x+9-7=0$$
.

8.4. 1)
$$\frac{x-1}{1} = \frac{y-2}{-4}$$
 2) $\frac{x-6}{-4} = \frac{y-1}{-1}$, 3) $\frac{x-1}{1} = \frac{y-2}{-1}$,

4)
$$4x + y - 25 = 0$$
. 5) $\frac{19}{\sqrt{17}}$. **8.5.** 3. **8.6.** (-1, 2).

8.7.
$$x = 3$$
.

8.9.
$$5x - 3y - 25 = 0$$
, $5x - 3y + 9 = 0$.

8.10. a)
$$x - y + 5 = 0$$
; б) $x + 2 = 0$; в) $y - 3 = 0$.

8.11.
$$B(12; 4)$$
. **8.12.** a) $\arccos \frac{7}{\sqrt{130}}$; 6) $\frac{\pi}{3} = 60^{\circ}$.

Прямая и плоскость в пространстве

Аудиторная работа

- **9.1.** Даны две точки $M_1(3;-1;2)$ и $M_1(4;-2;-1)$. Составить уравнение плоскости, проходящей через точку M_1 перпендикулярно вектору $\overrightarrow{M_1M_2}$.
- **9.2.** Составить уравнение плоскости, проходящей через три точки $M_1(1;3;4), M_2(3;0;2)$ и $M_3(2;5;7)$.
- **9.3.** Составить уравнение плоскости, проходящей через точку M(1;0;-2) перпендикулярно к плоскостям x-2y+z+5=0 и 2x-y+3z-1=0.
- **9.4**. Найти расстояние между плоскостями 2x 3y + 6z 21 = 0 и 4x 6y + 12z + 35 = 0 .
- **9.5.** Составить уравнение прямой, проходящей через точку M(4;-3;2) перпендикулярно к плоскости x-3y+2z-5=0.
 - 9.6. Найти угол между прямыми

$$\begin{cases} x + 2y + z - 1 = 0, \\ x - 2y + z + 1 = 0 \end{cases} \quad \text{if} \quad \begin{cases} x - y - z - 1 = 0, \\ x - y + 2z + 1 = 0. \end{cases}$$

9.7. Написать уравнение плоскости, проходящей через точку M(2;0;-3) параллельно прямым

$$\frac{x-2}{3} = \frac{y+1}{1} = \frac{z}{1}$$
 \mathbf{u} $\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$.

- **9.8.** Найти проекцию точки A(3;-1;4) на плоскость 2x+y-z+5=0 .
- **9.9.** Найти проекцию точки A(2; 3; 1) на прямую $\frac{x+7}{1} = \frac{y+2}{2} = \frac{z+2}{3}$ и расстояние от этой точки до данной прямой.

Домашнее задание

- 9.10. Составить уравнение плоскости, проходящей через точку M(-1; 2; 3), параллельно плоскости, проходящей через точки $M_1(1; 0; -2), M_2(3; 4; 5), M_3(-1; 2; 0)$.
- **9.11.** Найти расстояние от точки M(2; 1; 1) до плоскости x + y - z + 1 = 0.
- 9.12. Определить, при каком значении параметра α плоскость $\alpha x + (2\alpha - 1)y + z - 5 = 0$:
 - а) параллельна плоскости 2x + 3y + z 4 = 0;
 - б) перпендикулярна плоскости 3x + y z = 0.
- **9.13.** Найти координаты точки Q, симметричной P(-3; 1; -9) относительно плоскости 4x - 3y - z - 7 = 0.
- угол между прямой $\begin{cases} x 2y + 3 = 0 \\ 3y + z 1 = 0 \end{cases}$ **9.14.** Вычислить И плоскостью 2x + 3y - z + 1 = 0.
 - **9.15.** Пересекаются ли прямые $\frac{x+2}{-1} = \frac{y-3}{2} = \frac{z-4}{3}$ и $\frac{x}{3} = \frac{y+4}{2} = \frac{z-3}{5}$?
- **9.16.** Найти координаты точки Q, симметричной точке P(2;-5;7) относительно прямой, проходящей через точки $M_1(5;4;6)$ и $M_2(-2;-17;-8)$.
- параметрические уравнения **9.17.** Составить медианы вершинами A(3; 6; -7), B(-5; 1; -4), C(0; 2; 3), треугольника проведенной из вершины C.

9.1.
$$x - y - 3z + 2 = 0$$
.

9.2.
$$5x + 8y - 7z - 1 = 0$$
.

9.3.
$$5x + y - 3z - 11 = 0$$
.

9.5.
$$\frac{x-4}{1} = \frac{y+3}{-3} = \frac{z-2}{2}$$
. **9.6.** $\frac{\pi}{3}$.

9.6.
$$\frac{\pi}{3}$$
.

9.7.
$$x + 2y - 5z - 17 = 0$$
.

9.8.
$$(1; -2; 5)$$
.

9.10.
$$x + 3y - 2z + 1 = 0$$
.

9.11.
$$\sqrt{3}$$
.

9.12. a)
$$\alpha = 2$$
; δ) $\alpha = 0.4$.

9.14.
$$\sin \varphi = -\frac{5}{7}; \varphi \approx -45^{\circ}36'$$
.

9.17.
$$x = 2t$$
, $y = -3t + 2$, $z = 17t + 3$.

Кривые 2-го порядка на плоскости. Поверхности 2-го порядка

Аудиторная работа

- 10.1. Составить каноническое уравнение эллипса, если известно, что:
- а) расстояние между фокусами равно 8, малая полуось равна 3;
- б) малая полуось равна 6, эксцентриситет равен 4/5.
- **10.2.** Найти координаты фокусов и эксцентриситет эллипса $x^2 + 4v^2 = 4$.
- **10.3.** Составить каноническое уравнение гиперболы, если известно, что:
- а) расстояние между фокусами равно 30, а расстояние между вершинами равно 24;
- б) действительная полуось равна 2 и гипербола проходит через точку $M(4;4\sqrt{3})$.
- **10.4.** Найти уравнение гиперболы, вершины которой находятся в фокусах, а фокусы в вершинах эллипса $6x^2 + 5y^2 = 30$.
- **10.5.** Составить каноническое уравнение параболы, если известно, что:
 - а) парабола имеет фокус F(0;2) и вершину в точке O(0;0);
- б) парабола симметрична относительно оси Ox и проходит через точку M(4;-2).

- **10.6.** Составить канонические уравнения парабол, фокусы которых совпадают с фокусами гиперболы $x^2 y^2 = 8$.
- **10.7.** Выяснить, какая фигура соответствует каждому из данных уравнений, и (в случае непустого множества) изобразить ее в системе координат *Оху*:

a)
$$x^2 + y^2 - 4x + 6y + 4 = 0$$
;

6)
$$3x^2 - 4y^2 - 12x - 8y + 20 = 0$$
;

B)
$$v^2 - 3x - 4y + 10 = 0$$
;

$$\Gamma$$
) $2x^2 + 3y^2 + 6x + 6y + 25 = 0$.

10.8. Определить вид поверхности и построить ее:

a)
$$x^2 + y^2 + z^2 - 3x + 5y - 4z = 0$$
;

6)
$$x = v^2 + 2z^2$$
;

B)
$$2x^2 - y^2 + z^2 = 4$$
;

$$\Gamma) 2x^2 - y^2 + 3z^2 = 0;$$

$$z^2 = 4x$$
;

e)
$$x^2 + z^2 = 5$$
.

Домашнее задание

- **10.9.** Найти уравнение гиперболы, если ее асимптоты заданы уравнениями $x \pm 2y = 0$, а расстояние между вершинами, лежащими на оси Ox, равно 4.
- **10.10.** Составить каноническое уравнение эллипса, проходящего через точки $M_1\!\left(\frac{3\sqrt{3}}{2};-1\right)$ и $M_2\!\left(-1;\frac{4\sqrt{2}}{3}\right)$, и найти его эксцентриситет.

- **10.11.** Найти длину общей хорды параболы $y = 2x^2$ и окружности $x^2 + v^2 = 5$.
- 10.12. Написать уравнение параболы, проходящей через точки (0;0) и (-2;4), если параболы симметрична: а) относительна оси Ox; б) относительно оси Оу.
- 10.13. Какая фигура соответствует каждому из данных уравнений? Сделать чертеж, если это возможно.

a)
$$4x^2 + 25y^2 + 4x - 10y - 8 = 0$$
;

6)
$$x^2 - y^2 + 2x - 2y = 0$$
;

B)
$$x^2 - 6x + 2y + 11 = 0$$
.

10.14. Определить вид поверхности и построить ее:

a)
$$x^2 + y^2 + z^2 = 2z$$
;

6)
$$x^2 + 3z^2 - 8x + 18z + 34 = 0$$
;

B)
$$5x^2 + y^2 + 10x - 6y - 10z + 14 = 0$$
;

$$\Gamma$$
) $xy = 1$.

10.1. a)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1;$$
 6) $\frac{x^2}{36} + \frac{y^2}{100} = 1.$

6)
$$\frac{x^2}{36} + \frac{y^2}{100} = 1.$$

10.2.
$$F_1(0, -\sqrt{3})$$
, $F_2(0, \sqrt{3})$, $\varepsilon = \frac{\sqrt{3}}{2}$.

10.3. a)
$$\frac{x^2}{144} - \frac{y^2}{81} = 1$$
; **6)** $\frac{y^2}{16} - \frac{x^2}{4} = 1$.

6)
$$\frac{y^2}{16} - \frac{x^2}{4} = 1$$
.

10.4.
$$\frac{y^2}{1} - \frac{x^2}{5} = 1$$
.

10.5. a)
$$x^2 = 8y$$
; **6)** $y^2 = x$.

6)
$$y^2 = x$$
.

10.6.
$$y^2 = \pm 16x$$
. **10.7.** a) окружность $(x-2)^2 + (y+3)^2 = 12$.

б) гипербола
$$\frac{(y+1)^2}{3} - \frac{(x-2)^2}{4} = 1;$$

- в) парабола $(y-2)^2 = 3(x-2)$;
- г) пустое множество.
- 10.8. а) сфера;

- б) эллиптический параболоид;
- в) олнополостный гиперболоид; г) коническая поверхность;
- д) параболический цилиндр; e) круговой цилиндр; 10.9. $\frac{x^2}{4} \frac{y^2}{1} = 1$.

10.10.
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
; $\varepsilon = \frac{\sqrt{5}}{3}$. **10.11**. 2.

10.12. a)
$$y^2 = -8x$$
;

6)
$$y = x^2$$
.

10.13. a)
$$\frac{(x+0.5)^2}{2.5} + \frac{(y-0.2)^2}{0.4} = 1$$
; **6)** $x+y+2=0; x-y=0$;

B)
$$(x-3)^2 = -2(y+1)$$
.

B)
$$(x-3)^2 = -2(y+1)$$
. **10.14. a)** $x^2 + y^2 + (z-1)^2 = 1$;

6)
$$\frac{(x-4)^2}{9} + \frac{(z+3)^2}{3} = 1;$$
 B) $z = \frac{(x+1)^2}{2} + \frac{(y-3)^2}{10}.$

B)
$$z = \frac{(x+1)^2}{2} + \frac{(y-3)^2}{10}$$
.

Функция. Предел последовательности и предел функции

Аудиторная работа

11.1. Найти области определения функций:

a)
$$y = \sqrt{x^2 - 6x + 5}$$
.

$$\mathbf{6)} \ \ y = \arccos\frac{2x}{1+x} \, .$$

B)
$$y = \sqrt{25 - x^2} + \lg \sin x$$
.

r)
$$y = 2^{x^2-2}$$
.

11.2. Проверить функции на четность или нечетность:

a)
$$f(x) = x^4 + 5x^2$$
.

6)
$$f(x) = x^2 + x$$
.

B)
$$f(x) = \frac{x}{2^x - 1}$$
.

$$f(x) = \frac{e^x + 1}{e^x - 1}$$
.

11.3. Построить графики функций:

a)
$$y = \frac{2x+3}{x-1}$$
.

6)
$$y = |3x + 4 - x^2|$$
.

B)
$$y = -2\sin(2x+2)$$
.

$$\Gamma$$
) $v = x \sin x$.

11.4. Вычислить пределы:

a)
$$\lim_{x\to\infty} \frac{5x^2-3x+1}{3x^2+x-5}$$
.

6)
$$\lim_{n \to \infty} \left(\frac{2n-1}{5n+7} - \frac{1+2n^3}{2+5n^3} \right).$$

B)
$$\lim_{x\to 4} \frac{2x^2-9x+4}{x^2+x-20}$$
.

$$\Gamma) \lim_{x \to 5} \frac{2x^2 - 9x - 5}{x^2 - 4x - 5}.$$

д)
$$\lim_{x\to 2} \frac{\sqrt{x+7}-3}{1-\sqrt{3-x}}$$
.

e)
$$\lim_{n \to \infty} \left(\frac{1+2+3+...+n}{n+2} - \frac{n}{2} \right)$$
.

ж)
$$\lim_{n\to\infty} \left(\sqrt{n^2 - 2n - 1} - \sqrt{n^2 - 7n + 3} \right)$$
.

3)
$$\lim_{x\to\infty} \frac{2x^2 - 5x + 4}{3 - 2x - 5x^3}$$
.

u)
$$\lim_{x\to 0} \frac{\sqrt{x^2+1}-1}{\sqrt{16+x^2}-4}$$
.

$$\kappa) \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\cos 2x}.$$

л)
$$\lim_{x\to 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$$
.

$$\mathbf{M}) \lim_{x \to \infty} \sqrt{x} \sin \frac{1}{x}.$$

H)
$$\lim_{x \to -2} \frac{x^2 + 7x + 10}{2x^2 + 9x + 10}$$
.

11.5. Используя замечательные пределы, найти:

a)
$$\lim_{x\to 0} \frac{x}{\sin 3x}$$
.

6)
$$\lim_{x \to 0} \frac{\text{tg } 3x}{\sin 2x}$$
.

$$\mathbf{B)} \lim_{x \to 0} \frac{1 - \cos 6x}{x \sin 3x}.$$

$$\Gamma) \lim_{x\to 0} \frac{\cos x - \cos 3x}{x^2}.$$

$$\mathbf{J}) \lim_{x\to 0} \frac{\operatorname{tg} x - \sin x}{x^3}.$$

e)
$$\lim_{x \to \pi/4} \frac{\sqrt{2} - 2\cos x}{\pi - 4x}$$
.

$$\mathbf{x}) \lim_{x\to\infty} \left(\frac{2x+3}{2x-1}\right)^x.$$

3)
$$\lim_{x\to 0} (1+tg^2\sqrt{x})^{3/x}$$
.

u)
$$\lim_{x\to 0} \left(\frac{7x+3}{9x+3}\right)^{1/x}$$
.

$$\mathbf{K}) \lim_{x \to \infty} \left(\frac{6-x}{7-x} \right)^{\frac{1-x^3}{x^2}}.$$

л)
$$\lim_{x\to\infty} ((2x+1)(\ln(3x+1)-\ln(3x-2))$$
.

$$\mathbf{M)} \lim_{x \to 1} \frac{e^x - e}{x - 1}.$$

H)
$$\lim_{x\to 0} \frac{\ln(1+x)}{3^x-1}$$
.

o)
$$\lim_{x\to 0} \frac{a^{2x}-1}{x}$$
.

Домашнее задание

11.6. Найти пределы указанных функций:

a)
$$\lim_{x \to \infty} \frac{2 + 4x^2 + 3x^3}{x^3 - 7x - 10}$$
.

6)
$$\lim_{x \to \infty} \frac{7x^2 + 10x + 20}{x^3 - 10x^2 - 1}$$
.

B)
$$\lim_{x\to 1} \frac{x^3 - x^2 + x - 1}{x^2 - 4x + 3}$$
.

r)
$$\lim_{x\to 5} \frac{x^2-25}{\sqrt{x-1}-2}$$
.

д)
$$\lim_{x \to \infty} \left(x \left(\sqrt{x^2 + 5} - \sqrt{x^2 + 1} \right) \right)$$
. **e)** $\lim_{x \to 1} \left(\frac{1}{1 - x} - \frac{2}{1 - x^2} \right)$.

ж)
$$\lim_{X\to\infty} \left(\frac{X}{2+X}\right)^{3X}$$
.

3)
$$\lim_{x \to 0} \frac{1 - \cos 4x}{3x \sin 2x}.$$

u)
$$\lim_{x\to 0} \frac{\cos 3x - \cos x}{1 - \sqrt{1 - x^2}}$$
.

$$\kappa$$
) $\lim_{x\to 0} (1-4x)^{\frac{1-x}{x}}$.

$$\mathbf{J}$$
) $\lim_{x\to 0} (\cos x)^{1/x^2}$.

M)
$$\lim_{x\to\infty} ((x-4)(\ln(2-3x)-\ln(5-3x)))$$
.

Ответы

11.1. a)
$$(-\infty;1] \cup [5;+\infty);$$

6)
$$\left[-\frac{1}{3}; 1 \right];$$

B)
$$x \in [-5; -\pi) \cup (0; \pi);$$

$$\Gamma$$
) $(-\infty; +\infty)$.

11.2. а) Четная;

б) Ни четная, ни нечетная;

в) Ни четная, ни нечетная;

г) Нечетная.

11.4. a)
$$\frac{5}{3}$$
;

B)
$$\frac{7}{9}$$
;

$$\Gamma$$
) $\frac{11}{6}$;;

д)
$$\frac{1}{3}$$
;;

e)
$$-\frac{1}{2}$$
;

ж)
$$\pm \frac{5}{2}$$
;

$$\kappa) - \frac{1}{\sqrt{2}};$$

л)
$$\frac{2}{3}$$
;

o)
$$\frac{\sqrt{2}}{2}$$
;

11.5. a)
$$\frac{1}{3}$$
;

6)
$$\frac{3}{2}$$
;

д)
$$\frac{1}{2}$$
;

36

e)
$$-\frac{\sqrt{2}}{4}$$
;

ж)
$$e^2$$
;

3) e^3 ;

и) $e^{-2/3}$;

к) e^{-1} ;

л) e^2 ;

M) e;

H) $\frac{1}{\ln 3}$;

 π) $2 \ln a$.

11.6. a) 3;

б) 0;

B) -1;

г) 40;

д) 2;

e) $-\frac{1}{2}$;

ж) e^{-6} ;

3) 4/3;

- **M**) 1.

Занятие 12

Сравнение бесконечно малых функций. Непрерывность функций. Точки разрыва

Аудиторная работа

- 12.1. Вычислить пределы, используя теорему об отношении двух бесконечно малых функций:
 - a) $\lim_{x\to 0} \frac{\cos x \cos 2x}{1 \cos x}$.

6) $\lim_{x \to 0} \frac{\ln(1-x)}{2 \log 3x}$.

 $\mathbf{B)} \lim_{x \to 0} \frac{\arcsin \frac{x}{\sqrt{1-x^2}}}{\ln(1-x)}.$

 $\Gamma) \lim_{x\to 0} \frac{e^{5x}-1}{\sin 10x}.$

д) $\lim_{x\to 2} \frac{\sin 3(x-2)}{x^2-3x+2}$.

- e) $\lim_{x \to -5} \frac{\text{tg}(x+5)}{x^2 25}$.
- 12.2. Исследовать функции на непрерывность, установить характер точек разрыва:
 - **a)** $f(x) = \frac{x}{x-1}$.

6) $f(x) = \frac{\sin(x-2)}{x-2}$.

B)
$$f(x) = 3^{\frac{x}{4-x^2}}$$
.

$$f(x) = \frac{x^2 - 2x + 1}{x^3 - x^2 - x + 1}$$
.

$$\mathbf{J}(x) = \operatorname{arctg} \frac{1}{x-3}.$$

e)
$$f(x) = \frac{|x+1|}{x+1}$$
.

ж)
$$f(x) = \begin{cases} 2^x, & -\infty < x \le 1, \\ x^2 + 1, & x > 1. \end{cases}$$
 3) $f(x) = \begin{cases} arc \sin x, & -\infty < x \le 1, \\ x^2 - 3, & 1 < x < 2, \\ x - 1, & x \ge 2. \end{cases}$

$$f(x) = \frac{5^{\frac{1}{x-2}} - 1}{5^{\frac{1}{x-2}} + 1}.$$

K)
$$f(x) = \frac{x^3 + 1}{x + 1}$$
.

Домашнее задание

12.3. Вычислить пределы:

a)
$$\lim_{x \to 0} \frac{\ln(1+7x)}{\sin 2x}$$
.

6)
$$\lim_{x \to 0} \frac{e^{\sin 7x} - 1}{x^2 + 3x}$$
.

B)
$$\lim_{x \to \frac{1}{2}} \frac{4x^2 - 1}{\arcsin(1 - 2x)}$$
.

r)
$$\lim_{x\to 2} \frac{x^2-4}{\operatorname{tg}(x^2-3x+2)}$$
.

12.4. Исследовать непрерывность функции; установить на характер точек разрыва:

a)
$$f(x) = \frac{\operatorname{tg} x}{x^2 + 2x}$$
.

6)
$$f(x) = \frac{1}{1+3^{\frac{1}{x}}}$$
.

в)
$$f(x) = \begin{cases} \sqrt{4-x^2}, -2 \le x \le 2, \\ x-2, & 2 < x \le 4, \\ -2\sqrt{x}, & x > 4. \end{cases}$$
 Построить график функции.

$$f(x) = \frac{e^x - e^{-x}}{x}$$
.

Ответы

12.1. а) 3; б) $-\frac{1}{6}$; в) -1; г) $\frac{1}{2}$; д) 3; е) $-\frac{1}{10}$. **12.2.** а) x = 1 – точка разрыва 2-го рода; **б)** x = 2 — точка устранимого разрыва, f(2) = 1; **в)** $x = \pm 2$ — точки разрыва 2-го рода; г) x = 1 — точка устранимого разрыва; д) x = 3 — точка разрыва 1-го рода; e) x = -1 — точка разрыва 1-го рода; **ж)** Функция непрерывна при $x \in R$; **3)** x = 0 – точка разрыва 1-го рода. **12.3.** a) 7/2; **6)** 7/3; **B)** -2; **г)** 4. **12.4.** a) x = 0– точка устранимого разрыва, $f(0) = \frac{1}{2}$; x = -2 – точка разрыва 2-го рода; **б)** x = 0 — точка разрыва 1-го рода; **в)** x = 4 — точка разрыва 1-го рода; г) x = 0 — точка устранимого разрыва, f(0) = 2.

Занятие 13

Дифференцирование функций. Логарифмическая производная

Аудиторная работа

13.1. Исходя из определения, найти производные функций:

a)
$$v(x) = 7x^2$$
.

6)
$$y(x) = \sqrt{x}$$
.

6)
$$v(x) = \sqrt{x}$$
. **B)** $v(x) = 5(tg x - x)$.

13.2. Найти производные функций:

a)
$$y = 5x^4 - 3\sqrt[7]{x^3} + 7/x^5 + 4$$
.

6)
$$y = x^3 \sin x$$
.

B)
$$y = (x^4 + 1)/(x^4 - 1)$$
.

$$\mathbf{r}$$
) $y = (x^5 + 3x - 1)^4$.

д)
$$y = \sqrt[3]{((x^3+1)/(x^3-1))^2}$$
.

e)
$$y = \ln(2x^3 + 3x^2)$$
.

$$\mathbf{w}) \ \ y = \frac{\sin x - \cos x}{\sin x + \cos x} \ .$$

3)
$$y = (x^2 - 2x + 2)e^{-x^2}$$
.

u)
$$y = x \arccos \frac{x}{2} - \sqrt{4 - x^2}$$
.

k)
$$y = -\text{ctg}^2 \frac{x}{2} - 2 \ln \sin \frac{x}{2}$$
.

л)
$$y = \arctan \frac{1 - \sqrt{1 - x^2}}{x}$$
.

M)
$$y = \frac{2}{2x-1} - \frac{1}{x}$$
.

$$\mathbf{H}) \ \ y = \cos^2 \left(\sin \frac{x}{3} \right) + \sin \left(\cos \frac{x}{3} \right).$$

o)
$$y = 2^{\frac{x}{\ln x}}$$
.

$$\mathbf{\Pi}) \ \ y = \operatorname{lnarctg} \sqrt{1 + x^2} \ .$$

$$\mathbf{p)} \ \ y = \ln x \lg x - \ln a \log_a x.$$

c)
$$y = \cos^3 2x + \ln \frac{x}{2}$$
.

T)
$$y = \ln(x + \sqrt{a^2 + x^2})$$
.

13.3. Используя предварительное логарифмирование, найти производные функций:

a)
$$y = (x+1)^2 (x-1)^3 \sqrt[5]{(x+2)^4} \sqrt[3]{(5x+3)^2}$$
.

6)
$$y = \frac{(x-3)^2(2x-1)}{(x+1)^3}$$
.

B)
$$y = \sqrt[3]{\frac{(x+2)(x-1)^2}{x^5}}$$
.

r)
$$y = x^3 \sqrt{\frac{x-1}{(x+2)\sqrt{x-2}}}$$
.

$$\mathbf{L}$$
) $y = x^{\sin x}$.

e)
$$y = x^{x^2}$$
.

ж)
$$y = (\sin x)^{\arcsin x}$$
.

3)
$$y = (\ln x)^{1/x}$$
.

u)
$$y = (tg 3x)^{x^4}$$
.

K)
$$y = (1 + x^3)^{\arctan 7x}$$
.

13.4. Составить уравнения касательной и нормали к параболе $f(x) = x^2 + 4$ в точке M(1;5).

Домашнее задание

13.5. Найти производные функций:

a)
$$y = e^x \sqrt{1 - e^{2x}} - \arcsin e^x$$
. **6)** $y = x^3 \ln^2 (\sin^2 x - \tan^2 x)$.

B)
$$y = \sqrt{\frac{\cos^2 x + 1}{\sin 2x + 1}}$$
.

$$\mathbf{r}) \ \ y = (\sin^3 x + e^{x^2})^3 + \lg^2 (x^4 - \sin^2 x) \ .$$

д)
$$y = \sqrt{x} \cdot 3^{x^2} - \arctan \sqrt{1 + e^{-x^3}}$$
. **e**) $y = (x^3 + 1)^{\lg 2x}$.

ж)
$$y = \frac{(x+1)^3 \cdot \sqrt[4]{x-2}}{\sqrt[5]{(x-3)^2} \cdot x^{4/3}}$$

ж)
$$y = \frac{(x+1)^3 \cdot \sqrt[4]{x-2}}{\sqrt[5]{(x-3)^2} \cdot x^{4/3}}$$
. 3) $y = (\arccos x)^2 \cdot \ln(\arccos x)$.

13.6. Составить уравнения касательной и нормали к графику функции $y = e^{1-x^2}$ в точке $x_0 = -1$.

Ответы

13.4.
$$y = 2x + 3$$
; $x + 2y - 11 = 0$. **13.6.** $2x - y + 3 = 0$, $x + 2y - 1 = 0$.

Занятие 14

Дифференцирование функций, заданных параметрически и неявно. Дифференциал функции

Аудиторная работа

14.1. Найти производные функций, заданных параметрически:

a)
$$x = t^2 + 2$$
, $y = \frac{1}{3}t^3 - 1$.

6)
$$x = \frac{1}{t+1}, y = \left(\frac{t}{t+1}\right)^2$$
.

B)
$$x = a(\varphi - \sin \varphi), y = a(1 - \cos \varphi).$$
 r) $x = \ln t, y = t^2 - 1.$

д)
$$x = \arccos \sqrt{t}, y = \sqrt{t - t^2}$$
.

e)
$$x = \arctan t, y = \ln(1 + t^2)$$
.

ж)
$$x = a \cos^3 t, y = a \sin^3 t$$
.

3)
$$x = \lg t, y = \sin 2t + 2\cos 2t$$
.

14.2. Найти y'_x в указанных точках:

a)
$$x = e^t \cos t, y = e^t \sin t; t = \frac{\pi}{6}.$$
 6) $x = \frac{3at}{1+t^2}, y = \frac{3at^2}{1+t^2}; t = 2.$

5)
$$x = \frac{3at}{1+t^2}, y = \frac{3at^2}{1+t^2}; t = 2.$$

14.3. Найти производные функций, заданных неявно:

a)
$$e^x + 2x^2y^2 - e^y = 0$$
.

6) $2v \ln v = x$.

B)
$$x - y = \arcsin x - \arcsin y$$
.

 $(x^2 + 2^y = 2^{x+y})$

$$\mathbf{\Pi}$$
) arctg $v = v - x^2$.

e) $\sin(xy) + \cos(xy) = 0$.

ж)
$$x^{2/3} + v^{2/3} = a^{2/3}$$
.

3) $e^x \sin y - e^y \cos x = 0$.

14.4. Найти
$$y'_x$$
 в точке $x = 1$, если $x^3 - 2x^2y^2 + 5x + y - 5 = 0$, $y(1) = 1$.

14.5. Найти y'_x в точке (0,1), если $e^y + xy = e$.

14.6. Найти дифференциалы функций:

a)
$$y = x tg^3 x$$
.

6)
$$y = \sqrt{\arctan x} + (\arcsin x)^2$$
.

B)
$$y = \ln(x + \sqrt{4 + x^2})$$
.

$$\mathbf{r}$$
) $v^5 + v - x^2 = 1$.

- **14.7.** Найти приближенное значение функции $y(x) = e^{x^2 x}$ при x = 1, 2.
 - 14.8. Вычислить приближенно:
 - a) arcsin 0,05.

6) ln 1,2.

B) $\sqrt[4]{17}$.

 Γ) tg 44°56′.

Домашнее задание

14.9. Найти y'_x :

a)
$$x = \frac{t+1}{t}, y = \frac{t-1}{t}$$
.

$$6) x = e^t \sin t, y = e^t \cos t.$$

14.10. Убедиться в том, что функция, заданная параметрически уравнениями $x=\frac{1+\ln t}{t^2},\ y=\frac{3+2\ln t}{t}$, удовлетворяет соотношению $yy'=2x(y')^2+1$.

14.11. Найти производные от функций, заданных неявно:

a)
$$x^3 + y^3 - 3axy = 0$$
.

$$\mathbf{6)} \sin(xy) + \cos(xy) = \operatorname{tg}(x+y) .$$

14.12. Убедиться в том, что функция у, определенная уравнением $xy - \ln y = 1$, удовлетворяет соотношению $v^2 + (xy - 1) \cdot v' = 0$.

14.13. Найти дифференциалы функций:

a)
$$y = x \arcsin x + \sqrt{1 - x^2} - 3$$
. **6)** $e^y = x + y$.

6)
$$e^y = x + y$$

14.14. Вычислить приближенно:

6)
$$\sqrt{\frac{(2,037)^2-3}{(2,037)^2+5}}$$
.

Ответы

14.1. a)
$$\frac{t}{2}$$
.

6)
$$-\frac{2t}{t+1}$$
.

$$\mathbf{B)} \frac{\sin \varphi}{1 - \cos \varphi} = \operatorname{ctg} \frac{\varphi}{2}.$$

$$\Gamma$$
) $2t^2$.

д)
$$2t-1$$
.

$$\mathbf{ж}$$
) $-\operatorname{tg} t$.

3)
$$2(\cos 2t - 2\sin 2t)\cos^2 t$$
.

14.2. a)
$$\frac{1}{2}(\sqrt{3}+1)^2$$
.

6)
$$-\frac{4}{3}$$
.

14.3. a)
$$\frac{e^x + 4xy^2}{e^y - 4x^2y}$$
.

6)
$$\frac{1}{2(\ln y + 1)}$$
.

B)
$$\frac{\left(\sqrt{1-x^2}-1\right)\sqrt{1-y^2}}{\left(\sqrt{1-y^2}-1\right)\sqrt{1-x^2}}.$$

$$\mathbf{r)} \; \frac{2^x - 2^{x+y}}{2^{x+y} - 2^y}.$$

д)
$$\frac{2x(1+y^2)}{y^2}.$$

e)
$$-\frac{y}{x}$$
.

$$\mathbf{w}) - \sqrt[3]{\frac{y}{x}}.$$

3)
$$\frac{e^y \sin x + e^x \sin y}{e^y \cos x - e^x \cos y}.$$

14.4.
$$\frac{4}{3}$$
.

14.5.
$$-e^{-1}$$
.

14.6. a)
$$tg^2 x \left(tgx + \frac{3x}{\cos^2 x} \right) dx$$
.

14.6. a)
$$tg^2x \left(tgx + \frac{3x}{\cos^2 x}\right) dx$$
. **6)** $\left(\frac{1}{2\sqrt{\arctan x}} \cdot \frac{1}{1+x^2} + \frac{2\arcsin x}{\sqrt{1-x^2}}\right) dx$.

$$\mathbf{B)} \; \frac{dx}{\sqrt{4+x^2}}.$$

$$\Gamma) \frac{2xdx}{5v^4+1}.$$

14.7. 1,2.

14.8. a) 0.05.

6) 0,2.

B) 2,02.

$$6) \frac{1 - \lg t}{1 + \lg t}.$$

14.11. a)
$$\frac{ay - x^2}{y^2 - ax}$$

14.11. a)
$$\frac{ay-x^2}{y^2-ax}$$
. **6)** $-\frac{y\cos^2(x+y)(\cos(xy)-\sin(xy))-1}{x\cos^2(x+y)(\cos(xy)-\sin(xy))-1}$.

14.13. a) $\arcsin x dx$.

$$\mathbf{6)} \; \frac{dx}{e^y - 1}.$$

14.14. a) 0,485.

6) 0.355.

Занятие 15

Производные и дифференциалы высших порядков

Аудиторная работа

- 15.1. Найти производные 2-го порядка от следующих функций:
- a) $v = \cos^2 3x$.
- **6)** $v = \operatorname{arctg} x^2$.

B)
$$y = \log_2 \sqrt[3]{1 - x^2}$$
. **r)** $y = \frac{1}{3}x^2\sqrt{1 - x^2} + \frac{2}{3}\sqrt{1 - x^2} + x \arcsin x$.

- функция $y = c_1 e^{2x} + c_2 e^{3x}$ при **15.2.** Показать, что постоянных c_1 и c_2 удовлетворяет уравнению y'' - 5y' + 6y = 0.
 - 15.3. Найти производные 2-го порядка от функций, заданных неявно:

a)
$$y = 1 + xe^y$$
.

6)
$$x^3 + y^3 = 3xy$$
.

B)
$$arctg y = y - x$$
.

$$\Gamma) \ \ y = x + \ln y \ .$$

15.4. Найти производные 2-го порядка от функций, заданных параметрически:

a)
$$x = t^2 + 2, y = \frac{1}{3}t^3 - 1$$
. **6)** $x = \arcsin t, y = \sqrt{1 - t^2}$.

6)
$$x = \arcsin t, y = \sqrt{1 - t^2}$$

B)
$$x = a \cos^2 t, y = a \sin^2 t$$
. Γ) $x = \ln t, y = t^2 - 1$.

$$\Gamma$$
) $x = \ln t, y = t^2 - 1$

- 15.5. Найти дифференциалы 1, 2 и 3-го порядков функции $y = (2x-3)^3$.
 - 15.6. Найти дифференциалы 2-го порядка функций:

a)
$$y = e^{-x^2}$$
.

6)
$$xy + y^2 = 1$$
.

- **15.7.** Найти дифференциал 3-го порядка функции $y = \frac{\ln x}{x}$.
- **15.8.** Найти приближенное значение $\sqrt[5]{31}$ с точностью до двух знаков после запятой.

Домашнее задание

15.9. Найти производные второго порядка следующих функций:

$$a) \ \ y = \sqrt{1 - x^2} \arcsin x \ .$$

a)
$$y = \sqrt{1 - x^2} \arcsin x$$
. **6)** $y = \ln(x + \sqrt{1 + x^2})$.

15.10. Найти $y^{(n)}(x)$, если $y = e^{-x}$.

15.11. Найти
$$\frac{d^2y}{dx^2}$$
, если:

- **15.12.** Вычислить значение производной второго порядка функции y, заданной уравнением $x^2 + 2y^2 xy + x + y = 4$, в точке M(1;1).
- **15.13.** Доказать, что функция $y = e^{4x} + 2e^{-x}$ удовлетворяет уравнению y''' 13y' 12y = 0. Записать для этой функции d^3y .
- **15.14.** Вычислить приближенное значение функции $y = \sqrt[3]{x^2 5x + 12}$ при x = 1,3 с точностью до двух знаков после запятой.

Ответы

15.9. a)
$$-\frac{\arcsin x + x\sqrt{1-x^2}}{\sqrt{(1-x^2)^3}}$$
. **6)** $-\frac{x}{\sqrt{(1+x^2)^3}}$.

15.10.
$$(-1)^n e^{-x}$$
. **15.11.** a) $-\frac{y((x-1)^2 + (y-1)^2)}{x^2 (y-1)^3}$.

15.11. 6)
$$-\operatorname{ctg}^3 t$$
. **15.12.** -1 .

15.13.
$$(64e^{4x} - 2e^{-x})dx^3$$
. **15.14.** 1,93.

Занятие 16

Правило Лопиталя-Бернулли. Формула Тейлора

Аудиторная работа

16.1. Применяя правило Лопиталя—Бернулли, найти пределы:

a)
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x}$$
. 6) $\lim_{x\to 0} \frac{x^4}{x^2 + 2\cos x - 2}$.

B)
$$\lim_{x\to a+0} \frac{\ln(x-a)}{\ln(e^x-e^a)}$$
. Γ) $\lim_{x\to\infty} \frac{\pi-2\arctan x}{\ln(1+\frac{1}{x})}$.

r)
$$\lim_{x \to \infty} \frac{\pi - 2 \operatorname{arctg} x}{\ln \left(1 + \frac{1}{x}\right)}$$

$$\mathbf{A}$$
) $\lim_{x\to 0} x^2 e^{1/x^2}$.

e)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\ln(1+x)} \right)$$
.

ж)
$$\lim_{x \to \infty} (x+10^x)^{1/x}$$
.

3)
$$\lim_{x\to 0} x^{\frac{1}{\ln(e^x-1)}}$$
.

u)
$$\lim_{x \to \frac{\pi}{2}} (\operatorname{tg} x)^{2x-\pi}$$
.

$$\mathbf{K}) \lim_{x \to +\infty} \left(1 + \frac{1}{x^2} \right)^x.$$

- **16.2.** Разложить многочлен $f(x) = x^4 2x^2 + 13x + 9$ по степеням двучлена x+2.
- 16.3. Написать формулу Тейлора 3-го порядка для функции $f(x) = 10^x$ в точке $x_0 = 0$.
- **16.4.** Вывести приближенную формулу $\sin x \approx x \frac{x^3}{6}$ и оценить ее точность при |x| < 0.05.
 - **16.5.** Вычислить с точностью до 10^{-4} $\cos 10^{\circ}$.
 - 16.6. Найти пределы, используя разложение по формуле Тейлора:

a)
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
.

6)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2+x^3}$$
.

B)
$$\lim_{x\to 0} \frac{xe^{2x} + xe^x - 2e^{2x} + 2e^x}{(e^x - 1)^3}$$
.

Домашнее задание

16.7. Найти пределы функций, применяя правило Лопиталя-Бернулли:

16.7. a)
$$\lim_{x \to \infty} \frac{x + 2 \ln x}{x}$$
.

6)
$$\lim_{x\to 0} \frac{x - \sin x}{x^3}$$
.

$$\mathbf{B)} \lim_{x \to 0} \left(\frac{1}{\arctan x} - \frac{1}{x} \right).$$

 $\Gamma) \lim_{x \to 1} \ln x \cdot \ln(x-1).$

- $\lim_{x\to 0} (\cos 2x)^{3/x^2}$.
- 16.8. Написать формулу Тейлора 3-го порядка для функции $f(x) = \frac{1}{\sqrt{x}}$ при $x_0 = 1$.
 - **16.9.** Вычислить приближенно $\sin 1^{\circ}$ с точностью до $\Delta = 10^{-4}$.
- предел $\lim_{x\to 0} \frac{\sin x x}{x^2 \sin x}$, используя формулу **16.10**. Вычислить Тейлора с остаточным членом в форме Пеано.

Ответы

- **16.7.** a) 1.

- **6)** 1/6. **B)** 0. Γ) 0. Π) e^{-6} .

16.8.
$$1 - \frac{1}{2}(x-1) + \frac{1 \cdot 3}{2^2 \cdot 2!}(x-1)^2 - \frac{1 \cdot 3 \cdot 5}{2^3 \cdot 3!}(x-1)^3 + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2^4 \cdot 4!} \frac{(x-1)^4}{(1+\theta(x-1))^{9/2}},$$

 $0 < \theta < 1.$

16.9. 0,0175. **16.10.**
$$-\frac{1}{6}$$
.

Занятие 17

Монотонность функций. Экстремум. Наибольшее и наименьшее значения функции

Аудиторная работа

17.1. Найти интервалы монотонности и точки экстремума следующих функций:

a)
$$y = \frac{x^4}{4} - 2x^3 + \frac{11}{2}x^2 - 6x + \frac{9}{4}$$
.

6)
$$y = \frac{\ln x}{x}$$
.

B)
$$y = \frac{2x^2 - 1}{x^4}$$
.

 $\mathbf{r)} \ \ y = x - 2\sin x \,.$

д)
$$y = \sqrt[3]{x^2 - 2x}$$
.

e) $y = x^2 e^{-x}$

17.2. Найти экстремумы функций, пользуясь производной 2-го порядка:

a)
$$y = \sqrt{1-x} + x$$
.

6) $y = x^2(a-x)^2$.

B)
$$y = x^{1/x}$$
.

 $\mathbf{r)} \ \ y = \frac{x}{\ln x} \ .$

17.3. Определить наибольшее и наименьшее значения данных функций в указанных интервалах:

a)
$$y = x^4 - 2x^2 + 5$$
; [-2,2].

6)
$$y = x + 2\sqrt{x}$$
; [0,4].

B)
$$y = \sqrt[3]{x+1} - \sqrt[3]{x-1}$$
; [0, 1].

r)
$$\arctan \frac{1-x}{1+x}$$
; [0,1].

д)
$$y = \frac{x^2 - 1}{x^2 + 1}$$
; [-2,1].

- **17.4.** Требуется изготовить ящик с крышкой, объем которого был бы равен 72 см³, причем стороны основания относились бы как 1:2. Каковы должны быть размеры всех сторон, чтобы полная поверхность ящика была наименьшей?
- **17.5.** Найти высоту цилиндра наибольшего объема, который можно вписать в шар радиусом R.

Домашнее задание

17.6. Найти интервалы возрастания и убывания и точки экстремума следующих функций:

a)
$$y = x\sqrt{1-x^2}$$
.

 $\mathbf{6)} \ \ y = \ln x - \operatorname{arctg} x \, .$

17.7. Найти экстремум функции $y = x + \frac{a^2}{x} (a > 0)$, используя вторую производную.

17.8. Найти наибольшее и наименьшее значения функций в указанных интервалах (или во всей области определения):

a)
$$y = \frac{1 - x + x^2}{1 + x - x^2}$$
; [0, 1]. **6)** $y = xe^{-x^2/2}$.

17.9. Из трех досок одинаковой ширины сколачивается желоб для подачи воды. При каком угле α наклона боковых стенок к днищу желоба площадь поперечного сечения будет наибольшей?

Ответы

17.6. а) На
$$(-1;-1/\sqrt{2}) \cup (1/\sqrt{2};1)$$
 – убывает; на $(-1/\sqrt{2};1/\sqrt{2})$ – возрастает; $y_{\min} = y(-1/\sqrt{2}) = -1/2$; $y_{\max} = y(1/\sqrt{2}) = 1/2$.

17.6. б) Возрастает на всей области определения.

17.7.
$$y_{\text{max}} = y(-a) = -2a$$
; $y_{\text{min}} = y(a) = 2a$.

17.8. a) 1 и 3/5. **17.8.** b)
$$1/\sqrt{e}$$
 и $-1/\sqrt{e}$. **17.9.** $\alpha = \frac{2\pi}{3}$.

Занятие 18

Выпуклость и вогнутость графиков функций. Асимптоты. Построение графиков функций

Аудиторная работа

18.1. Найти точки перегиба и интервалы выпуклости и вогнутости графиков функций:

a)
$$y = \ln(x^2 + 1)$$
. **6)** $y = \frac{3x^4 + 1}{x^3}$.

B)
$$y = x^2 + \frac{1}{x^2}$$
. **r)** $y = xe^{-x}$.

18.2. Найти асимптоты графиков функций:

a)
$$y = \frac{x^4}{x^3 + 1}$$
.

$$\mathbf{6)} \ \ y = \frac{\ln x}{x} \, .$$

$$\mathbf{B)} \ \ y = x + \sin x \ .$$

r)
$$y = (x-2)e^{-1/x}$$
.

18.3. Провести полное исследование и построить графики функций:

a)
$$y = \frac{2x^2 - 1}{x^4}$$
.

6)
$$y = x^2 e^{-x}$$
.

B)
$$y = x\sqrt{1-x^2}$$
.

$$\mathbf{r}$$
) $y = \sqrt[3]{x^2 - 2x}$.

д)
$$y = x^2 \ln x$$
.

Домашнее задание

18.4. Найти точки перегиба графиков функций:

a)
$$y = \frac{2x-1}{(x-1)^2}$$
.

6)
$$y = x \operatorname{arctg} x$$
.

18.5. Найти асимптоты графика функции $y = x \ln \left(e + \frac{1}{x} \right)$.

18.6. Исследовать функции и построить их графики:

a)
$$y = \frac{x^3}{1 - x^2}$$
.

6)
$$y = xe^{1/x}$$
.

Ответы

18.4. a)
$$\left(-\frac{1}{2}, -\frac{8}{9}\right)$$
.

б) Точек перегиба нет.

18.5.
$$x = -\frac{1}{e}$$
; $y = x + \frac{1}{e}$.

Типовой расчет № 1

Элементы линейной алгебры и аналитической геометрии Задача 1

Исследовать систему уравнений и в случае совместности решить ее.

1.1. a)
$$\begin{cases} x_1 - x_2 - x_3 - x_4 = 1, \\ 2x_1 + x_2 - x_3 + x_4 = 3, \\ 3x_1 + x_4 = 4. \end{cases}$$

1.2. a)
$$\begin{cases} 2x_1 + x_3 + 2x_4 = 5, \\ x_2 - x_3 + x_4 = 0, \\ 2x_1 + x_2 + 3x_3 = 5. \end{cases}$$

1.3. a)
$$\begin{cases} x_2 + 2x_3 + 3x_4 = 2, \\ x_1 - x_2 - x_3 - 2x_4 = 0, \\ x_1 + x_2 + x_4 = -1. \end{cases}$$

1.4. a)
$$\begin{cases} 2x_2 + x_3 + 4x_4 = 0, \\ x_1 - x_3 + x_4 = 2, \\ x_1 + 2x_2 + 5x_4 = 1. \end{cases}$$

1.5. a)
$$\begin{cases} 4x_2 + 2x_3 - 3x_4 = 0, \\ 3x_1 - 3x_2 + x_4 = 3, \\ 3x_1 + x_2 + 2x_3 - 2x_4 = 3. \end{cases}$$

1.6. a)
$$\begin{cases} x_1 - 2x_2 + 3x_3 = 3, \\ 2x_1 + x_3 - x_4 = 1, \\ x_1 + 2x_2 - 2x_3 - x_4 = -2. \end{cases}$$

6)
$$\begin{cases} 2x_1 - 3x_2 - x_3 = 0, \\ x_1 + x_2 + x_3 = 1, \\ 3x_1 - 2x_2 = 1, \\ x_1 - 2x_2 - 2x_3 = -1. \end{cases}$$

6)
$$\begin{cases} 2x_1 - 3x_2 + x_3 = 0, \\ x_1 + x_2 + x_3 = 1, \\ 4x_1 + 5x_2 - x_3 = -1, \\ 7x_1 + 3x_2 + x_3 = 3. \end{cases}$$

$$\begin{cases} x_1 - x_2 + 2x_3 = 1, \\ 3x_1 + x_2 + x_3 = -2, \\ x_1 + x_2 + x_3 = 3, \\ x_1 - x_2 + x_3 = 0. \end{cases}$$

$$\begin{cases} 3x_1 + x_2 + x_3 = 4, \\ x_1 + x_3 - 2x_4 = 2, \\ 2x_1 + x_2 + 2x_4 = 2 \end{cases}$$

$$\begin{cases} 2x_1 - x_3 - 2x_4 = 0, \\ x_1 + 2x_2 - x_3 = 1, \\ x_2 + x_4 = 2, \\ 3x_1 + 3x_2 - 2x_3 = 0 \end{cases}$$

1.7. a)
$$\begin{cases} 4x_1 - 2x_3 + 5x_4 = 0, \\ 3x_1 + x_3 - x_4 = 0, \\ x_1 - 3x_3 + 6x_4 = 0. \end{cases}$$

1.8. a)
$$\begin{cases} x_1 - x_3 + x_4 = 0, \\ 2x_1 + x_3 - 2x_4 = 0, \\ 3x_1 + 2x_2 - x_4 = 0. \end{cases}$$

1.9. a)
$$\begin{cases} x_1 - x_2 + x_3 + x_4 = 0, \\ 2x_1 + x_2 + x_3 - x_4 = 0, \\ x_1 + 2x_2 - 2x_4 = 0. \end{cases}$$

1.10. a)
$$\begin{cases} x_1 + x_2 - x_4 = 0, \\ x_2 + x_3 + x_4 = 0, \\ x_3 - 4x_4 = 0. \end{cases}$$

1.11. a)
$$\begin{cases} 2x_3 + 4x_4 = 0, \\ x_1 + x_2 - x_4 = 0, \\ 2x_1 + 3x_2 - x_3 = 0. \end{cases}$$

1.12. a)
$$\begin{cases} 3x_1 + x_2 - x_4 = 0, \\ 2x_1 - x_2 + x_4 = 0, \\ x_1 - 3x_2 = 0. \end{cases}$$

$$\begin{cases} x_1 + x_3 - x_4 = 7, \\ 2x_1 + x_2 + x_4 = 6, \\ x_1 - x_2 + x_3 = -5, \\ 4x_1 + 2x_3 = 0. \end{cases}$$

6)
$$\begin{cases} 2x_1 + 2x_2 + x_3 = 5, \\ x_1 - x_3 + x_4 = 0, \\ 3x_1 + 2x_2 + x_4 = 1, \\ x_2 + x_3 - x_4 = 0. \end{cases}$$

$$\begin{cases} 3x_1 - 2x_2 - x_3 = 1, \\ x_1 + x_2 + x_3 = 0, \\ 5x_2 + x_3 = 7, \\ x_1 + 3x_2 = 6. \end{cases}$$

$$\begin{cases} x_2 + x_3 - x_4 = -2, \\ x_1 + x_2 - x_3 = 4, \\ 2x_1 + x_2 + x_4 = 3, \\ 3x_1 + 3x_2 = 0. \end{cases}$$

$$\begin{cases} x_2 + x_3 + x_4 = 1, \\ x_1 - x_2 + x_3 - x_4 = -1, \\ x_1 + 2x_3 = 0, \\ x_1 - 2x_2 - 2x_4 = -2. \end{cases}$$

$$\begin{cases} x_1 - x_2 + x_3 = 7, \\ x_1 + 2x_2 + x_4 = 5, \\ 2x_2 + x_3 - x_4 = 0, \\ 2x_1 + x_2 + x_3 + x_4 = 1. \end{cases}$$

1.13. a)
$$\begin{cases} 2x_1 + x_2 + x_3 = 0, \\ x_1 + x_3 - x_4 = 3, \\ 3x_1 + x_2 + 2x_3 - x_4 = 3, \\ 4x_1 + x_2 + 3x_3 - 2x_4 = 6. \end{cases}$$

6)
$$\begin{cases} 3x_3 + 4x_4 = 0, \\ x_1 + x_2 + x_4 = 0, \\ 2x_1 + x_2 - x_4 = 0. \end{cases}$$

1.14. a)
$$\begin{cases} x_2 + x_3 + x_4 = 3, \\ x_1 - x_2 + x_4 = 1, \\ x_1 + x_3 + 2x_4 = 4. \end{cases}$$

$$\begin{cases} x_1 - 2x_2 - x_3 = 0, \\ x_1 + 2x_3 - x_4 = 0, \\ x_1 + 3x_4 = 0. \end{cases}$$

1.15. a)
$$\begin{cases} x_1 - 3x_2 - 4x_3 + x_4 = 0, \\ 3x_1 - 2x_2 - 5x_3 - 4x_4 = 0, \\ 5x_1 - 8x_2 - 13x_3 - 2x_4 = 0. \end{cases}$$
 6)
$$\begin{cases} x_1 + 2x_2 + x_3 - x_4 = 4, \\ 3x_1 + 2x_2 - x_3 - x_4 = 0, \\ 2x_1 - x_2 + x_3 + 2x_4 = -1, \\ 6x_1 + 3x_2 + x_3 = 3. \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + x_3 - x_4 = 4, \\ 3x_1 + 2x_2 - x_3 - x_4 = 0, \\ 2x_1 - x_2 + x_3 + 2x_4 = -1, \\ 6x_1 + 3x_2 + x_3 = 3. \end{cases}$$

1.16. a)
$$\begin{cases} x_1 - x_2 + x_4 = 1, \\ x_2 + x_3 - x_4 = 1, \\ 2x_1 - x_3 + x_4 = 0, \\ 3x_1 + x_4 = 5. \end{cases}$$

$$\begin{cases} x_1 + x_3 + 2x_4 = 0, \\ x_1 - x_3 + x_4 = 0, \\ x_1 + x_2 + 3x_4 = 0. \end{cases}$$

1.17. a)
$$\begin{cases} x_1 + 2x_3 - x_4 = 0, \\ 2x_1 + x_2 + x_3 = 0, \\ x_1 - x_3 + x_4 = 0. \end{cases}$$

$$\begin{cases} 2x_2 + 2x_3 - 4x_4 = 1, \\ 3x_1 + x_2 - x_3 - x_4 = 2, \\ x_1 + x_2 + x_3 + x_4 = -1, \\ 4x_1 + 4x_2 + 2x_3 - 4x_4 = 0. \end{cases}$$

1.18. a)
$$\begin{cases} x_1 - 2x_2 + 4x_3 = 0, \\ x_1 + x_2 - x_3 = 0, \\ 2x_1 - x_2 + 3x_3 = 0. \end{cases}$$

$$\begin{cases} 2x_1 - x_3 - x_4 = -3, \\ 3x_1 + x_2 - 2x_3 = 0, \\ x_1 - x_2 - x_3 = -1, \\ 6x_1 - x_2 - x_3 - 3x_4 = 2. \end{cases}$$

1.19. a)
$$\begin{cases} 3x_2 + x_3 + 4x_4 = 0, \\ x_1 + x_3 - x_4 = 0, \\ 2x_1 + 3x_4 = 0. \end{cases}$$

$$\begin{cases} x_2 + 5x_3 + 2x_4 = 0, \\ -x_3 + x_4 = 1, \\ x_2 + 2x_3 - x_4 = -1, \\ x_1 + 2x_2 + 6x_3 + 2x_4 = 0. \end{cases}$$

1.20. a)
$$\begin{cases} 2x_1 + x_3 + 3x_4 = -1, \\ x_1 + x_2 - x_4 = 1, \\ x_3 - x_4 = 4, \\ 3x_1 + 2x_2 + x_3 + x_4 = 4. \end{cases}$$

6)
$$\begin{cases} x_1 - x_2 - x_3 = 0, \\ x_1 + x_2 + x_3 = 0, \\ 2x_1 - x_2 - x_3 = 0. \end{cases}$$

1.21. a)
$$\begin{cases} x_2 + x_3 + 3x_4 = 3, \\ x_1 - x_3 + x_4 = -1, \\ x_1 + x_2 + 4x_4 = 2. \end{cases}$$

$$\begin{cases} 2x_1 - 3x_2 + x_3 = 0, \\ x_2 - x_3 - x_4 = 0, \\ x_1 + x_2 + 2x_3 = 0, \\ 3x_1 - x_2 + 2x_3 - x_4 = 0. \end{cases}$$

1.22. a)
$$\begin{cases} x_1 - x_3 - x_4 = 0, \\ 2x_1 - 2x_2 + x_4 = 0, \\ 3x_1 - 2x_2 + x_3 = 0. \end{cases}$$

$$\begin{cases} 3x_1 + x_2 + 5x_3 = 1, \\ x_1 - x_2 - 4x_4 = 5, \\ x_2 + x_3 + x_4 = -1, \\ 3x_1 + 2x_2 + 6x_3 + x_4 = 9. \end{cases}$$

1.23. a)
$$\begin{cases} 3x_1 - x_3 - 5x_4 = 5, \\ 2x_1 - x_2 + x_4 = 1, \\ 5x_1 - x_2 - x_3 - x_4 = 6. \end{cases}$$

$$\begin{cases} x_1 - 2x_2 + x_3 = 0, \\ 2x_2 + x_3 + x_4 = 0, \\ -3x_1 - x_2 + x_3 + x_4 = 0, \\ x_1 + 3x_2 - x_3 - x_4 = 0. \end{cases}$$

1.24. a)
$$\begin{cases} x_2 - 3x_3 + x_4 = 2, \\ x_1 - 7x_3 + x_4 = -1, \\ x_1 + x_2 - 10x_3 + 2x_4 = 0, \\ x_1 + x_2 + x_3 = 0. \end{cases}$$

6)
$$\begin{cases} 3x_1 + 2x_2 - x_3 - x_4 = 0, \\ 2x_1 - 2x_2 + 4x_3 - 2x_4 = 0. \end{cases}$$

1.25. a)
$$\begin{cases} 2x_1 + x_2 - x_4 = 2, \\ x_2 + 2x_3 + x_4 = 0, \\ 2x_1 + 2x_2 + 3x_3 = 2, \\ 2x_1 - 3x_3 - 2x_4 = 2. \end{cases}$$
 6)
$$\begin{cases} 2x_1 + x_2 + x_3 = 0, \\ x_1 - 2x_2 + x_3 = 0, \\ 3x_1 - x_2 + 2x_3 = 0. \end{cases}$$

- **2.1.** Вычислить (\vec{a},\vec{b}) , где $\vec{a}=3\vec{m}_1-2\vec{m}_2$; $\vec{b}=\vec{m}_1+4\vec{m}_2$; \vec{m}_1,\vec{m}_2 единичные векторы, угол между которыми равен $\frac{\pi}{4}$.
- **2.2.** Найти проекцию вектора $\vec{a} = 4\vec{i} 3\vec{j} + 4\vec{k}$ на направление вектора $\vec{b} = 2\vec{i} + 2\vec{j} + \vec{k}$.
 - **2.3.** Найти (\vec{a}, \vec{b}) , $|\vec{a}|$, $|\vec{b}|$, если $\vec{a} = 2\vec{i} + \vec{j} \vec{k}$, $\vec{b} = \vec{j} + 2\vec{k}$.
- **2.4.** Вектор \vec{c} , коллинеарный вектору $\vec{a} = 5\vec{i} 2\vec{k}$, образует острый угол с осью Oz. Найти координаты вектора \vec{c} , если $|\vec{c}| = 3\sqrt{29}$.
 - **2.5.** Найти $(2\vec{a} 3\vec{b}, \ \vec{a} \vec{b})$, если $|\vec{a}| = \sqrt{2}, |\vec{b}| = 2, (\vec{a}, \hat{b}) = \frac{\pi}{4}$.
- **2.6.** Найти (\vec{a}, \vec{b}) , $|\vec{a}|$, $|\vec{b}|$, если $\vec{a} = 2\vec{m} + 3\vec{n} \vec{p}$; $\vec{b} = \vec{m} 4\vec{p}$, \vec{m} , \vec{n} , \vec{p} ортогональный базис и $|\vec{m}| = 2$, $|\vec{n}| = 3$, $|\vec{p}| = 4$.
 - **2.7.**Найти длину вектора $\vec{a} = 3\vec{m} + 4\vec{n}$, если $|\vec{m}| = |\vec{n}| = 1$, $(\vec{m} \land \vec{n}) = \frac{\pi}{3}$.
- **2.8.** Найти вектор $\left| \vec{b} \right|$, коллинеарный вектору $\vec{a} = 2\vec{i} + \vec{j} \vec{k}$ и удовлетворяющий условию $(\vec{a}, \vec{b}) = 3$.
 - **2.9.** Найти $(2\vec{a} 5\vec{b}, \vec{a} + 3\vec{b})$, если $|\vec{a}| = 2, |\vec{b}| = 3, (\vec{a} \wedge \vec{b}) = \frac{2\pi}{3}$.
- **2.10.** Вычислить синус угла между диагоналями параллелограмма, сторонами которого служат векторы $\vec{a}=2\vec{i}+\vec{j}-\vec{k},\ \vec{b}=\vec{i}-3\vec{j}+\vec{k}$.
 - **2.11.** Найти вектор \vec{d} , удовлетворяющий условиям $(\vec{d}, \vec{a}) = 5$, $(\vec{d}, \vec{b}) = 2$, $(\vec{d}, \vec{c}) = 3$, если $\vec{a}(-1, 2, 0)$, $\vec{b}(-1, 0, 5)$, $\vec{c}(1, 0, 0)$.

- **2.12.** Даны векторы $\vec{a} = 3\vec{i} 6\vec{j} \vec{k}$, $\vec{b} = \vec{i} + 4\vec{j} 5\vec{k}$, $\vec{c} = 3\vec{i} 4\vec{j} + 12\vec{k}$. Найти проекцию вектора $\vec{a} + \vec{b}$ на направление вектора \vec{c} .
- **2.13.** Вектор \vec{b} , коллинеарный вектору $\vec{a} = 6\vec{i} 8\vec{j} 7,5\vec{k}$, образует острый угол с осью Oz. Найти координаты вектора \vec{b} , если $|\vec{b}| = 50$.
- **2.14.** Найти площадь треугольника, построенного на векторах $\vec{AB} = 3\vec{a} 2\vec{b}$ и $\vec{AC} = 6\vec{a} + 3\vec{b}$, если $|\vec{a}| = 4$, $|\vec{b}| = 3$ $(\vec{a} \land \vec{b}) = \frac{\pi}{6}$.
 - **2.15.** Найти $|\vec{a}, \vec{b}|$, если $|\vec{a}| = 8$, $|\vec{b}| = 15$, $(\vec{a}, \vec{b}) = 96$.
- **2.16.** Какой угол образуют векторы \vec{a} и \vec{b} , если $\vec{m} = \vec{a} + 2\vec{b}$ и $\vec{n} = 5\vec{a} 4\vec{b}$ ортогональны, $|\vec{a}| = |\vec{b}| = 1$?
- **2.17.** Вычислить $(\vec{a}, \vec{b}) + (\vec{b}, \vec{c}) + (\vec{c}, \vec{a})$, если $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$.
- **2.18.** Даны точки A(-5, 7, -6) и B(7, -9, 9). Найти проекцию вектора $\vec{a} = \vec{i} 3\vec{j} + \vec{k}$ на направление вектора $\stackrel{\rightarrow}{AB}$.
 - **2.19.** Найти координаты вектора \vec{a} , если $(\vec{a} \wedge \vec{i}) = \frac{\pi}{3}$, $(\vec{a} \wedge \vec{j}) = \frac{\pi}{4}$, $|\vec{a}| = 6$.
- **2.20.** Найти вектор \vec{x} , ортогональный вектору $\vec{a}(12, -3, 4)$, имеющий с ним одинаковую длину и лежащий в плоскости Oyz.
- **2.21.** Найти угол между векторами $\vec{a}=2\vec{m}+4\vec{n}$ и $\vec{b}=\vec{m}-\vec{n}$, если $|\vec{m}|=|\vec{n}|=1, (\vec{m}\wedge\vec{n})=\frac{2\pi}{3}$.
- **2.22.** Найти проекцию вектора \vec{a} (4, -3, 4) на направление вектора \vec{b} (2, 2, 1).
- **2.23.** Какой угол образуют единичные векторы \vec{m} и \vec{n} , если векторы $\vec{a} = \vec{m} + 2\vec{n}$ и $\vec{b} = 5\vec{m} 4\vec{n}$ ортогональны?
- **2.24.** Доказать, что скалярное произведение двух векторов не изменится, если к одному из них прибавить вектор, ортогональный другому сомножителю.

2.25. При каких значениях α и β векторы $\vec{a} = 2\vec{i} - \vec{j} + 2\vec{k}$ и $\vec{b} = 5\vec{i} + \beta\vec{j} - \vec{k}$ коллинеарны?

Задача 3

- **3.1.** Найти $[2\vec{a} + \vec{b}, \vec{b}]$, где $\vec{a} = 3\vec{i} \vec{j} 2\vec{k}; \ \vec{b} = \vec{i} + 2\vec{j} \vec{k}$.
- **3.2.** Вычислить площадь параллелограмма, построенного на векторах $\vec{a} = \vec{m} + 2\vec{n}$ и $\vec{b} = \vec{m} 3\vec{n}$, если $|\vec{m}| = 5$; $|\vec{n}| = 3$, $(\vec{m} \wedge \vec{n}) = \frac{\pi}{6}$.
- **3.3.** Вектор \vec{c} перпендикулярен векторам \vec{a} и \vec{b} , угол между \vec{a} и \vec{b} равен $\frac{\pi}{6}$. Зная, что $|\vec{a}| = 6, |\vec{b}| = 3, |\vec{c}| = 3$, вычислить $(\vec{a}, \vec{b}, \vec{c})$.
 - **3.4.** Найти $\left[2\vec{a}-\vec{b},\ 2\vec{a}+\vec{b}\right]$, где $\vec{a}=2\vec{i}-\vec{j}+\vec{k};\ \vec{b}=3\vec{k}-\vec{i}-2\vec{j}$.
- **3.5.** Найти вектор \vec{x} , если известно, что он ортогонален векторам $\vec{a} = \vec{i} \vec{j} + 3\vec{k}$, $\vec{b} = 2\vec{i} + 3\vec{j} \vec{k}$ и $(\vec{x}, 2\vec{i} 3\vec{j} + 4\vec{k}) = 51$.
- **3.6**. Найти координаты вектора \vec{x} , если он ортогонален векторам $\vec{a}(2,3,-1),~\vec{b}(1,-1,3)$ и $|\vec{x}|$ =1.
- **3.7**. Найти единичный вектор \vec{d} , компланарный векторам $\vec{a}(2,-1,3)$ и $\vec{b}(4,2,0)$ и ортогональный вектору $\vec{c}(1,1,1)$.
- **3.8.** Вычислить площадь параллелограмма, сторонами которого являются векторы $\vec{a} = \vec{m} + 2\vec{n}$ и $\vec{b} = \vec{m} 3\vec{n}$, если $|\vec{m}| = 5, \ |\vec{n}| = 3, \ (\vec{m} \wedge \vec{n}) = \frac{\pi}{6}$.
- **3.9**. Вычислить синус угла между диагоналями параллелограмма, сторонами которого служат векторы $\vec{a} = 2\vec{i} + \vec{j} + \vec{k}$, $\vec{b} = \vec{i} 3\vec{j} + \vec{k}$.
- **3.10.** Вычислить высоту параллелепипеда, построенного на векторах $\vec{a} = 3\vec{i} + 2\vec{j} 5\vec{k}$, $\vec{b} = \vec{i} \vec{j} + 4\vec{k}$, $\vec{c} = \vec{i} 3\vec{j} + \vec{k}$, если за основание взят параллелограмм, построенный на векторах \vec{a} и \vec{b} .
- **3.11.** Вектор \vec{x} , перпендикулярный векторам $\vec{a}=4\vec{i}-2\vec{j}-3\vec{k}$ и $\vec{b}=\vec{j}+3\vec{k}$, образует с осью Oy тупой угол. Найти координаты вектора \vec{x} , если $|\vec{x}|=26$.

- **3.12.** Вычислить площадь параллелограмма, сторонами которого являются векторы \overrightarrow{AB} и \overrightarrow{AC} , если A(1, -1), B(2, -3), C(1, 4).
- **3.13.** Вершины треугольной пирамиды находятся в точках A(0, 0, 0), B(3, 4, -1), C(2, 3, 5), D(6, 0, -3). Найти длину высоты, проведенной из вершины A.
- **3.14.** Проверить, лежат ли точки A(2, -1, 2), B(3, 0, 5), C(-1, 2, 3), D(0, 2, -1) в одной плоскости.
- **3.15.** Проверить, компланарны ли векторы $\vec{a} = \vec{i} 2\vec{j} + \vec{k}$, $\vec{b} = 3\vec{i} + \vec{j} 2\vec{k}$, $\vec{c} = 7\vec{i} + 14\vec{j} 13\vec{k}$.
- **3.16.** Дана треугольная пирамида с вершинами A(0, 0, 1), B(2, 3, 4), C(6, 2, 3), D(3, 7, 2). Найти длину высоты пирамиды, проведенной на грань BCD.
- **3.17.** Найти площадь параллелограмма, сторонами которого являются векторы $\vec{a}=\vec{i}-3\vec{j}+\vec{k}$ и $\vec{b}=2\vec{i}-\vec{j}+3\vec{k}$.
 - **3.18.** Найти $[3\vec{a} \vec{b}, \vec{a}]$, если $\vec{a} = 2\vec{i} + 4\vec{j} \vec{k}, \vec{b} = -\vec{i} + \vec{j} + 2\vec{k}$.
- **3.19.** Найти $(\vec{a}, \ \vec{b}, \ \vec{c})$, если векторы $\vec{a}, \ \vec{b}, \ \vec{c}$ образуют правую тройку и взаимно перпендикулярны, $|\vec{a}| = 2, |\vec{b}| = 3, |\vec{c}| = 4.$
- **3.20.** Показать, что точки A(3, 1, -1), B(5, 7, -2), C(1, 5, 0) и D(9, 4, -4) лежат в одной плоскости.
- **3.21.** Вычислить площадь параллелограмма, построенного на векторах $\vec{a}=2\vec{i}+3\vec{j},\ \vec{b}=\vec{i}-4\vec{j}$.
- **3.22**. Найти единичный вектор, ортогональный векторам $\vec{a} = \vec{i} + \vec{j} + 2\vec{k}$ и $\vec{b} = 2\vec{i} + \vec{j} + \vec{k}$.
- **3.23.** Вершинами треугольной пирамиды являются точки A(-5, 4, 8), B(2, 3, 1), C(4, 1, -2) и D(6, 3, 7). Найти длину высоты, проведенной на грань BCD.
- **3.24**. Вычислить синус угла между диагоналями параллелограмма, построенного на векторах $\vec{a} = 2\vec{i} + \vec{j} \vec{k}, \ \vec{b} = \vec{i} 3\vec{j} + \vec{k}$.
- **3.25.** Проверить, лежат ли точки A(-1, 2, 3), B(0, 4, -1), C(2, 3, 1) и D(-2, 1, 0) в одной плоскости.

Залача 4

- **4.1.** Написать уравнение прямой, проходящей через начало координат перпендикулярно прямой 2x 6y + 13 = 0.
- **4.2.** Найти угол между прямой 2x+3y-1=0 и прямой, проходящей через точки $M_1(-1;2)$, $M_2(0;3)$.
- **4.3.** Найти уравнение прямой, проходящей через точку M(-1; 4) параллельно прямой 2x + 3y 4 = 0.
- **4.4.** Дан треугольник с вершинами в точках A(-1, 2), B(0, 1) и C(1, 4). Написать уравнение прямой, проходящей через вершину A параллельно противоположной стороне.
- **4.5.** При каком значении параметра α прямые $(3\alpha + 2)x + (1 4\alpha)y + 8 = 0$ и $(5\alpha 2)x + (\alpha + 4)y 7 = 0$ взаимно перпендикулярны?
- **4.6**. Даны вершины треугольника A(3, 5), B(-3, 3) и C(5, -8). Определить длину медианы, проведенной из вершины C.
 - **4.7**. При каких значениях α прямые ax 2y 1 = 0 и 6x 4y 3 = 0:
 - а) параллельны; б) имеют одну общую точку?
- **4.8.** Написать уравнение прямой, проходящей через точку M(4; 3) перпендикулярно вектору $\overrightarrow{M_1M_2}$, если $M_1(0, -2)$, $M_2(3, 5)$.
- **4.9.** Дан треугольник с вершинами в точках $M_1(2,5)$, $M_2(-1,3)$ и $M_3(0,0)$. Составить уравнение медианы, проведенной из вершины M_3 .
- **4.10.** Найти уравнение прямой, проходящей через точку $M_1(-1,2)$ перпендикулярно прямой, соединяющей точки $M_2(2,3)$ и $M_3(0,-1)$.
- **4.11.** На прямой 2x + y + 11 = 0 найти точку, равноудаленную от двух данных точек A(1, 1) и B(3, 0).
- **4.12.** Написать уравнение прямой, проходящей через точку M(-1;1) параллельно прямой 4x+y-5=0 .
- **4.13.** Найти расстояние между прямыми 3x 4y + 25 = 0 и 6x 8y 50 = 0.

- **4.14.** Найти уравнение прямой, проходящей через точку M(1; 2, 3) параллельно вектору \overrightarrow{AB} , если A(-1; 2, 4), B(3; 5, 8).
 - 4.15. Привести к каноническому виду уравнения прямой

$$2x-3y-3z-9=0, x-2y+z+3=0.$$

- **4.16.** Найти уравнение прямой, проходящей через точку M(-1; 3) и точку пересечения прямых 2x y 1 = 0, 3x + y 4 = 0.
 - **4.17**. Найти значения параметров *а* и *d*, при которых прямая

$$x = 3 + 4t$$

$$y = 1 + 4t$$

$$z = -3 + t$$

принадлежит плоскости ax + 2y - 4z + d = 0.

- **4.18.** Дан треугольник с вершинами в точках A(1, 5), B(-4, 3), C(2, 9). Найти уравнение высоты, проведенной из вершины A.
- **4.19.** Составить уравнение прямой, проходящей через точку пересечения прямых 3x 5y + 2 = 0, 5x 2y + 4 = 0 и точку A(1, 3).
- **4.20.** Дан треугольник с вершинами в точках A(1, 1), B(-2, 3), C(4, 7). Написать уравнение медианы, проведенной из вершины A.
- **4.21.** Найти уравнение прямой, проходящей через точку A(1,-1) параллельно прямой, соединяющей точки $M_1(2,-3)$ и $M_2(5,1)$.
- **4.22.** Даны уравнения сторон треугольника x+2y-1=0, 5x+4y-17=0, x-4y+11=0. Составить уравнение прямой, проходящей через одну из вершин треугольника параллельно противоположной стороне.
- **4.23.** Найти уравнение прямой, проходящей через точку $M_1(2,3)$ ортогонально вектору $\overline{M_1M_2}$, если $M_2(4,5)$.
- **4.24.** Выяснить, принадлежат ли точки A(-1, 2), B(3, 4) и C(1, 2) одной прямой.
- **4.25.** Даны точки A(-1, 2, 3), B(3, 1, 2) и C(1, 3, 1). Найти точку пересечения медиан треугольника ABC.

Даны координаты вершин пирамиды $A_1A_2A_3A_4$. Требуется найти: 1) длину ребра A_1A_2 ; 2) угол между ребрами A_1A_2 и A_1A_4 ; 3) площадь грани $A_1A_2A_3$; 4) объем пирамиды; 5) уравнение прямой A_1A_4 ; 6) уравнение плоскости $A_1A_2A_3$; 7) угол между ребром A_1A_4 и гранью $A_1A_2A_3$; 8) уравнение высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$. Сделать чертеж.

5.1.	$A_1(3,3,9),$	$A_2(6,9,1),$	$A_3(1,7,3),$	$A_4(8,5,8)$.
5.2.	$A_1(3,5,4),$	$A_2(5,8,3),$	$A_3(1,9,9),$	$A_4(6,4,8)$.
5.3.	$A_1(2,4,3),$	$A_2(7,6,3),$	$A_3(4,9,3),$	$A_4(3,6,7)$.
5.4.	$A_1(9,5,5),$	$A_2(-3,7,1),$	$A_3(5,7,8),$	$A_4(6,9,2)$.
5.5.	$A_1(0,7,1),$	$A_2(4,1,5),$	$A_3(4,6,3),$	$A_4(3,9,8)$.
5.6.	$A_1(5,5,4),$	$A_2(3,8,4),$	$A_3(3,5,10),$	$A_4(5,8,2).$
5.7.	$A_1(6,1,1),$	$A_2(4,6,6),$	$A_3(4,2,0),$	$A_4(1,2,6)$.
5.8.	$A_1(7,5,3),$	$A_2(9,4,4),$	$A_3(4,5,7),$	$A_4(7,9,6)$.
5.9.	$A_1(6,6,2),$	$A_2(5,4,7),$	$A_3(2,4,7),$	$A_4(7,3,0).$
5.10.	$A_1(1,-3,1),$	$A_2(-3,2,-3),$	$A_3(-3,-3,3),$	$A_4(-2,0,-4)$.
5.11.	1 () / /	$A_2(4,5,-2),$	$A_3(-1,3,0),$	$A_4(6,1,5)$.
	$A_1(1,1,1),$	$A_2(3,4,0),$	$A_3(-1,5,6),$	$A_4(4,0,5)$.
	$A_1(0,0,0),$	$A_2(5,2,0),$	$A_3(2,5,0),$	$A_4(1,2,4)$.
5.14.	$A_1(7,1,2),$	$A_2(-5,3,-2),$	$A_3(3,3,5),$	$A_4(4,5,-1).$
5.15.	$A_1(-2,3,-2),$	$A_2(2,-3,2),$	$A_3(2,2,0),$	$A_4(1,5,5)$.
5.16.	$A_1(3,1,1),$	$A_2(1,4,1),$	$A_3(1,1,7),$	$A_4(3,4,-1).$
5.17.	$A_1(4,-3,-2),$	$A_2(2,2,3),$	$A_3(2,-2,-3),$	$A_4(-1,-2,3).$
5.18.	$A_1(5,1,0),$	$A_2(7,0,1),$	$A_3(2,1,4),$	$A_4(5,5,3)$.
	$A_1(4,2,-1),$	$A_2(3,0,4),$	$A_3(0,0,4),$	$A_4(5,-1,-3).$
5.20.	$A_1(0,0,2),$	$A_2(3,0,5),$	$A_3(1,1,0),$	$A_4(4,1,2)$.
	$A_1(3,0,5),$	$A_2(0,0,2),$	$A_3(4,1,2),$	$A_4(1,1,0)$.
	$A_1(1,1,0)$,	$A_2(4,1,2),$	$A_3(0,0,2),$	$A_4(3,0,5).$
5.23.	$A_1(4,1,2),$	$A_2(1,1,0),$	$A_3(3,0,5),$	$A_4(0,0,2)$.

5.24.
$$A_1(0,0,0), \qquad A_2(3,-2,1), \qquad A_3(1,4,0), \qquad A_4(5,2,3).$$

5.25.
$$A_1(3,1,0)$$
, $A_2(0,7,2)$, $A_3(-1,0,-5)$, $A_4(4,1,5)$.

Построить на плоскости кривую, приведя ее уравнение к каноническому виду.

6.1.
$$x^2 + 8x + 2y + 20 = 0$$
.

6.2.
$$3x^2 - 4y^2 + 18x + 15 = 0$$
.

6.3.
$$x^2 + 2y^2 - 2x + 8y + 7 = 0$$
.

6.4.
$$x^2 + 8x + y + 15 = 0$$
.

6.5.
$$x^2 + y^2 + 4x - 10y + 20 = 0$$
.

6.6.
$$5x^2 + 9y - 30x + 18y + 9 = 0$$
.

6.7.
$$4x^2 + 9y^2 - 40x + 36y + 100 = 0$$
.

6.8.
$$9x^2 - 16y^2 - 5x - 64y - 127 = 0$$
.

6.9.
$$2x^2 + 8x - y + 12 = 0$$
.

6.10.
$$x^2 + 4y^2 - 6y + 3 = 0$$
.

6.11.
$$9x^2 + 4y^2 - 54x - 32y + 109 = 0$$
.

6.12.
$$x^2 - 5x - y + 7 = 0$$
.

6.13.
$$x^2 - 4y^2 + 6x + 16y - 11 = 0$$
.

6.14.
$$4x^2 + 8x - y + 7 = 0$$
.

6.15.
$$9x^2 + 4y^2 - 18x = 0$$
.

6.16.
$$x + 2y^2 - 8y + 3 = 0$$
.

6.17.
$$x^2 + 4y^2 - 6x + 8y = 3$$
.

6.18.
$$x-5y^2+10y-6=0$$
.

6.19.
$$x^2 - 4y^2 + 8x - 24y = 24$$
.

6.20.
$$x^2 + 6x + 5 = 2v$$
.

6.21.
$$9x^2 + 10y^2 + 40y - 50 = 0$$
.

6.22.
$$16x^2 - 9y^2 - 64x - 18y + 199 = 0$$
.

6.23.
$$x-2y^2+12y-14=0$$
.

6.24.
$$y^2 + 2y + 4x - 11 = 0$$
.

6.25.
$$x^2 + 2y^2 + 2x = 0$$
.

Построить поверхность, приведя ее уравнение к каноническому виду.

7.1. a)
$$z = 1 - x^2 - y^2$$
;

6)
$$z = 4 - x^2$$
.

7.2. a)
$$x^2 + 2x + 2y^2 + 4z^2 = 0$$
;

6)
$$v^2 + 5v + z = 4$$
.

7.3. a)
$$x^2 + y^2 + 4z^2 + 6x = 0$$
;

6)
$$x^2 + z^2 = 2z$$
.

7.4. a)
$$2y^2 + z^2 = 1 - x$$
;

6)
$$xy = 4$$
.

7.5. a)
$$9x^2 + 4v^2 - 8v - z^2 = 32$$
;

$$6) x^2 - v^2 - 6x = 0.$$

7.6. a)
$$x^2 - 2v^2 + z^2 + 2z = 0$$
;

6)
$$z^2 + 4z - 6y - 20 = 0$$
.

7.7. a)
$$x^2 + y^2 + z^2 - 3x + 5y - 4z = 0$$
;

7.8. a)
$$z = 2 + x^2 + y^2$$
;

7.9. a)
$$36x^2 + 16y^2 - 9z^2 + 18z = 9$$
;

7.10. a)
$$x^2 - y^2 - z^2 = 0$$
;

7.11. a)
$$x^2 + v^2 + z^2 = 2z$$
:

7.12. a)
$$x^2 + 3y^2 - z^2 + 2z = 2$$
;

7.13. a)
$$2x^2 - 4v^2 + z^2 = 2z$$
:

7.14. a)
$$z = 4 - x^2 - y^2$$
;

7.15. a)
$$2v^2 + x^2 - 4x - 4z^2 + 4 = 0$$
;

7.16. a)
$$v^2 - 2v - z^2 - x^2 = 0$$
;

7.17. a)
$$x^2 + v^2 - 2v = 2z - 1$$
;

7.18. a)
$$x^2 + y^2 = 2z + 6$$
:

7.19. a)
$$9x^2 + 4y^2 + 8y - 36z^2 = 32$$
;

7.20. a)
$$x^2 + y^2 + z^2 = 2z$$
;

7.21. a)
$$5x^2 + 15y^2 - 4z^2 + 8z - 24 = 0$$
;

7.22. a)
$$4z^2 = x^2 + 2y^2 + 2x + 3$$
:

7.23. a)
$$x^2 - 4v^2 + z^2 - 8v = 4$$
:

7.24. a)
$$x^2 + v^2 + 2z = 0$$
:

7.25. a)
$$x^2 - 2x + y^2 + z^2 = 0$$
;

6)
$$y^2 = 4x + 1$$
.

6)
$$z = 1 - x^2$$
.

6)
$$z^2 - 2z - 8x - 7 = 0$$
.

6)
$$v^2 = 4x - 2$$
.

6)
$$v = x^2$$
.

б)
$$x = 1 - z^2$$
.

6)
$$x^2 + 5z = 2x$$
.

6)
$$x^2 + v^2 = 2v$$
.

6)
$$z = (x-1)^2$$
.

б)
$$x = v^2$$
.

6)
$$z^2 + v^2 = 2z$$
.

6)
$$x^2 + z^2 - 6z = 0$$
.

6)
$$2x^2 + 5y = 10$$
.

6)
$$z^2 = 7x$$
.

6)
$$4x^2 - v^2 = 8$$
.

6)
$$xy = 4$$
.

6)
$$x^2 + v^2 - 3 = 0$$
.

6)
$$x^2 - v^2 + 4 = 0$$
.

6)
$$x = 2 - v^2$$
.

Типовой расчет № 2

Предел функции. Производная и ее применение к исследованию функций и построению графиков

Задача 1

Найти пределы функции, не пользуясь правилом Лопиталя.

1.1. a)
$$\lim_{x \to -3} \frac{x^2 + x - 6}{x^2 + 7x + 12}$$
.

6)
$$\lim_{x \to \infty} \frac{5x^2 + 2x + 1}{3x^3 + 3x^2 - 2}$$
.

B)
$$\lim_{x \to 0} \frac{1 - \cos x}{x \sin x}.$$

$$\Gamma$$
) $\lim_{x\to\infty} \left(\frac{x-1}{x-3}\right)^{x+2}$.

1.2. a)
$$\lim_{x \to 2} \frac{2x^2 - x - 6}{x^2 - 3x + 2}$$
.

6)
$$\lim_{x \to \infty} \frac{8x^4 - 2x^3 + 1}{5x^3 + 4x + 3}$$
.

$$B) \lim_{x \to \infty} \frac{1 - \cos x}{x^2}.$$

$$\Gamma) \lim_{x \to 0} \left(1 - 4x\right)^{\frac{1-x}{x}}.$$

1.3. a)
$$\lim_{x \to -1} \frac{5x^2 + x - 4}{3x^2 + 5x + 2}$$
.

6)
$$\lim_{x\to\infty} \frac{6x^5 + 4x - 12}{3x^6 - 4x^2 + 1}$$
.

B)
$$\lim_{x\to 0} \frac{\cos x - \cos^2 x}{r^2}.$$

$$\Gamma) \lim_{x \to \infty} \left(\frac{3x+4}{3x+2} \right)^{x+2}.$$

1.4. a)
$$\lim_{x \to 1} \frac{2x^2 + 5x - 7}{3x^2 - x - 2}$$
.

6)
$$\lim_{x \to \infty} \frac{5x^3 + x^2 - 6}{2x^4 - x - 12}$$
.

$$\text{B) } \lim_{x\to 0}\frac{1-\cos 2x}{x \lg x}.$$

$$\Gamma) \lim_{x \to \infty} \left(\frac{x+3}{x-2} \right)^x.$$

1.5. a)
$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{3x^2 + 4x + 1}$$
.

6)
$$\lim_{x\to\infty} \frac{x^4 - 8x + 1}{7x^5 + 4x^2 + 5}$$
.

B)
$$\lim_{x \to 0} \frac{\cos x - \cos^3 x}{x^2}$$
.

$$\Gamma) \lim_{x \to \infty} \left(\frac{x^2 - 2x + 1}{x^2 - 4x + 2} \right)^x.$$

1.6. a)
$$\lim_{x \to 2} \frac{2x^2 - x - 10}{x^2 - x - 2}$$
.

6)
$$\lim_{x \to \infty} \frac{2x^3 - 6x - 5}{5x^2 - x - 1}$$
.

$$B) \lim_{x \to 0} \frac{\operatorname{tg}^2 \frac{x}{2}}{x}.$$

$$\Gamma) \lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 - 1} \right)^{x^2}.$$

1.7. a)
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{\frac{x}{2} - 1}$$
.

6)
$$\lim_{x \to \infty} \frac{(x+1)^3 - (x-1)^3}{(x+1)^2 + (x+1)^2}$$
.

B)
$$\lim_{x\to 0} \frac{1-\cos 8x}{1-\cos 4x}$$
.

$$\Gamma) \lim_{x\to\infty} \left(\frac{3x-2}{3x+2}\right)^{2x}.$$

1.8. a)
$$\lim_{x \to 4} \frac{2x^2 - 9x + 4}{x^2 + x - 20}$$
.

6)
$$\lim_{x \to \infty} \frac{2x^4 - 3x^2 + 1}{4x^6 + 6x^3 - 3}$$
.

B)
$$\lim_{x\to 0} \frac{x^2 \operatorname{ctg} 2x}{\sin 2x}$$
.

$$\Gamma$$
) $\lim_{x\to 0} (1+2x)^{\frac{1}{x}}$.

1.9. a)
$$\lim_{x \to -2} \frac{x^2 + 7x + 10}{2x^2 + 9x + 10}$$
.

6)
$$\lim_{x \to \infty} \frac{2x^4 + 5x^2 - 3}{4x^6 + 6x^3 - 3}$$
.

B)
$$\lim_{x \to 0} \frac{1 - \cos 6x}{1 - \cos 2x}$$
.

$$\Gamma) \lim_{x \to \infty} \left(\frac{2x-1}{2x+1} \right)^x.$$

1.10. a)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{2x^2 - x - 1}$$
.

6)
$$\lim_{x \to \infty} \frac{4 + 5x^2 - 4x^5}{8 - 6x - x^5}$$
.

B)
$$\lim_{x \to 0} \frac{x^2}{\sin^2 \frac{x}{3}}$$
.

$$\Gamma) \lim_{x \to \infty} \left(\frac{x+1}{x-2} \right)^{2x-1}.$$

1.11. a)
$$\lim_{x \to 2} \frac{3x^2 - x - 10}{x^3 - x - 6}$$
. 6) $\lim_{x \to \infty} \frac{4x^5 - 2x^4 + 3}{2x^6 + 3x^2 - 1}$.

6)
$$\lim_{x \to \infty} \frac{4x^5 - 2x^4 + 3}{2x^6 + 3x^2 - 1}$$

B)
$$\lim_{x\to 0} \frac{\cos x - \cos 3x}{1 - \sqrt{1 - x^2}}$$
. r) $\lim_{x\to 0} \frac{a^{2x} - 1}{x}$.

$$\lim_{x \to 0} \frac{a^{2x} - 1}{x}.$$

1.12. a)
$$\lim_{x \to 5} \frac{20 + x - x^2}{3x^2 - 11x - 20}$$
. 6) $\lim_{x \to \infty} \frac{5x^2 - 3x + 1}{3x^3 + x - 5}$.

6)
$$\lim_{x \to \infty} \frac{5x^2 - 3x + 1}{3x^3 + x - 5}$$
.

B)
$$\lim_{x \to 0} \frac{1 - \cos 8x}{2x \tan 4x}$$
. $r) \lim_{x \to 0} \frac{e^{3x} - 1}{x}$.

$$\Gamma) \lim_{x \to 0} \frac{e^{3x} - 1}{x}.$$

1.13. a)
$$\lim_{x \to 3} \frac{4x^2 - 5x - 21}{2x^2 - 3x - 9}$$
. 6) $\lim_{x \to \infty} \frac{11x^5 - 5x^2 - 1}{24x^4 - 4x + 7}$.

6)
$$\lim_{x \to \infty} \frac{11x^5 - 5x^2 - 1}{24x^4 - 4x + 7}.$$

B)
$$\lim_{x\to 0} x \sin x \cot 3x$$
.

$$\Gamma$$
) $\lim_{x\to 0} (1+3tg^2x)^{ctg^2x}$.

1.14. a)
$$\lim_{x \to 2} \frac{3x^2 + 7x + 2}{2x^2 + 5x + 2}$$
.

1.14. a)
$$\lim_{x \to 2} \frac{3x^2 + 7x + 2}{2x^2 + 5x + 2}$$
. 6) $\lim_{x \to \infty} \frac{7x^6 + 5x^5 - x^3 + 5}{3x^4 - 4x^3 + 1}$.

B)
$$\lim_{x\to 0} \frac{1-\cos 4x}{3x\sin 2x}$$
.

$$\Gamma) \lim_{X\to 0} \frac{e^{\sin 2x} - e^{\sin x}}{x}.$$

1.15. a)
$$\lim_{x \to -5} \frac{x^2 + 2x - 15}{2x^2 + 7x - 15}$$
. 6) $\lim_{x \to \infty} \frac{2 - 3x - 5x^2}{1 + 4x + 2x^2}$.

6)
$$\lim_{x \to \infty} \frac{2 - 3x - 5x^2}{1 + 4x + 2x^2}$$
.

$$\text{B) } \lim_{x \to 0} \frac{\sin^3 2x}{x^3}.$$

r)
$$\lim_{x \to \infty} (x+2) (\ln(2x+1) - \ln(2x-1))$$
.

1.16. a)
$$\lim_{x \to 1} \frac{x^3 + x^2 - 2x}{x^2 - 2x + 1}$$
. 6) $\lim_{x \to \infty} \frac{2 + x - 3x^2}{1 - 3x + 6x^3}$.

6)
$$\lim_{x \to \infty} \frac{2 + x - 3x^2}{1 - 3x + 6x^3}$$

B)
$$\lim_{x \to 0} \frac{1 - \cos 3x}{x^2}$$
.

$$\Gamma$$
) $\lim_{x \to \infty} (2x-3)(\ln(x-2)-\ln(x-1))$.

1.17. a)
$$\lim_{x \to 1} \frac{2x^2 + x - 3}{3x^2 - 2x - 1}$$
. 6) $\lim_{x \to \infty} \frac{2x^3 + x^2 - 5}{x^2 + x - 2}$.

6)
$$\lim_{x \to \infty} \frac{2x^3 + x^2 - 5}{x^2 + x - 2}$$
.

$$\lim_{x \to 0} \frac{1 - \cos 4x}{2x \operatorname{tg} 2x}.$$

B)
$$\lim_{x \to 0} \frac{1 - \cos 4x}{2x \tan 2x}$$
. Γ) $\lim_{x \to \infty} x \cdot (\ln(x+a) - \ln x)$.

1.18. a)
$$\lim_{x \to -1} \frac{x^2 - x - 2}{x^3 + 1}$$
. 6) $\lim_{x \to \infty} \frac{x^4 + 3x - 5}{2x^2 - x - 1}$.

6)
$$\lim_{x \to \infty} \frac{x^4 + 3x - 5}{2x^2 - x - 1}$$

B)
$$\lim_{x \to 0} \frac{\cos 3x - \cos x}{\cos x - 1}$$

B)
$$\lim_{x \to 0} \frac{\cos 3x - \cos x}{\cos x - 1}$$
. r) $\lim_{x \to \infty} (x - 4) (\ln(2 - 3x) - \ln(5 - 3x))$.

1.19. a)
$$\lim_{x \to 5} \frac{2x^2 - 9x - 5}{x^2 - 4x - 5}$$
. 6) $\lim_{x \to \infty} \frac{x^3 + x}{x^4 - 3x^2 + 1}$.

6)
$$\lim_{x \to \infty} \frac{x^3 + x}{x^4 - 3x^2 + 1}$$
.

B)
$$\lim_{x \to 0} \frac{tg^2x - \sin 2x}{r\sin^2 2x}$$

B)
$$\lim_{x \to 0} \frac{tg^2x - \sin 2x}{x \sin^2 2x}$$
. Γ) $\lim_{x \to \infty} (2x - 5)(\ln(2x + 4) - \ln(2x + 1))$.

1.20. a)
$$\lim_{x \to -4} \frac{5x^2 + 9x - 44}{2x^2 + 5x - 12}$$
. 6) $\lim_{x \to \infty} \frac{3x^3 - 2x + 1}{5x^2 - x + 2}$.

6)
$$\lim_{x \to \infty} \frac{3x^3 - 2x + 1}{5x^2 - x + 2}$$
.

$$\operatorname{B} \lim_{x \to 0} \frac{\sin^2 \frac{x}{2}}{x^2}.$$

B)
$$\lim_{x\to 0} \frac{\sin^2 \frac{x}{2}}{x^2}$$
. $\lim_{x\to \infty} (x+2)(\ln(2x+3)-\ln(2x-4))$.

1.21. a)
$$\lim_{x \to 5} \frac{3x^2 - 14x - 5}{x^2 - 2x - 15}$$
. 6) $\lim_{x \to \infty} \frac{10x^3 + 3x^2}{2x^3 - 100x + 1}$.

6)
$$\lim_{x \to \infty} \frac{10x^3 + 3x^2}{2x^3 - 100x + 1}$$

$$\lim_{x \to 0} \frac{\cos 8x - 1}{1 - \cos 4x}.$$

B)
$$\lim_{x\to 0} \frac{\cos 8x - 1}{1 - \cos 4x}$$
. Γ) $\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x}$.

1.22. a)
$$\lim_{x \to -1} \frac{3x^2 + 4x + 1}{x^2 + 3x + 2}$$
. 6) $\lim_{x \to \infty} \frac{x^4 - 4x^2 + 5}{3x^2 + x + 3}$.

6)
$$\lim_{x \to \infty} \frac{x^4 - 4x^2 + 5}{3x^2 + x + 3}$$

B)
$$\lim_{x \to 0} \frac{1 - \cos mx}{x^2}$$
. Γ) $\lim_{x \to 0} (1 - 3x) \frac{1}{x}$.

$$\Gamma$$
) $\lim_{x \to 0} (1 - 3x)^{\frac{1}{x}}$

1.23. a)
$$\lim_{x \to 1} \frac{x^3 + x - 2}{x^3 - x^2 - x + 1}$$
. 6) $\lim_{x \to \infty} \frac{3x^4 - 2x^2 - 7}{9x^4 + 3x + 5}$.

6)
$$\lim_{x \to \infty} \frac{3x^4 - 2x^2 - 7}{9x^4 + 3x + 5}.$$

$$B) \lim_{x\to 0} \frac{1-\cos 3x}{2x}.$$

$$\Gamma) \lim_{x\to 0} (1+\sin x)^{\cos ecx}.$$

1.24. a)
$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x^3 - 3x + 2}$$
. 6) $\lim_{x \to \infty} \frac{2x^2 - 5x + 4}{5x^2 - 2x - 3}$.

6)
$$\lim_{x \to \infty} \frac{2x^2 - 5x + 4}{5x^2 - 2x - 3}$$

B)
$$\lim_{x \to 0} \frac{\frac{1}{2} \arcsin x - \arctan 2x}{x}$$
. Γ) $\lim_{x \to 0} (1+x)^{\frac{1}{x^2-x}}$.

$$\lim_{x \to 0} (1+x)^{\frac{1}{x^2-x}}.$$

1.25. a)
$$\lim_{x \to 2} \frac{2x^2 + 2x - 12}{x^2 - 3x + 2}$$
. 6) $\lim_{x \to \infty} \frac{x^5 - x^3 + 8}{100 - x^3}$.

6)
$$\lim_{x\to\infty} \frac{x^5 - x^3 + 8}{100 - x^3}$$
.

B)
$$\lim_{x\to 0} \frac{\cos 6x - \cos 3x}{x^2}$$
. Γ) $\lim_{x\to \infty} x \left(\ln(x+5) - \ln x\right)$.

$$r$$
) $\lim_{x \to \infty} x \left(\ln(x+5) - \ln x \right)$.

Исследовать данные функции на непрерывность и указать вид точек разрыва; в условии «б» дополнительно построить график функции.

2.1. a)
$$f(x) = \frac{\ln(1+x)}{x^2}$$
.

2.3. a)
$$f(x) = 3^{\frac{1}{x-2}}$$
.

б)
$$f(x) = \begin{cases} \ln x & \text{при } 0 < x \le 1; \\ x - 1 & \text{при } 1 < x \le 3; \\ x^2 - 3 & \text{при } x > 3. \end{cases}$$

2.4. a)
$$f(x) = \frac{1}{1 - e^{1-x}}$$

2.4. a)
$$f(x) = \frac{1}{1 - e^{1 - x}}$$
. б) $f(x) = \begin{cases} \operatorname{tg} x & \text{при} \quad 0 < x \le \frac{\pi}{4}; \\ \frac{2\pi}{x} & \text{при} \quad \frac{\pi}{4} < x < \pi; \\ \sin x + 2 & \text{при} \quad x \ge \pi. \end{cases}$

2.5. a)
$$f(x) = \frac{2^{\frac{1}{x}} - 1}{2^{\frac{1}{x}} + 1}$$
.

2.6. a)
$$f(x) = \frac{|x-2|}{x-2}$$

2.7. a)
$$f(x) = \frac{x^2 - 3x + 2}{x - x^3}$$

2.7. a)
$$f(x) = \frac{x^2 - 3x + 2}{x - x^3}$$
. 6) $f(x) = \begin{cases} x^2 + 1 & \text{при} & -\infty < x \le 1; \\ \frac{2}{x} & \text{при} & 1 < x \le 4; \\ x - 2 & \text{при} & x > 4. \end{cases}$

2.8. a)
$$f(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$$
. 6) $f(x) = \begin{cases} x+1 & \text{при } -\infty < x \le 3; \\ 3x-7 & \text{при } 3 < x \le 4; \\ 3+\sqrt{x} & \text{при } x > 4. \end{cases}$

2.9. a)
$$f(x) = \frac{x^2 - 5x + 6}{x^2 - 2x}$$
. 6) $f(x) = \begin{cases} \cos x & \text{при} & x \le 0; \\ 1 - x & \text{при} & 0 < x \le 3; \\ x^2 - 5 & \text{при} & x > 3. \end{cases}$

2.10. a)
$$f(x) = \frac{\sin(x-3)}{x^2 - 4x + 3}$$
. 6) $f(x) = \begin{cases} 0 & \text{при} & x < 0; \\ \lg x & \text{при} & 0 \le x \le \frac{\pi}{4}; \\ \frac{4}{\pi}x & \text{при} & x > \frac{\pi}{4}. \end{cases}$

2.12. a)
$$f(x) = e^{\frac{1}{4x-2}}$$
. 6) $f(x) = \begin{cases} -1 & \text{при} & x \le 1; \\ x & \text{при} & 1 < x \le 2; \\ x-2 & \text{при} & x > 2. \end{cases}$

2.13. a)
$$f(x) = \frac{|x-1|}{x-1}$$
. 6) $f(x) = \begin{cases} e^x & \text{при} & x \le 0; \\ 1+x & \text{при} & 0 < x < 1; \\ x & \text{при} & x \ge 1. \end{cases}$

2.18. a)
$$f(x) = 4^{\frac{1}{4-x}}$$
. 6) $f(x) = \begin{cases} \cos x & \text{при } -\infty < x \le 0; \\ 1 & \text{при } 0 < x \le 1; \\ 1-x & \text{при } x > 1. \end{cases}$

2.19. a)
$$f(x) = \frac{x+2}{x^2-4x+3}$$
. 6) $f(x) = \begin{cases} 0 & \text{при } x \le 0; \\ -2 & \text{при } 0 < x \le 1; \\ x-2 & \text{при } x > 1. \end{cases}$

2.20. a)
$$f(x) = \frac{\sin(2-x)}{2-x}$$
. 6) $f(x) = \begin{cases} 1 & \text{при } x \le 1; \\ x & \text{при } 1 < x \le 2; \\ 1-x^2 & \text{при } x > 2. \end{cases}$

2.21. a)
$$f(x) = \frac{\operatorname{tg} x \cdot (x^2 - 9)}{x^2 - 3x}$$
. 6) $f(x) = \begin{cases} 4 - x^2 & \text{при} & -\infty < x \le 2; \\ x - 1 & \text{при} & 2 < x \le 4; \\ \sqrt{x} + 1 & \text{при} & x > 4. \end{cases}$

2.22. a)
$$f(x) = 5^{\frac{1}{x-2}}$$
. 6) $f(x) = \begin{cases} x^3 & \text{при } -\infty < x \le 0; \\ -x^2 + 9 & \text{при } 0 < x \le 3; \\ x - 3 & \text{при } x > 3. \end{cases}$

2.24. a)
$$f(x) = \frac{x^2 - 5x + 6}{x^2 - 3x}$$
. 6) $f(x) = \begin{cases} x + 3 & \text{при } -\infty < x \le 0; \\ \lg x & \text{при } 0 < x \le \frac{\pi}{4}; \\ 1 & \text{при } x > \frac{\pi}{4}. \end{cases}$

2.25. a)
$$f(x) = 3^{\frac{1}{1-x}}$$
. 6) $f(x) = \begin{cases} -x & \text{при } -\infty < x \le 0; \\ 1-x^2 & \text{при } 0 < x \le 1; \\ \ln x & \text{при } x > 1. \end{cases}$

Найти производные функций.

B)
$$x^4 - 6x^2y^2 + 9y^4 - 5x^2 + 15y^2 - 100 = 0$$
.

3.2. a)
$$y = \text{Intg} \frac{2x+1}{4}$$
; 6) $y = x^{\frac{1}{\ln x}}$;

B)
$$x^y - v^x = 0$$
.

3.3. a)
$$y = \ln \sqrt{\frac{1 + \sin x}{1 - \sin x}};$$
 6) $y = x^x;$

B)
$$e^x + e^y - 2^{xy} - 3 = 0$$
.

3.4. a)
$$y = \ln(3x^2 + \sqrt{9x^4 + 1});$$
 6) $y = x^{\ln x};$

B)
$$\sin(y-x^2) - \ln(y-x^2) + 2\sqrt{y-x^2} - 3 = 0.$$

3.5. a)
$$y = \arcsin \frac{2x^3}{1+x^6}$$
;

$$6) \ y = x^{\sin x};$$

B)
$$\frac{y}{x} + e^{\frac{y}{x}} - \sqrt[3]{\frac{y}{x}} = 0.$$

3.6. a)
$$y = \arctan \sqrt{\frac{1-x}{1+x}}$$
;

$$6) \ y = (\sin x)^{\cos x};$$

B)
$$x^2 \sin y + y^3 \cos x - 2x - 3y + 1 = 0$$
.

3.7. a)
$$y = \arcsin \frac{\sin x}{\sqrt{1 + \sin^2 x}}$$
;

6)
$$y = (x+1)^{\frac{2}{x}};$$

B)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
.

3.8. a)
$$y = \ln \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x^2 + 1} + 1}$$
;

$$6) y = x^2 e^{x^2} \sin 2x;$$

B)
$$x^4 + y^4 = x^2 y^2$$
.

3.9. a)
$$y = e^x - \sin e^x \cos^3 e^x - \sin^3 e^x \cos e^x$$
; 6) $y = x^2 e^{x^2} \ln x$;

6)
$$y = x^2 e^{x^2} \ln x$$
;

B)
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
.

3.10. a)
$$y = \arctan(x+1) + \frac{x+1}{x^2 + 2x + 2}$$
;

6)
$$y = (x+1)^{\frac{2}{x}};$$

B)
$$2y \ln y = x$$
.

3.11. a)
$$y = \operatorname{lntg} \frac{x}{2} + \cos x + \frac{1}{3} \cos^2 x$$
;

$$6) y = (\ln x)^x;$$

$$e^x \sin y - e^y \cos x = 0.$$

3.12. a)
$$y = \ln\left(1 - \frac{1}{x}\right) + \frac{1}{x}$$
;

6)
$$y = \frac{(x-2^2 \cdot \sqrt[3]{x+1})}{(x-5)^3}$$
;

B)
$$xy = \operatorname{arctg} \frac{x}{y}$$
.

3.13. a)
$$y = \ln \frac{\sqrt{x^2 + 2x}}{x + 1}$$
;

6)
$$y = \frac{(x+1)^3 \cdot \sqrt[4]{4-2x}}{\sqrt[3]{(x-3)^2}}$$
;

B)
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$
.

3.14. a)
$$y = \arccos(2e^{2x} - 1)$$
;

$$6) \ \ y = \sqrt{x \sin x \sqrt{1 - e^x}};$$

$$B) \sin(xy) + \cos(xy) = 0.$$

3.15. a)
$$y = \arctan \frac{3x - x^2}{1 - 3x^2}$$
;

$$6) y = \sqrt{\frac{1 - \arcsin x}{1 + \arcsin x}};$$

B)
$$2x + 2^y = 2^{x+y}$$
.

3.16. a)
$$y = \text{Intg} \frac{e^{2\sin x}}{4}$$
;

6)
$$y = x^{\frac{1}{x}}$$
;

B)
$$x - y = \arcsin x - \arcsin y$$
.

$$6) \ \ y = \left(\frac{x}{1+x}\right)^x$$

B)
$$x^2 + y^2 = r^2$$
.

3.18. a)
$$y = \sqrt{2x+1} (\ln(2x+1) - 2);$$

$$6) \ \ y = 2x^{\sqrt{x}};$$

B)
$$\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2}$$
.

3.19. a)
$$y = \frac{1 + \ln \cos x}{\cos x}$$
;

$$6) y = \left(x^2 + 1\right)^{\sin x};$$

B)
$$y^3 - 3y + 3ax = 0$$
.

3.20. a)
$$y = e^x \sqrt{1 - e^{2x}} - \arcsin e^x$$
;

6)
$$y = \sqrt[3]{\frac{x(x^2+1)}{(x^2-1)^2}};$$

B)
$$cos(xy) = x$$
.

3.21. a)
$$y = \arccos \sqrt{1 - e^x}$$
;

$$6) \quad y = \left(\sqrt{X}\right)^{3\sqrt{X}};$$

$$y^2\cos x = a^2\sin 3x;$$

3.22. a)
$$y = \log_2(\sin^2 x)$$
;

6)
$$y = (\ln x)^{\frac{1}{x}};$$

B)
$$v^2 - 3v + 2x^3 = 0$$
.

3.23. a)
$$y = \left(\frac{x-1}{x+1}\right)^4$$
;

$$6) y = (\sin x)^{\arcsin x};$$

B)
$$e^y + xy = 1$$
.

3.24. a)
$$y = \ln(2x^3 + 3x^2)$$
;

$$σ$$
) $y = (\sin x)^{tgx}$;

$$B) x \sin y + y \sin x = 0.$$

3.25. a)
$$y = (x^2 + 2x + 2)e^{-x}$$
;

$$6) \ \ y = \left(\sqrt{x}\right)^{\cos\sqrt{x}};$$

B)
$$\frac{y}{x} + e^{\frac{y}{x}} - \sqrt[3]{\frac{y}{x}} = 0.$$

Найти производные второго порядка от функций:

4.1.
$$y = \cos^2 x$$
.

4.2.
$$y = \arctan x^3$$
.

4.3.
$$y = \log_2 \sqrt[3]{1 - x^4}$$
.

4.4.
$$y = e^{-x^2}$$
.

4.5.
$$y = \frac{\arcsin x}{\sqrt{1-x^2}}$$
.

4.6.
$$y = -\frac{22x}{x+5}$$
.

4.7.
$$y = \frac{1}{4}x^2(2\ln x - 3)$$
.

4.8.
$$y = \frac{1}{3}x^2 \cdot \sqrt{1 - x^2} + \frac{2}{3} \cdot \sqrt{1 - x^2} + x \arcsin x$$

4.9.
$$y = -\frac{1}{9}x \cdot \sin 3x - \frac{2}{27}\cos 3x$$
.

4.10.
$$y = \sin^2 x$$
.

4.11.
$$y = \operatorname{tg} x$$
.

4.12.
$$v = \sqrt{1+x^2}$$
.

4.13.
$$y = (x^2 - 3x + 2)^3$$
.

4.14.
$$v = x \cdot e^{x^2}$$
.

4.15.
$$y = \frac{1}{1+x^3}$$
.

4.16.
$$y = (1 + x^2) \arctan x$$
.

4.17.
$$y = \sqrt{a^2 - x^2}$$
.

4.18.
$$y = \ln\left(x + \sqrt{1 + x^2}\right)$$
.

4.19.
$$v = e^{\sqrt{x}}$$
.

4.20.
$$y = \sqrt{1 - x^2} \cdot \arcsin x$$
.

4.21.
$$y = \arcsin(a \cdot \sin x)$$
.

4.22.
$$y = x \cdot \sqrt{1 + x^2}$$
.

4.23.
$$\frac{x}{\sqrt{1-x^2}}$$
.

4.24.
$$y = \ln\left(x^2 + \sqrt{1 + x^4}\right)$$
.

4.25.
$$y = x \ln x$$
.

4.26.
$$y = \frac{11}{x-3}$$
.

Найти производные первого и второго порядков от функций, заданных параметрически:

5.1.
$$x = t^2 + 2$$
; $y = \frac{1}{3}t^3 - 1$.

5.2.
$$x = \arcsin t$$
; $y = \sqrt{1 - t^2}$.

5.3.
$$x = at^2$$
; $y = bt^3$.

5.4.
$$x = \cos t$$
; $y = \sin t$.

5.5.
$$x = a(t - \sin t)$$
; $y = a(1 - \cos t)$.

5.6.
$$x = a \cos^2 t$$
; $y = a \sin^2 t$.

5.7.
$$x = \ln t$$
; $y = t^2 - 1$.

5.8.
$$x = \arcsin t$$
; $y = \ln(1 - t^2)$.

5.9.
$$x = at \cdot \cos t$$
; $y = at \cdot \sin t$.

5.10.
$$x = \arccos \sqrt{t}$$
; $y = \sqrt{t - t^2}$.

5.11.
$$x = \frac{1}{\cos t}$$
; $y = \lg t$.

5.12.
$$x = \operatorname{arctg} t$$
; $y = \ln(1 + t^2)$.

5.13.
$$x = a \cos^3 t$$
; $y = a \sin^3 t$.

5.14.
$$x = R \sin t + \sin Rt$$
; $y = R \cos t + \cos Rt$.

5.15.
$$x = t^2 + 2t$$
; $y = \ln(t+1)$.

5.16.
$$x = 1 + e^{\alpha t}$$
; $y = \alpha t + e^{-\alpha t}$.

5.17.
$$x = \cos t + t \sin t$$
; $y = \sin t - t \cos t$.

5.18.
$$x = 2\cos t$$
; $y = \sin t$.

5.19.
$$x = t^2$$
; $y = t + t^3$.

5.20.
$$x = e^{2t}$$
; $y = e^{3t}$.

5.21.
$$x = 2\cos^2 t$$
; $y = 2\sin^2 t$.

5.22.
$$x = 1 + e^t$$
; $y = t + e^{-t}$.

5.23.
$$x = 2\sin t + \sin 2t$$
; $y = 2\cos t + \cos 2t$.

5.24.
$$x = e^t \cos t$$
; $y = e^t \sin t$.

5.25.
$$x = e^{2t} + 4$$
; $y = e^{3t} - 5$.

Пользуясь правилом Лопиталя, найти пределы функций:

6.1. a)
$$\lim_{x \to -1} \frac{\sqrt[3]{2x+1}+1}{\sqrt{x+2}+x}$$
;

6)
$$\lim_{x\to 0} \frac{\ln x}{\operatorname{ctg} x}$$
.

6.2. a)
$$\lim_{x\to 0} \frac{1-\cos \alpha x}{1-\cos \beta x}$$
;

6)
$$\lim_{x \to \infty} x \left(\frac{1}{e^x} - 1 \right)$$
.

6.3. a)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
;

6)
$$\lim_{x \to \infty} (\pi - 2 \operatorname{arctg} x) \ln x$$
.

6.4. a)
$$\lim_{x \to \infty} \frac{x - \sin x}{x^3}$$
;

6)
$$\lim_{x \to -1+0} \frac{\operatorname{tg} \frac{\pi x}{2}}{\ln(1+x)}.$$

6.5. a)
$$\lim_{x\to 0} \frac{e^{ax} - e^{-2ax}}{\ln(1+x)}$$
;

6)
$$\lim_{x \to 1+0} \frac{\ln(x-1)}{\cot g \pi x}.$$

6.6. a)
$$\lim_{x \to 1} \frac{x^3 - 2x^2 - x + 2}{x^3 - 7x + 6}$$
;

$$δ) \lim_{x\to 0} \arcsin x \cdot \operatorname{ctg} x$$

6.7. a)
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$$
;

6)
$$\lim_{x\to\infty} \frac{\ln x}{r^{\alpha}} (\alpha > 0)$$
.

6.8. a)
$$\lim_{x\to 0} \frac{e^{\alpha x} - e^{-\alpha x}}{\sin x}$$
;

$$6) \lim_{x \to \infty} \frac{x^{100}}{e^x}.$$

6.9. a)
$$\lim_{x \to \infty} \frac{\frac{\pi}{4} - \arctan\left(1 - \frac{1}{x}\right)}{\sin\frac{1}{x}};$$

6)
$$\lim_{x \to 1} (1 - x) \operatorname{tg} \frac{\pi x}{2}.$$

6.10. a)
$$\lim_{x\to 0} \frac{a^x - b^x}{\tan x}$$
;

6)
$$\lim_{x \to -1} (1+x) \operatorname{tg} \frac{\pi x}{2}$$
.

6.11. a)
$$\lim_{x\to 0} \frac{e^x - 1}{\sin 2x}$$
;

6)
$$\lim_{x \to 0} x^2 e^{\frac{1}{x^3}}$$
.

6.12. a)
$$\lim_{x \to 1} \frac{\ln x}{1-x}$$
;

$$6) \lim_{x \to \infty} \left(\frac{1}{3^x} - 1 \right) x.$$

6.13. a)
$$\lim_{x\to 2} \frac{\ln(x^2-3)}{x^2+3x-10}$$
;

$$6) \lim_{x \to \infty} \frac{e^x}{x^5}.$$

6.14. a)
$$\lim_{x \to 1} \frac{a^{\ln x} - 1}{\ln x}$$
;

6)
$$\lim_{x \to \infty} \frac{x^{1000}}{2x^{100} + 1}.$$

6.15. a)
$$\lim_{x \to 0} \frac{e^x - e^{5x}}{\sin x}$$
;

$$6) \lim_{x \to \infty} x^{\frac{1}{1+x}}.$$

6.16. a)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin^2 x - \frac{1}{2} \operatorname{tg} x}{1 + \cos 4x}$$
;

$$6) \lim_{x \to 1} x^{\frac{1}{1-x}}.$$

6.17. a)
$$\lim_{x\to 0} \frac{\operatorname{tg} x - \sin x}{x - \sin x}$$
;

$$6) \lim_{x \to \infty} \frac{x^3}{3^x}.$$

6.18. a)
$$\lim_{x \to 1} \frac{x^3 - 3x^2 + 2}{x^3 - 4x^2 + 3}$$
;

$$6) \lim_{x \to \infty} x^{\frac{3}{2}\sin\frac{1}{x}}.$$

6.19. a)
$$\lim_{x\to 0} \frac{e^{\alpha x} - \cos \alpha x}{e^{\beta x} - \cos \beta x};$$

$$6) \lim_{x \to \infty} \frac{\ln x}{x^{\frac{1}{10}}}.$$

6.20. a)
$$\lim_{x\to a} \frac{x^m - a^m}{x^n - a^n}$$
;

$$6) \lim_{x \to 0} \left(\frac{1}{x}\right)^{\lg x}.$$

6.21. a)
$$\lim_{x\to 0} \frac{e^{3x}-3x-1}{\sin^2 4x}$$
;

6)
$$\lim_{x \to \infty} \frac{x^9}{3^x}.$$

6.22. a)
$$\lim_{x\to 0} \frac{e^{x^3}-1}{\cos x-1}$$
;

$$6) \lim_{x \to \infty} x \cdot \sin \frac{a}{x}.$$

6.23. a)
$$\lim_{x\to 0} \frac{e^{5x} + x - 1}{\sin 2x}$$
;

6)
$$\lim_{x \to \infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{\arctan x}.$$

6.24. a)
$$\lim_{x \to 0} \left(\frac{1}{\lg x} - \frac{1}{x} \right);$$

6)
$$\lim_{x \to \frac{\pi}{2}} (\pi - 2x)^{\cos x}.$$

6.25. a)
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x}$$
;

6)
$$\lim_{x \to 0} (\cos 2x)^{\frac{3}{x^2}}$$
.

Написать формулу Тейлора третьего порядка с остаточным членом в форме Лагранжа для заданной функции в точке x_0 .

7.3.
$$e^x$$
, $x_0 = -1$.

7.4.
$$4^x$$
, $x_0 = 0$.

7.5.
$$\sqrt{x}$$
, $x_0 = 4$.

7.6.
$$x^{10} - 3x^6 + x^2 + 2$$
, $x_0 = 1$.

7.7.
$$\frac{1}{x+8}$$
, $x_0 = 0$.

7.8.
$$x \cos x$$
, $x_0 = 0$.

7.9.
$$\frac{x}{x-1}$$
, $x_0 = 2$.

7.10.
$$e^{\sin x}$$
, $x_0 = 0$.

7.11.
$$\frac{1}{2}(e^x + e^{-x}), x_0 = 0.$$

7.12.
$$\ln(1+\sin x)$$
, $x_0=0$.

7.13.
$$\ln(5-4x)$$
, $x_0=0$.

7.14.
$$3^x$$
, $x_0 = 0$.

7.15.
$$\frac{1}{x}$$
, $x_0 = 1$.

7.16.
$$e^{5x-1}$$
, $x_0 = 0$.

7.17.
$$\frac{1}{x+2}$$
, $x_0 = -3$.

7.18.
$$\arcsin x$$
, $x_0 = 0$.

7.19.
$$x^3 \ln x$$
, $x_0 = 1$.

7.20.
$$\ln x$$
, $x_0 = 1$.

7.21.
$$x^5 - 5x^3 + x$$
, $x_0 = 2$. **7.22.** $\ln(x+5)$, $x_0 = 0$.

7.22.
$$\ln(x+5)$$
, $x_0=0$.

7.23.
$$\sin \frac{x}{3}$$
, $x_0 = 0$.

7.24.
$$xe^x$$
, $x_0 = 0$.

7.25.
$$\frac{1}{3-2x}$$
, $x_0 = 0$.

Залача 8

Исследовать функцию и построить ее график.

8.1.
$$y = \frac{1-x^2}{x^2}$$
.

8.2.
$$y = \frac{x}{(1+x)^3}$$
. **8.3.** $y = \frac{4x^2+1}{x}$.

8.3.
$$y = \frac{4x^2 + 1}{x}$$

8.4.
$$y = \frac{x^3}{x^2 - 1}$$

8.4.
$$y = \frac{x^3}{x^2 - 1}$$
. **8.5.** $y = \frac{x^3}{2(1 + x)^2}$. **8.6.** $y = \frac{x^3 + 2}{2x}$.

8.6.
$$y = \frac{x^3 + 2}{2x}$$

8.7.
$$y = \frac{4x}{4+x^2}$$

8.7.
$$y = \frac{4x}{4+x^2}$$
. **8.8.** $y = \frac{x^2-1}{x^2+1}$. **8.9.** $y = \frac{x^2}{x-1}$.

8.9.
$$y = \frac{x^2}{x-1}$$

8.10.
$$y = \frac{4x^3 + 5}{x}$$

8.11.
$$y = \frac{x^4}{x^3 - 1}$$

8.10.
$$y = \frac{4x^3 + 5}{x}$$
. **8.11.** $y = \frac{x^4}{x^3 - 1}$. **8.12.** $y = \frac{2 - 4x^2}{1 - 4x^2}$.

8.13.
$$y = \frac{2 + x^3}{x^2}$$

8.14.
$$y = \frac{x^4 + 1}{x^2}$$

8.13.
$$y = \frac{2+x^3}{x^2}$$
. **8.14.** $y = \frac{x^4+1}{x^2}$. **8.15.** $y = \frac{x^3}{1-x^2}$.

8.16.
$$y = \frac{4x^3}{1-x^3}$$
.

8.17.
$$y = \frac{x^2}{1-x}$$

8.17.
$$y = \frac{x^2}{1-x}$$
. **8.18.** $y = \frac{x^4}{1-x^2}$.

8.19.
$$y = \frac{x^3}{x^2 - 4}$$

8.19.
$$y = \frac{x^3}{x^2 - 4}$$
. **8.20.** $y = \frac{x^3}{(x - 2)^2}$. **8.21.** $y = \frac{x^3 - 1}{x^2}$.

8.21.
$$y = \frac{x^3 - 1}{x^2}$$

8.22.
$$y = \frac{4x^3}{x^3 - 1}$$

8.22.
$$y = \frac{4x^3}{x^3-1}$$
. **8.23.** $y = \frac{x^2-5}{x-3}$. **8.24.** $y = x^2e^{-x}$.

8.24.
$$y = x^2 e^{-x}$$
.

8.25.
$$y = x\sqrt{1-x^2}$$
.

II. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Занятие 1

Комплексные числа и действия над ними. Простейшие приемы интегрирования

Аудиторная работа

1.1. Выполнить действия:

a)
$$(2+3i)(4-i)+5+4i;$$
 6) $(2+5i)^2+(3-i)^2+\frac{3+4i}{2-3i}.$

B)
$$\frac{1-3i}{1+2i} + 4i - 1.$$
 r) $\frac{(8-i)^2}{3+5i} + 3i - 4.$

2.1. Представить следующие комплексные числа в тригонометрической форме записи:

a)
$$1+i$$
. **b)** $\frac{1}{2}-\frac{\sqrt{3}}{2}i$. **c)** $5-4i$.

3.1. Выполнить действия:

a)
$$(1-i)^5$$
. **b)** $(2+2i)^4$. **b)** $(-i)^{10}$. **c)** $\sqrt[3]{3+3i}$. **d)** \sqrt{i} . **e)** $\sqrt[3]{1+\sqrt{3}i}$.

4.1. Пользуясь таблицей интегралов, свойствами неопределенного интеграла и основными правилами интегрирования, найти неопределенные интегралы:

a)
$$\int (\sqrt{x} + 2)(\sqrt{x} - 1)dx$$
. **6)** $\int \frac{(1 + 4\sqrt[3]{x})^2}{x} dx$.

$$\mathbf{B)} \int \frac{dx}{\sin^2 x \cos^2 x}.$$

$$\Gamma) \int \frac{1+3x^2}{x^2(1+2x^2)} dx.$$

д)
$$\int \sin^2 \frac{x}{2} dx$$
.

e)
$$\int \frac{4x^2 + 2x - 3}{x^2} dx$$
.

ж)
$$\int \sin 3x \cos x \, dx$$
.

3)
$$\int (2x+3)^5 dx$$
.

$$\mathbf{u}) \int \cos 4x \cos 8x \, dx \, .$$

$$\kappa) \int \frac{1+\cos^2 x}{1-\cos 2x} dx.$$

5.1. Найти неопределенные интегралы поднесением под знак дифференциала:

a)
$$\int \cos x \, 2^{\sin x} \, dx$$
.

6)
$$\int \frac{dx}{x(1+2\ln x)^4}$$
.

B)
$$\int \frac{2x+3}{x^2+3x+2} dx$$
.

$$\Gamma$$
) $\int \frac{4x+4}{x^2+2x} dx$.

д)
$$\int \frac{\sqrt{tgx}dx}{\cos^2 x}$$
.

e)
$$\int \frac{dx}{(1+x^2)\operatorname{arctg} x}$$
.

ж)
$$\int xe^{-x^2} dx$$
.

$$3) \int \frac{\sin^3 2x}{\cos^4 2x} dx.$$

$$\mathbf{u}) \int \frac{dx}{x \ln 4x}.$$

$$\kappa) \int \frac{5x+2}{\sqrt{x^2-4x+5}} dx.$$

6.1. Найти неопределенные интегралы и сделать проверку дифференцированием:

$$\mathbf{a)} \int \cos^2(3x + \pi/6) \, dx \, .$$

6)
$$\int \frac{3^x dx}{1+9^x}$$
.

B)
$$\int x^2 \cos(3x^3 + 1) dx$$
.

$$\Gamma) \int x(5+x)^4 dx.$$

д)
$$\int \frac{x \, dx}{\sqrt{1-x^4}}$$
.

$$e) \int \frac{e^x dx}{1 + e^{2x}}.$$

Домашнее задание

7.1. Найти неопределенные интегралы:

a)
$$\int e^{4x-3} dx$$
.

B)
$$\int (x^2-4)(x+2) dx$$
.

д)
$$\int x^2 e^{-x^3} dx$$
.

ж)
$$\int \frac{dx}{x^2 - 4x + 20}$$
.

u)
$$\int \frac{3x-1}{\sqrt{x^2-4x+8}}$$
.

6)
$$\int x \sqrt{x^2 - 4} \, dx$$
.

$$\Gamma$$
) $\int \frac{\cos 2x \, dx}{1 + \sin^2 2x}$.

e)
$$\int \frac{dx}{x\sqrt{\ln 2x}}$$
.

3)
$$\int \frac{4x-5}{\sqrt{3+2x-x^2}} dx$$
.

$$\kappa$$
) $\int \cos^2 3x \, dx$.

4. a)
$$\frac{x^2}{2} + \frac{2x^{\frac{3}{2}}}{3} - 2x + C$$
.

B)
$$tgx - ctgx + C$$
.

$$\Delta$$
) $x - \sin x + C$.

ж)
$$-\frac{1}{8}\cos 4x - \frac{1}{4}\cos 2x + C$$
.

$$\mathbf{u}) \ \frac{1}{24} \sin 2x + \frac{1}{8} \sin 4x + C.$$

5. a)
$$2^{\sin x} + C$$
.

6)
$$\ln|x| + 24\sqrt[3]{x} + 24\sqrt[3]{x^2} + C$$

$$\Gamma) \frac{1}{\sqrt{2}} \arctan x \sqrt{2} - \frac{1}{x} + C.$$

e)
$$4x + 2\ln|x| + \frac{3}{x} + C$$
.

3)
$$\frac{(2x+3)^6}{12} + C$$
.

$$\kappa) - \operatorname{ctg} x - \frac{1}{2} x + C.$$

6)
$$-\frac{1}{6(1+2\ln x)^3}+C.$$

B)
$$\ln |x^2 + 3x + 2| + C$$
.

д)
$$\frac{\operatorname{tg}^2 x}{2} + C.$$

ж)
$$-\frac{1}{2}e^{-x^2} + C$$
.

u)
$$\ln |\ln 4x| + C$$
.

6. a)
$$\frac{1}{2}x + \frac{1}{12}\sin 6x + C$$
.

B)
$$\frac{1}{9}\sin(3x^3+1)+C$$
.

$$\pi$$
) $\frac{1}{2}\arcsin x^2 + C$.

7. a)
$$\frac{1}{4}e^{4x-3} + C$$
.

B)
$$\frac{x^4}{4} + \frac{2x^3}{3} - 2x^2 - 8x + C$$
.

д)
$$-\frac{1}{3}e^{-x^3}+C$$
.

3)
$$\frac{1}{4} \operatorname{arctg} \frac{x+2}{4} + C$$

K)
$$3\sqrt{x^2-4x+8}-5\ln\left|x-2+\sqrt{(x-2)^2+4}\right|+C$$
.

$$\pi) \, \frac{1}{2} x + \frac{\cos 6x}{12} + C.$$

$$\Gamma$$
) $2 \ln |x^2 + 2x| + C$.

e)
$$\ln \left| \operatorname{arctg} x \right| + C$$
.

3)
$$-\frac{1}{6\cos^3 2x} + \frac{1}{2\cos 2x} + C$$
.

K)
$$\frac{5}{2} \ln |x^2 - 4x + 5| + 12 \operatorname{arctg}(x - 2) + C$$
.

6)
$$\frac{\arctan 3^x}{\ln 3} + C$$
.

$$\Gamma$$
) $\frac{(x+5)^6}{6} - (x+5)^5 + C$.

e)
$$arctge^x + C$$
.

6)
$$\frac{1}{3}(x^2-4)^{3/2}+C$$
.

$$\Gamma$$
) $\frac{1}{2}$ arctg sin $2x + C$.

ж)
$$2\sqrt{\ln 2x + C}$$
.

3)
$$\frac{1}{4} \arctan \frac{x+2}{4} + C$$
. If $u = -4\sqrt{3+2x-x^2} - \arcsin \frac{x-1}{2} + C$.

Интегрирование с помощью замены переменой в неопределенном интеграле

Аудиторная работа

2.1. Найти неопределенные интегралы:

a)
$$\int x(3x+4)^5 dx$$
.

$$\mathbf{6)} \int x\sqrt{2x+3}\,dx.$$

$$\mathbf{B)} \int \frac{\ln x \sqrt{2 + \ln^2 x} \ dx}{x}.$$

$$\Gamma) \int \frac{\sin 2x}{4 + \sin^2 x} dx.$$

д)
$$\int \frac{dx}{x\sqrt{x-1}}$$
.

e)
$$\int \frac{x \, dx}{\sqrt{x-1}}$$
.

$$\mathbf{w}) \int \frac{\sin x \, dx}{\sqrt{1 + 2\cos x}}.$$

$$3) \int \frac{dx}{x\sqrt{x^2 - a^2}}.$$

u)
$$\int \frac{dx}{\sqrt{1+e^x}}.$$

$$\mathbf{K}) \int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx.$$

л)
$$\int \frac{2^{1/x}}{x^2} dx$$
.

$$\mathbf{M}) \int \frac{\cos(\ln x)}{x} dx \, .$$

$$\mathbf{H}) \int \frac{\cos\frac{x}{\sqrt{2}} dx}{2 - \sin\frac{x}{\sqrt{2}}}.$$

$$\mathbf{o)} \int \frac{dx}{3^x + 1}.$$

$$\mathbf{n}) \int \frac{(2x+1)\,dx}{\sqrt{x+1}}.$$

$$\mathbf{p)} \int \frac{\ln x + 1}{x \ln x} dx.$$

c)
$$\int \frac{\sin x + x \cos x}{x^2 \sin^2 x} dx.$$

$$\mathbf{T)} \int \frac{dx}{x\sqrt{1+x^2}}.$$

$$\mathbf{y)} \int 4^{x \ln x} (1 + \ln x) \, dx.$$

$$\Phi) \int \frac{2x - \arccos x}{\sqrt{1 - x^2}} dx .$$

2.2. Найти неопределенные интегралы и сделать проверку дифференцированием:

$$\mathbf{a)} \int \frac{\cos x - x \sin x}{x \cos x} dx.$$

$$\mathbf{6)} \int \sqrt{4-x^2} \, dx.$$

$$\mathbf{B)} \int \frac{\sqrt{\operatorname{arcctg} x}}{1 + x^2} dx.$$

r)
$$\int \frac{2x(1+x^2)\arctan x + x^2}{x^2(1+x^2)\arctan x} dx.$$

Домашнее задание

2.3. Найти неопределенные интегралы:

$$\mathbf{a)} \int \frac{4\sin 2x \, dx}{4 + \sin^2 x}.$$

$$\mathbf{6)} \int \frac{\ln x + 1}{1 + x \ln x} dx.$$

$$\mathbf{B)} \int \frac{dx}{1+e^x}.$$

$$\Gamma$$
) $\int \frac{1+x}{1+\sqrt{x}} dx$.

д)
$$\int \frac{x(2\ln x + 1)}{4 + x^2 \ln x} dx$$
.

e)
$$\int \frac{2^{1/x^2} dx}{x^3}$$
.

ж)
$$\int x(4x+5)^3 dx.$$

$$3) \int \frac{dx}{x\sqrt{1-4\ln^2 x}}.$$

2.1. a)
$$\frac{(3x+4)^7}{63} - \frac{2(3x+4)^6}{27} + C.$$
 6) $\frac{\sqrt{(2x+3)^5}}{20} - \sqrt{(2x+3)^3} + C.$

6)
$$\frac{\sqrt{(2x+3)^5}}{20} - \sqrt{(2x+3)^3} + C.$$

B)
$$\frac{1}{3} (1 + \ln^2 x)^{\frac{3}{2}} + C.$$

$$\Gamma) \ln \left| 4 + \sin^2 x \right| + C.$$

$$\mathbf{\pi}$$
) $2\operatorname{arctg}\sqrt{x-1} + C$

д)
$$2 \arctan \sqrt{x-1} + C$$
. e) $\frac{2}{3} \sqrt{(x-1)^3} + 2\sqrt{x-1} + C$.

ж)
$$-\sqrt{1+2\cos x} + C$$

ж)
$$-\sqrt{1+2\cos x}+C$$
. 3) $\frac{1}{a^2}\ln\sqrt{x^2-a^2}-\frac{1}{2a^2}\ln x^2+C$.

u)
$$\ln \left| \frac{\sqrt{e^x + 1} - 1}{\sqrt{e^x + 1} + 1} \right| + C.$$

$$\kappa) \ 2e\sqrt{x} + C.$$

$$\pi) - \frac{2^{\frac{1}{x}}}{\ln 2} + C.$$

$$\mathbf{M}) \sin(\ln x) + C.$$

H)
$$-\sqrt{2} \ln \left| 2 - \sin \frac{x}{\sqrt{2}} \right| + C.$$
 o) $x - \frac{1}{\ln 3} \ln \left(1 + 3^x \right) + C.$

o)
$$x - \frac{1}{\ln 2} \ln(1 + 3^x) + C$$

n)
$$2\left(\frac{2\sqrt{(x+1)^3}}{3} - \sqrt{x+1}\right) + C$$
. **p)** $\ln|x\ln x| + C$. **c)** $-\frac{1}{x\sin x} + C$.

$$\mathbf{p)} \, \ln |x \ln x| + C. \qquad \mathbf{c)} \, -\frac{1}{x \sin x}$$

T)
$$\frac{1}{2} \ln \left| \frac{1 - \sqrt{1 + x^2}}{1 + \sqrt{1 + x^2}} \right| + C.$$
 y) $4^{x \ln x} \ln 4 + C.$

y)
$$4^{x \ln x} \ln 4 + C$$

$$\Phi$$
) $-2\sqrt{1-x^2} + \arccos^2 x + C$. 2.2.

a)
$$\ln |x \cos x| + C$$
.

6)
$$2\arcsin\frac{x}{2} + \sin 2\left(\arcsin\frac{x}{2}\right) + C$$
. **B)** $\frac{2\sqrt{\arctan 3x}}{3} + C$.

$$\Gamma$$
) $2 \ln x + \ln \left| \arctan x \right| + C$.

2.3. a)
$$\ln |4 + \sin^2 x| + C$$
. 6) $\ln |1 + x \ln x| + C$.

6)
$$\ln|1 + x \ln x| + C$$

$$\mathbf{B)} \, \ln \frac{e^x - 1}{e^x} + C \, .$$

$$\mathbf{r)} \ 2(\frac{1}{3}x^{3/2} - \frac{1}{2}x + 2\sqrt{x}) - 4\ln(\sqrt{x} + 1) + C.$$

д)
$$\frac{1}{2} \ln \left| 4 + x^2 \ln x \right| + C$$
. e) $-\frac{1}{2} 2^{1/x^2} \ln 2 + C$.

e)
$$-\frac{1}{2}2^{1/x^2} \ln 2 + C$$
.

ж)
$$\frac{1}{16} \left(\frac{(4x+5)^5}{5} - \frac{5(4x+5)^4}{4} \right) + C$$
. 3) $\frac{1}{2} \arcsin(2\ln x) + C$.

3)
$$\frac{1}{2}\arcsin(2\ln x) + C$$
.

Интегрирование по частям в неопределенном интеграле

Аудиторная работа

3.1. Найти неопределенные интегралы:

a)
$$\int (2x+3)e^{4x} dx$$
.

$$\mathbf{6)} \ \int \sqrt{x} \ln 4x \, dx.$$

B)
$$\int x \arctan 2x \, dx$$
.

$$\Gamma$$
) $\int (x^2 + 1)\cos(3x + 1) dx$.

д)
$$\int e^{-x} \cos 2x \, dx$$
.

e)
$$\int \ln^2 x \, dx$$
.

ж)
$$\int \sin(\ln x) dx$$
.

3)
$$\int \frac{\ln x}{x^3} dx.$$

u)
$$\int \frac{\arcsin x \, dx}{\sqrt{1+x}}.$$

$$\kappa) \int x^2 3^x \, dx.$$

л)
$$\int \frac{\arcsin\sqrt{x}}{\sqrt{1-x}}$$
.

$$\mathbf{M}) \int (3x+1)\cos^2 4x \, dx.$$

o)
$$\int x^2 \ln(1+x) dx$$
.

$$\mathbf{\Pi}) \int \sqrt{a^2 + x^2} \, dx \ .$$

Домашнее задание

3.2. Найти неопределенные интегралы:

a)
$$\int (x^2 + 2x)\cos 2x \, dx$$
. **6)** $\int e^{2x} \sin x \, dx$.

$$\mathbf{6)} \int e^{2x} \sin x \, dx$$

B)
$$\int \frac{x \cos x}{\sin^2 x} dx$$
.

$$\Gamma$$
) $\int \arccos x \, dx$.

д)
$$\int e^{\sqrt{x}} dx$$
.

e)
$$\int x \sin x \cos x \, dx$$
.

3.1. a)
$$\frac{2x+3}{4}e^{4x} - \frac{1}{8}e^{4x} + C$$
.

6)
$$\frac{2}{3}x^{\frac{3}{2}}\left(\ln 4x - \frac{2}{3}\right) + C$$
.

B)
$$\frac{x^2}{2} \arctan 2x - \frac{1}{4}x + \frac{1}{8} \arctan 2x + C.$$

r)
$$\frac{x^2+1}{3}\sin(3x+1)+\frac{1}{9}x\cos(3x+1)-\frac{2}{27}\sin(3x+1)+C$$
.

д)
$$\frac{e^{-x}}{2}(2\sin 2x - \cos x) + C.$$

e)
$$x(\ln^2 x - \ln x + 1) + C;$$

ж)
$$\frac{x}{2} (\sin \ln x - \cos \ln x) + C;$$

3)
$$-\frac{1}{4x^4}\left(\ln x + \frac{1}{4}\right) + C$$
.

u)
$$2\arcsin x\sqrt{1+x} + 4\sqrt{1-x} + C$$
.

$$\kappa$$
) $\frac{x^2 3^x}{\ln 3} - \frac{2x3^2}{\ln^2 3} + \frac{3^x}{\ln^3 3} + C$.

$$\mathbf{J}) - 2\arcsin\sqrt{x}\sqrt{1-x} + 4\sqrt{x} + C.$$

M)
$$\frac{3}{4}x^2 + \frac{x}{2} + \frac{3x+1}{6}\sin 8x + \frac{3}{144}\cos 8x + C$$
.

H)
$$\frac{x^3}{3} \ln(1+x) - \frac{x^3}{9} + \frac{x^2}{6} - \frac{x}{3} + \ln|x+1| + C.$$

o)
$$x\sqrt{x^2+a^2}+a^2\ln|x+\sqrt{x^2+a^2}|+C$$
.

3.2. a)
$$\frac{1}{2}(x^2+2x)\sin 2x + \frac{1}{2}(x+1)\cos 2x - \frac{1}{4}\sin 2x + C$$
.

6)
$$\frac{2}{3}e^{2x}\sin x - \frac{1}{3}e^{2x}\cos x + C$$
. **B)** $-\frac{x}{\sin x} + \ln\left| tg\frac{x}{2} \right| + C$.

$$\mathbf{B}) - \frac{x}{\sin x} + \ln \left| \operatorname{tg} \frac{x}{2} \right| + C.$$

$$\mathbf{r)} \ x \arccos x - \sqrt{1 - x^2} + C \ .$$

д)
$$2e^{\sqrt{x}}(\sqrt{x}-1)+C$$
.

e)
$$\frac{1}{8}\sin 2x - \frac{x}{4}\cos 2x + C$$
.

Интегрирование рациональных функций

Аудиторная работа

4.1. Записать разложение рациональной дроби на простейшие:

a)
$$\frac{3x-2}{x^3-2x^2}$$
.

6)
$$\frac{4x+5}{(x^2+1)^2(x-3)^2}$$
.

B)
$$\frac{x^2 + 2x + 2}{(x^2 + x + 1)(x - 2)^2}.$$

4.2. Найти неопределенные интегралы:

a)
$$\int \frac{x^3 - 1}{4x^3 - x} dx$$
.

6)
$$\int \frac{2x^2 + 3}{x^4 - 5x^2 + 6} dx.$$

B)
$$\int \frac{x^6 - 2x^4 + 3x^3 - 9x^2 + 4}{x^5 - 5x^3 + 4x} dx.$$

$$\Gamma) \int \frac{dx}{x^3 + 2x^2 + 2x}.$$

e)
$$\int \frac{x^3 + 3}{x^3 - 8} dx$$
.

$$\mathbf{w}) \int \frac{dx}{x(x^2+1)(x^2+4)}.$$

3)
$$\int \frac{x^4 + 3x + 1}{x^4 - 1} dx$$
.

$$\mathbf{u}) \int \frac{6x^4 - 30x^2 + 30}{(x^2 - 1)(x + 2)} dx.$$

$$\kappa) \int \left(\frac{x+2}{x-1}\right)^2 \frac{dx}{x}.$$

Домашнее задание

4.3. Найти неопределенные интегралы

a)
$$\int \frac{6x^4 - 21x^2 + 3x + 24}{(x^2 + x - 2)(x + 1)} dx$$
.

6)
$$\int \frac{dx}{x^3 + x^2}$$
.

B)
$$\int \frac{x^2 - 6x + 8}{x^3 + 8} dx.$$

$$\Gamma) \int \frac{9x-9}{(x+1)(x^2-4x+13)} dx .$$

д)
$$\int \frac{5x \, dx}{x^4 + 3x^2 - 4}$$
.

e)
$$\int \frac{2x^4 - 3x^3 - 21x^2 - 26}{(x+3)(x^2 - 5x + 4)} dx.$$

4.2. a)
$$\frac{1}{4}x + \ln|x| - \frac{7}{16}\ln|2x - 1| - \frac{9}{16}\ln|2x + 1| + C$$
.

6)
$$\frac{9}{2\sqrt{3}} \ln \left| \frac{\sqrt{3} - x}{\sqrt{3} + x} \right| + \frac{7}{2\sqrt{2}} \ln \left| \frac{\sqrt{2} - x}{\sqrt{2} + x} \right| + C.$$

B)
$$\frac{x^2}{2} + \ln|x| + \frac{3}{2}\ln|x-1| + \frac{1}{2}\ln|x+1| - \ln|x-2| + \ln|x+2| + C.$$

r)
$$\frac{1}{2}\ln|x| - \frac{1}{4}\ln|x^2 + 2x + 2| - \frac{1}{2}\arctan(x+1) + C$$
.

д)
$$\frac{1}{2}\ln|x+1|-2\ln|x-2|+\frac{5}{2}\ln|x-3|+C$$
.

e)
$$x + \frac{11}{8} \ln|x - 2| - \frac{11}{16} \ln|x^2 + 2x + 4| - \frac{11}{8\sqrt{3}} \arctan \frac{x+1}{\sqrt{3}} + C$$
.

ж)
$$\frac{1}{4}\ln|x| - \frac{1}{6}\ln|x^2 + 1| + \frac{1}{24}\ln|x^2 + 4| + C$$
.

3)
$$x + \frac{5}{4} \ln|x - 1| + \frac{1}{4} \ln|x + 1| - \frac{3}{4} \ln|x^2 + 1| - \arctan x + C$$
.

u)
$$3x^2 - 12x + \ln|x - 1| - 3\ln|x + 1| + 2\ln|x + 2| + C$$
.

K)
$$4\ln|x| - 3\ln|x - 1| - \frac{9}{x - 1} + C$$
.

4.3. a)
$$3x^2 - 12x + 2\ln|x - 1| - 3\ln|x + 1| + 10\ln|x + 2| + C$$
.

$$\mathbf{6)} \; \ln \left| \frac{x+1}{x} \right| - \frac{1}{x} + C \; .$$

B)
$$2\ln|x+2| - \frac{1}{2}\ln|x^2 - 2x + 4| - \frac{1}{\sqrt{3}}\arctan\frac{x-1}{\sqrt{3}} + C$$
.

r)
$$\frac{1}{2} \ln |x^2 - 4x + 13| - \ln |x + 1| + 2 \arctan \frac{x - 2}{3} + C$$
.

д)
$$\frac{1}{2}\ln|x-1| + \frac{1}{2}\ln|x+1| - \frac{1}{2}\ln|x^2+4| + C$$
.

e)
$$x^2 + x + 4 \ln|x - 1| + \ln|x + 3| - 2 \ln|x - 4| + C$$
.

Интегрирование тригонометрических выражений и простейших иррациональных функций

Аудиторная работа

- **5.1.** Найти неопределенные интегралы от тригонометрических функций:
 - a) $\int \sin 5x \sin 3x \, dx$.

 $\mathbf{6)} \left[\cos 8x \cos 3x \, dx \right].$

 $\mathbf{B}) \int \sin^4 2x \, dx \, .$

 Γ) $\int \cos^5 3x \, dx$.

 π) $\int \sin^3 2x \cos^5 2x \, dx$.

e) $\int \sin^3 3x \cos^3 3x \, dx$.

 $\mathbf{x}) \int \cos^2 x \sin^4 x \, dx \, .$

3) $\int tg^3 2x dx$.

$$\mathbf{u}) \int \operatorname{ctg}^4 x \, dx \, .$$

$$\kappa$$
) $\int \frac{\sin^2 x \, dx}{\cos^4 x}$.

$$\int \frac{dx}{1+\sin^2 x}$$
.

$$\mathbf{M}) \int \frac{dx}{1+\operatorname{tg} x} \, .$$

H)
$$\int \frac{dx}{\sin^2 x + 8\sin x \cos x + 12\cos^2 x}$$
. o) $\int \frac{dx}{5 + 4\sin x}$.

$$\mathbf{o)} \int \frac{dx}{5 + 4\sin x}.$$

5.2. Найти неопределенные интегралы от иррациональных функций:

$$\mathbf{a)} \int \frac{dx}{(5+x)\sqrt{3+x}} \, .$$

6)
$$\int \frac{1}{x} \sqrt{\frac{x-1}{x+1}} dx$$
.

$$\mathbf{B)} \int \frac{dx}{(\sqrt[3]{x}+4)\sqrt{x}} \,.$$

$$\Gamma) \int \frac{dx}{x(\sqrt{x} + \sqrt[5]{x^2})}.$$

д)
$$\int \frac{x^2 + \sqrt{1+x}}{\sqrt[3]{1+x}} dx$$
.

e)
$$\int \frac{dx}{\sqrt{2x+1} + \sqrt[3]{2x+1}}$$
.

ж)
$$\int \sqrt{x(1-x^2)} dx$$
.

3)
$$\int \frac{dx}{x^{11}\sqrt{1+x^4}}$$
.

$$\mathbf{u}) \int \frac{\sqrt[3]{1+\sqrt[4]{x}}}{\sqrt{x}} dx.$$

$$\mathbf{K}) \int \frac{\sqrt[3]{1+\sqrt{x}}}{x} dx \, .$$

Домашнее задание

5.3. Найти неопределенные интегралы:

$$\mathbf{a)} \int \sin^3 x \cos^8 x \, dx \, .$$

$$\mathbf{6)} \int \sin^4 3x \cos^2 3x \, dx \, .$$

$$\mathbf{B)} \int \cos^5 x \sin x \, dx \, .$$

$$\Gamma) \int_{0}^{5} \sqrt{\sin^3 2x} \cos^3 2x \, dx \, .$$

д)
$$\int \frac{dx}{3\cos x - 4\sin x}$$
.

e)
$$\int \frac{dx}{16\sin^2 x - 8\sin x \cos x}$$
.

ж)
$$\int \frac{x+1}{x\sqrt{x+2}} dx$$
.

3)
$$\int \frac{1-\sqrt{x+1}}{(1+\sqrt[3]{x+1})\sqrt{x+1}} dx$$
.

u)
$$\int \frac{x + \sqrt[3]{x^2} + \sqrt[6]{x}}{x(1 + \sqrt[3]{x})} dx.$$

$$\kappa) \int \frac{x + \sqrt{x} + \sqrt[3]{x^2}}{x(1 + \sqrt[3]{x})} dx.$$

5.1. a)
$$\frac{1}{4}\sin 2x - \frac{1}{16}\sin 8x + C$$
. 6) $\frac{1}{22}\sin 11x + \frac{1}{10}\sin 5x + C$.

6)
$$\frac{1}{22}\sin 11x + \frac{1}{10}\sin 5x + C$$

B)
$$\frac{3x}{8} - \frac{1}{8}\sin 4x + \frac{1}{64}\sin 8x + C$$

B)
$$\frac{3x}{8} - \frac{1}{8}\sin 4x + \frac{1}{64}\sin 8x + C$$
. **r)** $\frac{1}{3}\left(\sin 3x - \frac{2}{3}\sin^3 3x + \frac{1}{5}3x\right) + C$.

д)
$$-\frac{1}{2}\left(\frac{\cos^6 2x}{6} - \frac{\cos^8 2x}{8}\right) + C$$

д)
$$-\frac{1}{2} \left(\frac{\cos^6 2x}{6} - \frac{\cos^8 2x}{8} \right) + C.$$
 e) $-\frac{1}{48} \left(\cos 6x - \frac{\cos^3 6x}{3} \right) + C.$

ж)
$$-\frac{1}{16}\cos 2x + \frac{1}{64}\cos 4x + C$$
. 3) $\frac{1}{4} \operatorname{tg}^2 2x + \frac{1}{2} \ln \left|\cos 2x\right| + C$.

3)
$$\frac{1}{4} \operatorname{tg}^2 2x + \frac{1}{2} \ln \left| \cos 2x \right| + C$$

u)
$$-\frac{\cot^3 x}{3} + \cot x + x + C$$
. **v**) $-\frac{\tan^3 x}{3} + C$.

$$\kappa) - \frac{\operatorname{tg}^3 x}{3} + C.$$

л)
$$\frac{1}{\sqrt{2}} \operatorname{arctg}(\sqrt{2} \operatorname{tg} x) + C$$
.

M)
$$\frac{1}{2} \ln |\lg x + 1| - \frac{1}{4} \ln |\lg^2 x + 1| + \frac{1}{2} x + C.$$

H)
$$-\frac{1}{4} \ln \left| \frac{\lg x + 6}{\lg x - 6} \right| + C.$$

o)
$$\frac{1}{3} \arctan \frac{5 \operatorname{tg} \frac{x}{2} + 4}{3} + C$$
.

5.2. a)
$$\sqrt{2} \arctan \sqrt{\frac{3+x}{2}} + C$$
.

6)
$$-2 \operatorname{arctg} \sqrt{\frac{x-1}{x+1}} + \ln \frac{\sqrt{x+1} - \sqrt{x-1}}{\sqrt{x+1} + \sqrt{x-1}} + C.$$

B)
$$6\sqrt[6]{x} - 12 \arctan \frac{\sqrt[6]{x}}{2} + C$$
.

г)
$$10\left(-\frac{1}{4t^4} + \frac{1}{3t^3} - \frac{1}{2t^2} + \frac{1}{t} + \ln|t| - \ln|t+1|\right) + C$$
, где $t = \sqrt[10]{x}$.

д)
$$\frac{3}{8}t^{16} - \frac{6}{5}t^{10} + \frac{6}{7}t^7 + \frac{3}{2}t^4 + C$$
, $t = \sqrt[6]{1+x}$.

e)
$$\frac{t^3}{3} - \frac{t^2}{2} + t - \ln|t + 1| + C$$
, где $t = \sqrt[6]{2x + 1}$.

ж) Не берущийся.

3)
$$-\frac{1}{2}\left(\frac{t^5}{5} - \frac{2t^3}{3} + t\right) + C$$
, где $t = \sqrt{\frac{1 - x^4}{x^4}}$.

и)
$$12\left(\frac{t^7}{7} - \frac{t^4}{4}\right) + C$$
, где $t = \sqrt[3]{1 - \sqrt[4]{x}}$.

к)
$$6t + 2\ln|t - 1| - \ln|t^2 + t + 1| - 4\sqrt{3} \operatorname{arctg} \frac{2t + 1}{3} + C$$
, где $t = \sqrt[3]{1 + \sqrt{x}}$.

5.3. a)
$$\frac{1}{11}\cos^{11}x - \frac{1}{9}\cos^9x + C$$
.

6)
$$\frac{1}{16}x - \frac{1}{192}\sin 12x - \frac{1}{144}\sin^3 6x + C$$
.

$$\mathbf{B}) - \frac{\cos^6 x}{6} + C.$$

$$\mathbf{r}) \ \frac{5}{16} \sqrt[5]{\sin^8 2x} - \frac{5}{36} \sqrt[5]{\sin^{18} 2x} + C \ .$$

д)
$$-\frac{1}{5}\ln\left|\frac{\lg\frac{x}{2}-\frac{1}{3}}{\lg x/2+3}\right|+C$$
. e) $\frac{1}{8}\ln\left|\frac{2\lg x-1}{2\lg x}\right|+C$.

$$\mathbf{e)} \ \frac{1}{8} \ln \left| \frac{2 \operatorname{tg} x - 1}{2 \operatorname{tg} x} \right| + C$$

ж)
$$2\sqrt{x+2} + \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{x+2} - \sqrt{2}}{\sqrt{x+2} + \sqrt{2}} \right| + C$$
.

3)
$$3\sqrt[3]{x+1} - \frac{3}{2}\sqrt[3]{(x+1)^2} + 6\sqrt[6]{x+1} - 3\ln\left|1 + \sqrt[3]{x+1}\right| - 6\arctan\left(\frac{6}{\sqrt{x+1}} + C\right)$$
.

и)
$$\frac{3}{2}\sqrt[3]{x^2} + 6 \arctan 6\sqrt[6]{x} + C$$
.

K)
$$\frac{3}{2}x^{2/3} + 6x^{1/6} - 6 \arctan \sqrt[6]{x} + C$$
.

Вычисление определенных интегралов

Аудиторная работа

6.1. Вычислить определенные интегралы:

a)
$$\int_{2}^{9} \sqrt[3]{x-1} \, dx$$
.

6)
$$\int_{0}^{3} \frac{x^2 dx}{4 + x^3}$$
.

B)
$$\int_{1}^{2} \frac{1}{x^3} e^{1/x^2} dx$$
.

$$\mathbf{r}) \int_{1}^{e} \frac{dx}{x(1+\ln^2 x)}.$$

д)
$$\int_{1}^{e} \frac{\cos \ln x}{x} dx$$
.

e)
$$\int_{0}^{2} \frac{2x-1}{2x+1} dx$$
.

ж)
$$\int_{0}^{\pi/4} \sqrt{\cos x - \cos^3 x} \, dx$$
.

3)
$$\int_{0}^{2} \sqrt{4-x^2} \ dx$$
.

и)
$$\int_{0}^{5} \frac{dx}{2x + \sqrt{3x + 1}}.$$

K)
$$\int_{4}^{9} \frac{y-1}{\sqrt{y}+2} dy$$
.

л)
$$\int_{0}^{9} \frac{\sqrt{x} dx}{1 + \sqrt{x}}$$
.

$$\mathbf{M}) \int_{1}^{e} \ln x \ dx \ .$$

H)
$$\int_{0}^{1} \frac{dx}{x^2 + 4x + 5}.$$

o)
$$\int_{0}^{\pi} (2x+1)\cos x \, dx$$
.

$$\mathbf{\Pi}$$
) $\int_{-\pi/2}^{\pi/2} \frac{dx}{1 + \cos x}$.

p)
$$\int_{0}^{\pi/2} \cos^5 x \sin 2x \ dx$$
.

c)
$$\int_{0}^{\pi/2} e^{2x} \cos x \, dx$$
.

T)
$$\int_{0}^{1} \operatorname{arctg} x \, dx$$
.

y)
$$\int_{2}^{3} \frac{7x-15}{x^3-2x^2+5x} dx$$
.

$$\oint_{0}^{1} \frac{t^{5}+1}{16-t^{4}} dt$$
.

Домашнее задание

6.2. Вычислить определенные интегралы:

$$\mathbf{a}) \int_{0}^{\pi/2} x \cos x \, dx.$$

6)
$$\int_{1}^{e} x \ln^{2} x \, dx$$
.

B)
$$\int_{3}^{8} \frac{x \, dx}{\sqrt{1+x}}$$
.

$$\mathbf{r}) \int_{1}^{e^3} \frac{dx}{x\sqrt{1+\ln x}}.$$

д)
$$\int_{0}^{5} \frac{dx}{2x + \sqrt{3x + 1}}$$
.

e)
$$\int_{1}^{e} \ln^3 x \, dx$$
.

ж)
$$\int_{\pi/4}^{\pi/3} \frac{x \, dx}{\sin^2 x}$$
.

3)
$$\int_{-2}^{2} \frac{3x^7 - 2x^5 + x^3 - x}{x^4 + 3x^2 + 1} dx.$$

u)
$$\int_{0}^{\pi/2} \frac{dx}{3 + 2\cos x}$$
.

K)
$$\int_{0}^{\pi/4} \frac{dx}{1+2\sin^2 x}$$
.

Ответы

6.1. a)
$$\frac{45}{4}$$
. **6)** $\frac{1}{3} \ln \frac{31}{4}$.

6)
$$\frac{1}{3} \ln \frac{31}{4}$$

B)
$$\frac{1}{2}(e-\sqrt[4]{e}).$$

$$\Gamma$$
) $\frac{\pi}{4}$. д) $\sin 1$. e) 2 - $\ln 5$.

e)
$$2 - \ln 5$$
.

ж) 0. 3)
$$\pi$$
. 2. 6.2. a) $\frac{\pi}{2}-1$.

6)
$$\frac{1}{4}(e^2-1)$$
. **B)** $\frac{32}{3}$.

B)
$$\frac{32}{3}$$

д)
$$\frac{1}{5}\ln 112$$
. e) $6-2e$.

ж)
$$\frac{\pi(9-4\sqrt{3})}{36} + \frac{1}{2}\ln\frac{2}{3}$$
.

3) 0. **u**)
$$\frac{2}{\sqrt{5}} \arctan \frac{1}{\sqrt{5}}$$
.

$$\kappa$$
) $\frac{\pi}{3\sqrt{3}}$.

Занятие 7

Приложения определенных интегралов

Аудиторная работа

7.1. Найти площади криволинейных фигур, ограниченных линиями:

a)
$$y = \ln x$$
, $x = e$; $x = e^3$; $y = 0$.

6)
$$y = x^2 + 2x$$
, $y = x + 2$.

B)
$$y^2 = 2px$$
; $y^2 = \frac{4}{p}(x-p)^3$, $p > 0$.

r)
$$x^2 + y^2 = a^2$$
; $x^2 + y^2 - 2ay = a^2$, $y = a$.

д)
$$x^2 - y^2 = a^2$$
; $y^2 = \frac{3}{2}ax$;.

- **e)** $x = a \cos^3 t$; $y = a \sin^3 t$.
- ж) $x = 2(t \sin t)$; $y = 2(1 \cos t)$, осыо Ox.
- 3) $r = a(1 + \sin \varphi)$.
- и) $r = \sqrt{3} \sin \varphi$; $r = 1 \cos \varphi$ (ввн кардиоиды).
- κ) $r = a \cos 3\varphi$.
- 7.2. Найти длину дуги кривой:
- a) $y^2 = 4x$, $2 \le x \le 3$.
- **6)** $y = \ln x$; $\sqrt{3} \le x \le \sqrt{8}$.
- **B)** $y = \ln \cos x$; $0 \le x \le \pi/4$.
- r) $x = a(t \sin t)$; $y = a(1 \cos t)$, $0 \le t \le 2\pi$.
- д) $x = R \cos t$; $y = R \sin t$.
- **e)** $x = a \cos^3 t$, $y = a \sin^3 t$.
- ж) $r = a(1 + \cos \varphi)$.
- 3) $r = a\varphi$, $0 \le \varphi \le 2\pi$.
- **7.3.** Найти объем тела, полученного вращением криволинейной трапеции, ограниченной кривыми, около указанной оси:
 - **a)** $y^2 = 4x$, x = 1, Ox.
 - **6)** $y = x e^x$, x = 1, y = 0; Ox.
 - **B)** $y = x^2$, $y^2 = x$; Oy.
 - r) $y = 2x x^2$; y = 0, Oy.
 - д) $x = a(t \sin t)$, $y = a(1 \cos t)$, Ox.

Домашнее задание

7.4. Найти площади криволинейных фигур, ограниченных линиями:

a)
$$y = \sin x$$
, $y = \cos x$, $y = 0$, $x \in [0, \frac{\pi}{2}]$.

6)
$$y = (x^2 + 2x)e^{-x}$$
, $y = 0$.

B)
$$x = 3t^2$$
, $y = 3t - t^3$.

$$\mathbf{r}$$
) $x = t^2 - 1$; $y = t^3 - t$.

д)
$$r = a \cos 5 \varphi$$
.

e)
$$r = a \sin 2\varphi$$
.

Найти длину дуги кривой:

ж)
$$y = \ln(1 - x^2), \quad 0 \le x \le 1/2$$
.

3)
$$x = R(\cos t + t \sin t)$$
, $y = R(\sin t - t \cos t)$, $0 \le t \le \pi$.

u)
$$\rho = 1/\varphi$$
; $3/4 \le \varphi \le 4/3$.

Найти объем тела вращения:

K)
$$x^2 - y^2 = a^2$$
; $x = a + h$ $(h > 0)$, Ox .

л)
$$y = \arcsin x$$
, $0 \le x \le 1$, Ox .

M)
$$x = a \cos t$$
, $y = a \sin 2t$, Ox .

7.4. a)
$$2-\sqrt{2}$$
. 6) 4.

B)
$$\frac{72\sqrt{3}}{5}$$
. **r)** 8/15.

д)
$$\frac{\pi a^2}{4}$$
.

e)
$$\frac{\pi a^2}{4}$$

д)
$$\frac{\pi a^2}{4}$$
. e) $\frac{\pi a^2}{4}$. ж) $\ln 3 - \frac{1}{2}$. 3) $\frac{\pi^2 R}{2}$.

3)
$$\frac{\pi^2 R}{2}$$

и)
$$\ln \frac{3}{2} + \frac{5}{12}$$
.

и)
$$\ln \frac{3}{2} + \frac{5}{12}$$
. **к)** $\frac{\pi h^2}{3} (3a+h)$. **л)** $\pi (\frac{\pi^2}{4} - 2)$. **м)** $\frac{8}{15} \pi a^3$.

л)
$$\pi(\frac{\pi^2}{4}-2)$$

M)
$$\frac{8}{15}\pi a^3$$
.

Несобственные интегралы

Аудиторная работа

8.1. Вычислить несобственные интегралы или установить их расходимость:

$$\mathbf{a)} \int_{-\infty}^{+\infty} x e^{-x^2} dx.$$

$$\mathbf{6)} \int_{e}^{+\infty} \frac{dx}{x \ln x}.$$

$$\mathbf{B)} \int_{e}^{+\infty} \frac{dx}{x \ln^3 x}.$$

$$\Gamma) \int_{-\infty}^{\infty} \frac{dx}{x^2 + 6x + 11}.$$

д)
$$\int_{0}^{+\infty} \frac{dx}{\sqrt{4+x}}$$
.

$$e) \int_{0}^{+\infty} x \cos x \, dx.$$

ж)
$$\int_{1}^{3} \frac{dx}{(x-1)^2}$$
.

3)
$$\int_{-2}^{0} \frac{dx}{\sqrt{4-x^2}}$$
.

u)
$$\int_{0}^{\pi/2} \frac{2x+1}{\sin^2 x} \, dx \, .$$

$$\kappa) \int_{1}^{2} \frac{dx}{x\sqrt{\ln x}}.$$

$$\mathbf{J}$$
) $\int_{0}^{2/\pi} \frac{\cos 1/x}{x^2} dx$.

M)
$$\int_{0}^{2} \frac{x^3 dx}{\sqrt{4-x^2}}$$
.

8.2. Исследовать на сходимость интегралы:

a)
$$\int_{1}^{+\infty} \frac{dx}{5x^2 + 4x + 3}$$
.

$$\mathbf{6)} \int_{1}^{+\infty} \frac{4 + \sin x}{\sqrt[3]{x}} \, dx \, .$$

$$\mathbf{B)} \int_{2}^{+\infty} \frac{dx}{\sqrt{x} + \sin^2 x}.$$

$$\Gamma) \int_{0}^{3} \frac{\cos 1/x}{\sqrt[3]{x}} dx.$$

$$\mathbf{J}) \int_{0}^{1} \frac{dx}{\operatorname{tg} x - x}.$$

$$e) \int_{0}^{\pi/2} \frac{\ln \sin x}{\sqrt{x}} dx.$$

Домашнее задание

8.3. Вычислить несобственные интегралы или установить их расходимость:

$$\mathbf{a)} \int_{1}^{+\infty} \frac{x \, dx}{x^2 + 1}.$$

$$\mathbf{6)} \int_{1}^{+\infty} \frac{\arctan x}{1+x^2} dx .$$

$$\mathbf{B)} \int_{1}^{+\infty} \frac{\sqrt{x} \ dx}{\left(1+x\right)^2} \, dx.$$

$$\Gamma) \int_{1}^{2} \frac{x \, dx}{\sqrt{x-1}}.$$

$$\mathbf{J}) \int_{0}^{1} x \ln x \, dx.$$

e)
$$\int_{0}^{2} \frac{dx}{x^2 - 4x + 3}$$
.

ж)
$$\int_{-1}^{0} \frac{e^{1/x}}{x^2}$$
.

Ответы

б) Расходится.

B)
$$\frac{1}{2}$$
.

$$\Gamma$$
) $\frac{\pi}{\sqrt{2}}$. д) Расходится.

е) Расходится.

ж) Расходится. 3)
$$\frac{\pi}{2}$$
.

3)
$$\frac{\pi}{2}$$
.

и) Расходится.

$$\kappa$$
) $2\sqrt{\ln 2}$.

M)
$$\frac{16}{3}$$
.

в) Расходится.

8.3. а) Расходится. **б)**
$$\frac{3\pi^2}{22}$$
.

6)
$$\frac{3\pi^2}{32}$$

B)
$$\frac{1}{2} + \frac{\pi}{4}$$
.

$$\Gamma$$
) $\frac{8}{3}$. д) $-\frac{1}{4}$.

г)
$$\frac{8}{3}$$
. д) $-\frac{1}{4}$. е) Расходится. ж) $-\frac{1}{6}$.

Частные производные и полный дифференциал функций нескольких переменных. Производные и дифференциалы высших порядков

Аудиторная работа

9.1. Найти частные производные от заданных функций:

$$a) z = \arctan \frac{x^2}{x+y}.$$

6)
$$z = \sqrt{x/y + 2xy + x}$$
.

B)
$$z = (x-1)^{\cos y}$$
.

r)
$$z = (x+2y)\cos^2\frac{x}{y^2}$$
.

д)
$$u = \frac{xy}{z} \ln(x^2 + y^2 + z^2)$$
.

e)
$$u = (x - 2y + 3z)^2 e^{\frac{xy^2}{z^2}}$$
.

9.2. Найти полный дифференциал:

$$a) \ z = \frac{x+y}{x-y}.$$

$$6) z = \arcsin(x^2 y).$$

B)
$$z = \sqrt{\frac{y - x^2}{x - y^2}}$$
.

$$\mathbf{r)} \ z = x^{y^2} \ .$$

д)
$$u = \ln\left(\frac{x+y}{z} + 1\right)$$
.

$$\mathbf{e)} \ u = (xy)^z.$$

9.3. Найти частные производные второго порядка:

a)
$$z = \ln(x^2 + y^2)$$
.

6)
$$z = \frac{1}{xy}$$
.

B)
$$z = e^{xy}$$
.

$$r) z = \frac{1}{x^2 + y^2}.$$

д)
$$z = \frac{\cos xy}{v}$$
.

e)
$$z = \frac{1}{2x - 3v}$$
.

9.4. Найти полные дифференциалы второго порядка:

a)
$$z = 2x^2 - 4xy + 3y^2 - 2x + 3$$
.

$$5) \ z = \frac{x}{v}.$$

B)
$$z = \frac{2xy}{x^2 + y^2}$$
.

$$\Gamma) \ z = e^{x \sin y} \ .$$

д)
$$z = \ln(x^2 - y^2)$$
.

e)
$$z = \frac{1}{(x-y)^2}$$
.

Домашнее задание

9.5. a)
$$z = \frac{x^3 + y^3}{x^2 + y^2}$$
.

Найти dz .

6)
$$z = \operatorname{arctg} \frac{x}{y}$$
.

Найти $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

B)
$$z = \ln \operatorname{tg} \frac{x}{y}$$
.

Найти dz .

$$\mathbf{r)} \ \ u = \sqrt{x^2 + 2y^2 + z^2}$$

Найти *du* .

д)
$$z = y^{\ln x}$$
.

Найти $\frac{\partial^2 z}{\partial x^2}$; $\frac{\partial^2 z}{\partial x \partial y}$; $\frac{\partial^2 z}{\partial y^2}$.

e)
$$z = \sin(xy)$$
.

Найти d^2z .

9.2. д)
$$du = \frac{z}{x+y+z} \left(\frac{1}{z} dx + \frac{1}{z} dy - \frac{x+y}{z^2} dz \right).$$

e)
$$du = (xy)^{z-1} (zydx + zxdy + xy \ln(xy)dz)$$
.

9.3. a)
$$\frac{\partial^2 z}{\partial x^2} = 2 \frac{y^2 - x^2}{\left(x^2 + y^2\right)^2}; \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{-4xy}{\left(x^2 + y^2\right)^2}; \quad \frac{\partial^2 z}{\partial y^2} = 2 \cdot \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2}.$$

6)
$$\frac{\partial^2 z}{\partial x^2} = \frac{2}{x^3 y}; \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{1}{x^2 y^2}; \quad \frac{\partial^2 z}{\partial y^2} = \frac{2}{y^3 x}.$$

B)
$$\frac{\partial^2 z}{\partial x^2} = y^2 e^{xy}; \quad \frac{\partial^2 z}{\partial x \partial y} = e^{xy} (1 + xy); \quad \frac{\partial^2 z}{\partial y^2} = x^2 e^{xy}.$$

$$\mathbf{r)} \ \frac{\partial^2 z}{\partial x^2} = 2 \cdot \frac{3x^2 - y^2}{\left(x^2 + y^2\right)^3}; \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{8xy}{\left(x^2 + y^2\right)^4}; \quad \frac{\partial^2 z}{\partial y^2} = 2 \cdot \frac{3y^2 - x^2}{\left(x^2 + y^2\right)^3}.$$

$$\mathbf{\pi}$$
) $\frac{\partial^2 z}{\partial x^2} = -y \cos xy; \quad \frac{\partial^2 z}{\partial x \partial y} = -x \cos xy.$

$$\frac{\partial^2 z}{\partial y^2} = -x \frac{xy \cos xy - \sin xy}{y^2} + \frac{xy \sin xy + 2 \cos xy}{y^3}.$$

e)
$$\frac{\partial^2 z}{\partial x^2} = \frac{8}{(2x-3y)^2}$$
; $\frac{\partial^2 z}{\partial x \partial y} = \frac{-12}{(2x-3y)^2}$; $\frac{\partial^2 z}{\partial y^2} = \frac{18}{(2x-3y)^2}$.

9.4. a)
$$d^2z = 4dx^2 - 4dxdy + 6dy^2$$
).

6)
$$d^2z = -\frac{1}{v^2}dxdy + \frac{2x}{v^3}dy^2$$
.

B)
$$d^2z = \frac{4xy(x^2 - 3y^2)}{(x^2 + y^2)^3}dx^2 + 2 \cdot \frac{6x^2y^2 - x^4 - 4y^4}{(x^2 + y^2)^3}dxdy + \frac{4xy(y^2 - 3x^2)}{(x^2 + y^2)^3}dy^2.$$

$$\text{r) } d^2z = \sin^2 y e^{x \sin y} dx^2 + e^{x \sin y} \cos y (1 + x \sin y) dx dy + x e^{x \sin y} (x \cos^2 y - \sin y) dy^2.$$

$$\mathbf{A}) \ d^2z = -2 \cdot \frac{x^2 + y^2}{\left(x^2 - y^2\right)^2} dx^2 + \frac{4xy}{\left(x^2 - y^2\right)^2} dx dy - 2 \cdot \frac{x^2 + y^2}{\left(x^2 - y^2\right)^2} dy^2;$$

e)
$$d^2z = \frac{6}{(x-y)^4} \left(-dx^2 + dxdy + dy^2\right)$$
.

9.5. a)
$$dz = \frac{1}{(x^2 + y^2)^2} ((x^4 + 3x^2y^2 + 2xy^3)dx + (y^4 + 3x^2y^2 - 2x^3y)dy).$$

6)
$$\frac{\partial z}{\partial x} = \frac{y}{x^2 + y^2}$$
. $\frac{\partial z}{\partial y} = \frac{-x}{x^2 + y^2}$.

$$B) dz = \frac{2(dx - \frac{x}{y}dy)}{y\sin\frac{2x}{y}}.$$

r)
$$du = \frac{xdx + 2ydy + zdz}{\sqrt{x^2 + 2y^2 + z^2}}$$
.

$$\mathbf{\pi}) \frac{\partial^2 z}{\partial x^2} = \frac{\ln y (\ln y - 1)}{x^2} e^{\ln x \ln y}, \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{\ln x \ln y + 1}{xy} e^{\ln x \ln y},$$

$$\frac{\partial^2 z}{\partial y^2} = \frac{\ln x (\ln x - 1)}{y^2} e^{\ln x \ln y};$$

e)
$$d^2z = -y^2 \sin xy dx^2 + 2(\cos xy - xy \sin xy) dx dy - x^2 \sin xy dy^2$$
.

Производные сложных функций нескольких переменных. Производная функции, заданной неявно

Аудиторная работа

10.1. Найти указанные производные:

a)
$$z = \arcsin \frac{x}{y}, \ x = u^2 + v^2, \ y = uv; \quad \frac{\partial z}{\partial u} - ? \quad \frac{\partial z}{\partial v} - ?$$

6)
$$z = e^{x-2y}$$
, $x = \sin 2t$, $y = \cos t$; $\frac{dz}{dt} - ?$

B)
$$z = \sqrt{2x^2 - xy + y^2}$$
, $x = 2t^2$, $y = 3t^3$; $\frac{dz}{dt} - ?$

r)
$$z = tx^2 - y^2x + 1$$
, $x = \arctan t$, $y = \ln(1 + t^2)$; $\frac{dz}{dt} - ?$

д)
$$z = x^2 \ln y$$
, $x = \sqrt{t^2 + 1}$, $y = \arcsin t$; $\frac{dz}{dt} - ?$

e)
$$u = \ln(x^2 + y^2 + z^2)$$
; $x = t^3$, $y = t^2$, $z = e^t$; $\frac{du}{dt} - ?$

ж)
$$z = x^{\cos y}$$
; $x = \frac{u}{v}$; $y = uv$; $\frac{\partial z}{\partial u} - ?$ $\frac{\partial z}{\partial v} - ?$

10.2. Найти частные производные от неявно заданных функций:

a)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1; \quad \frac{\partial z}{\partial x} - ? \quad \frac{\partial z}{\partial y} - ?$$

6)
$$\frac{xy}{z} + zxy + \frac{z}{y^2} = 1; \quad \frac{\partial z}{\partial x} - ? \quad \frac{\partial z}{\partial y} - ?$$

B)
$$z + e^{xyz} = x \cos z; \quad \frac{\partial z}{\partial x} - ? \quad \frac{\partial z}{\partial y} - ?$$

r)
$$\ln(x + xyz + y) = e^{z^2}$$
; $\frac{\partial z}{\partial x} - ?$ $\frac{\partial z}{\partial y} - ?$

д)
$$z \operatorname{arctg} xy + \frac{z^2}{1 + x^2 v^2} = 1; \quad \frac{\partial z}{\partial x} - ? \quad \frac{\partial z}{\partial y} - ?$$

e)
$$y \sin(x+2z) + z \cos(x+2y) = e^z$$
; $\frac{\partial z}{\partial x} - ?$ $\frac{\partial z}{\partial y} - ?$

ж)
$$z^{xy} + \cos z = 0;$$
 $\frac{\partial z}{\partial x} - ?$ $\frac{\partial z}{\partial y} - ?$

Домашнее задание

10.3. Найти указанные производные:

a)
$$z = u^2 v^2$$
, $u = x - y$; $v = x + y$; $\frac{\partial z}{\partial x} - ?$ $\frac{\partial z}{\partial v} - ?$

6)
$$z = \sqrt{x^2 + y^2}$$
, $x = \sin 2t$, $y = \ln t$; $\frac{dz}{dt} - ?$

B)
$$z = x \sin y + y \cos x; x = t^2, y = t^3; \frac{dz}{dt} - ?$$

r)
$$x^2y + y^2z + z^2x = 1$$
; $\frac{\partial z}{\partial x} - ?$ $\frac{\partial z}{\partial y} - ?$

д)
$$ze^{xy} + zxy^2 = a^2$$
; $\frac{\partial z}{\partial x} - ?$ $\frac{\partial z}{\partial y} - ?$

e)
$$xy \ln z + xz \ln y + yz \ln x = 1$$
; $\frac{\partial z}{\partial x} - ?$ $\frac{\partial z}{\partial y} - ?$

Ответы

10.1. a)
$$\frac{\partial z}{\partial u} = \frac{1}{\sqrt{y^2 - x^2}} \cdot \left(2u - \frac{x}{y}v \right); \quad \frac{\partial z}{\partial v} = \frac{1}{\sqrt{y^2 - x^2}} \left(2v - \frac{x}{y}u \right).$$

6)
$$\frac{dz}{dt} = e^{x-2y} (2\cos 2t + 2\sin t).$$

B)
$$\frac{dz}{dt} = \frac{1}{2\sqrt{2x^2 - xy + y^2}} \cdot (4(2x - y)t + 9(2y - x)t^2).$$

$$\Gamma) \frac{dz}{dt} = x^2 + \frac{(2tx - y^2)}{1 + t^2} - \frac{4xyt}{1 + t^2}.$$

$$\pi \int \frac{dz}{dt} = \frac{2xt \ln y}{\sqrt{t^2 + 1}} + \frac{x^2}{v\sqrt{1 - t^2}}.$$

e)
$$\frac{du}{dt} = \frac{2}{x^2 + v^2 + z^2} (3xt^2 + 2ty + ze^t).$$

ж)
$$\frac{\partial z}{\partial u} = \cos y \cdot x^{\cos y - 1} \cdot \frac{1}{v} - x^{\cos y} \ln x \cdot \sin(yv);$$
$$\frac{\partial z}{\partial v} = \frac{-u \cos y \cdot x^{\cos y - 1}}{v^2} - \sin \ln x^{\cos y} u.$$

10.2. a)
$$\frac{\partial z}{\partial x} = -\frac{c^2 x}{a^2 z}$$
; $\frac{\partial z}{\partial y} = -\frac{c^2 y}{b^2 z}$.

6)
$$\frac{\partial z}{\partial y} = -\frac{z(xy^3 + xy^3z^2 - 2z^2)}{y(-xy^3 + xy^3z^2 + z^3)}$$
.

B)
$$\frac{\partial z}{\partial x} = -\frac{yze^{xyz} - \cos z}{1 + xve^{xyz} + x\sin z}; \quad \frac{\partial z}{\partial y} = -\frac{xze^{xyz}}{1 + xve^{xyz} + x\sin z}.$$

$$\Gamma \frac{\partial z}{\partial x} = -\frac{1+yz}{xy-2z(x+xyz+y)e^{z^2}}; \quad \frac{\partial z}{\partial y} = -\frac{1+xz}{xy-2z(x+xyz+y)e^{z^2}}.$$

$$\Pi \frac{\partial z}{\partial x} = -\frac{zy(1+x^2y^2) - 2xy^2z^2}{(2z+(1+x^2y^2) \cdot \operatorname{arctg} xy)(1+x^2y^2)};$$

$$\frac{\partial z}{\partial y} = -\frac{zx(1+x^2y^2) - 2x^2yz^2}{(2z+(1+x^2y^2) \cdot \operatorname{arctg} xy)(1+x^2y^2)}.$$

e)
$$\frac{\partial z}{\partial x} = -\frac{y\cos(x+2z) - z\sin(x+2y)}{2\cos(x+2z) + \cos(x+2y) - e^z};$$
$$\frac{\partial z}{\partial y} = -\frac{\sin(x+2z) - 2z\sin(x+2y)}{2\cos(x+2z) + \cos(x+2y) - e^z}.$$

ж)
$$\frac{\partial z}{\partial x} = -\frac{z^{xy}y\ln z}{xyz^{xy-1} - \sin z}; \quad \frac{\partial z}{\partial y} = -\frac{x^{xy}x\ln z}{xyz^{xy-1} - \sin z}.$$

10.3. a)
$$\frac{\partial z}{\partial x} = 2uv^2 + 2vu^2; \frac{\partial z}{\partial v} = -2uv^2 + 2vu^2.$$

6)
$$\frac{dz}{dt} = \frac{1}{\sqrt{x^2 + y^2}} (2x\cos 2t + y/t)$$
.

$$\mathbf{B)} \frac{dz}{dt} = (\sin y - y \sin x)2t + 3(x \cos y + \cos x)t^2.$$

$$\Gamma) \frac{\partial z}{\partial y} = -\frac{x^2 + 2yz}{y^2 + 2zx}; \frac{\partial z}{\partial x} = -\frac{2xy + z^2}{y^2 + 2zx}.$$

д)
$$\frac{\partial z}{\partial x} = -\frac{yze^{xy} + zy^2}{e^{xy} + xy^2}; \frac{\partial z}{\partial y} = -\frac{xze^{xy} + 2xyz}{e^{xy} + xy^2}.$$

e)
$$\frac{\partial z}{\partial x} = -\frac{y \ln z + z \ln y + yz/x}{x \ln y + y \ln x + xy/z}$$
; $\frac{\partial z}{\partial y} = -\frac{x \ln z + z \ln x + xz/y}{x \ln y + y \ln x + xy/z}$.

Касательная плоскость и нормаль к поверхности. Производная по направлению. Градиент

Аудиторная работа

11.1. Написать уравнение касательной плоскости и нормали к поверхности в точке $M(x_0, y_0, z_0)$:

a)
$$z = \arctan \frac{x+1}{y}$$
, $M(0; 1; \frac{\pi}{4})$.

6)
$$2x^2 + 3y^2 + 2xz^2 - zx = 15$$
, $M(1; 2; 1)$.

B)
$$z = \sqrt{x^2 + y^2} - xy$$
, $M(3; 4; -7)$.

$$\Gamma$$
) $x^3 + y^3 + z^3 + xyz - 6 = 0$, $M(1; 2; -1)$.

- **11.2.** Найти производную функции $z = x^3 + 3x^2y + xy^2 + 3$ в точке M(1; 2) в направлении, идущем от этой точки к точке N(4; 5).
- **11.3.** Найти производную функции $z = xy\sqrt{x^2 + y^2}$ в точке M(3;4) в направлении, составляющем с осью Ox угол 60° .
- **11.4.** Найти производную $z = \arctan \frac{y}{x}$ в точке $M(1/2; \sqrt{3}/2)$, принадлежащей окружности $x^2 + y^2 2x = 0$, по направлению этой окружности.
- **11.5.** Доказать, что производная функции $z = \frac{y^2}{x}$ в любой точке эллипса $2x^2 + y^2 = 1$ по направлению нормали к эллипсу равна нулю.
 - 11.6. Найти градиент функции в указанной точке:

a)
$$z = \sqrt{4 + x^2 + y^2}$$
, $M(2; 1)$.

6)
$$x^2 + y^2 + z^2 - xyz = 5$$
, $M(1; 0; 2)$.

- **11.7.** Каково направление наибольшего изменения функции $u = x \sin z y \cos z$ в начале координат?
- **11.8.** Даны две функции $z = \ln(x^2 + y^2 1)$ и $z = x^2 + y^2 3xy$. Найти угол между градиентами этих функций в точке M(1;1).

Домашнее задание

- **11.9.** Написать уравнение касательной плоскости и нормали к поверхности в точке $M(x_0, y_0, z_0)$:
 - a) $z = 4 + x^2 + 2y^2$, M(1; 0; 5).
 - 6) $z = x \ln y + y \ln x$, M(e; e; 2e).
 - B) $x^2 + 2y^2 + 3z^2 = 6$, M(1; 1; 1).
- **11.10.** Дана функция $z = \arcsin \frac{x}{x+y}$. Найти угол между градиентами этой функции в точках $M_1(1;1)$ и $M_2(3;4)$.

- 11.11. Найти точки, в которых модуль градиента функции $z = (x^2 + v^2)^{3/2}$ pasen 2.
- **11.12.** Найти производную функции $z = \ln(x + y)$ в точке (1; 2), принадлежащей параболе $y^2 = 4x$, по направлению этой параболы.

Ответы

11.1. a)
$$x - y - 2z = -1 - \frac{\pi}{2}$$
; $\frac{x}{1} = \frac{y - 1}{-1} = \frac{z - \frac{\pi}{4}}{-2}$.

6)
$$5x + 12y + 3z - 32 = 0$$
; $\frac{x-1}{5} = \frac{y-2}{12} = \frac{z-1}{3}$.

B)
$$17x + 11y + 5z = 60;$$
 $\frac{x-3}{17} = \frac{y-4}{11} = \frac{z+7}{5}.$

r)
$$x+11y+5z-18=0$$
; $\frac{x-1}{1}=\frac{y-2}{11}=\frac{z+1}{5}$.

11.2.
$$13\sqrt{3}$$
.

11.3.
$$13,6+12,3\sqrt{3}$$
. **11.4.** $\frac{1}{2}$.

11.6. a)
$$\frac{1}{3} (2\vec{i} + \vec{j})$$
 6) $-\frac{1}{2} (\vec{i} + \vec{j})$.

$$\mathbf{6)} \ -\frac{1}{2} \left(\vec{i} + \vec{j} \right).$$

11.7. Отрицательная полуось у. 11.8. π .

11.9. a)
$$z - 2x - 3 = 0$$
;
$$\begin{cases} 2z + x - 9 = 0 \\ y = 0 \end{cases}$$
.

6)
$$z - 2x - 2y + 2e = 0$$
; $\frac{x - e}{2} = \frac{y - e}{2} = \frac{z - 2e}{-1}$.

B)
$$x + 2y + 3z - 6 = 0$$
; $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{3}$.

11.10. $\cos \alpha \approx 0.99; \alpha \approx 8^{\circ}$.

11.11. точки на окружности $x^2 + y^2 = 2/3$. 11.12. $\sqrt{2}/3$.

Экстремум функции нескольких переменных. Наибольшее и наименьшее значения функции нескольких переменных в замкнутой области. Условный экстремум

Аудиторная работа

12.1. Исследовать на экстремум следующие функции:

a)
$$z = x^3 + 3xy^2 - 15x - 12y$$
.

6)
$$z = x^2 + xy + y^2 - 2x - y$$
.

B)
$$z = x^3 + y^2 - 3x + 2y$$
.

$$r) z = x\sqrt{y} - x^2 - y + 6x + 3$$
.

12.2. Найти наибольшее и наименьшее значения функции z = f(x, y) в замкнутой области, ограниченной линиями:

a)
$$z = x^2 - 2y^2 + 4xy - 6x + 5$$
; $x = 0$; $y = 0$; $x + y = 3$.

6)
$$z = x^2 + 2xy - 4x + 8y$$
; $x = 0$; $y = 0$; $x = 1$; $y = 2$.

B)
$$z = e^{-x^2 - y^2} (2x^2 + 3y^2); x^2 + y^2 = 4.$$

$$\mathbf{r}$$
) $z = x^2 - y^2$; $x^2 + y^2 = 4$.

12.3. Исследовать функции на экстремум при заданном условии:

a)
$$z = x + 2y$$
 при условии $x^2 + y^2 = 5$.

б)
$$z = \frac{1}{x} + \frac{1}{y}$$
 при условии $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$.

в)
$$z = \frac{1}{x} + \frac{1}{y}$$
 при условии $x + y = 2$.

г)
$$z = \frac{x - y - 4}{\sqrt{2}}$$
 при условии $x^2 + y^2 = 1$.

Домашнее задание

12.4. Исследовать на экстремум

a)
$$z = 2x^3 - xy^2 + 5x^2 + y^2$$
;

6)
$$z = x^2 + xy + y^2 - 3x - 6y$$
.

12.5. Найти наибольшее и наименьшее значения функции в области:

a)
$$z = x^2 y(4 - x - y)$$
, $x = 0$, $y = 0$, $x + y = 6$;

6)
$$z = x^2 + 2xy - 4x + 8y$$
, $x = 0$, $y = 0$, $x = 1$, $y = 2$.

12.6. Исследовать функцию на условный экстремум

a)
$$z = x^2 + y^2 - xy + x + y - 4$$
 при $x + y + 3 = 0$.

б)
$$z = xy^2$$
 при $x + 2y = 1$.

Ответы

12.1. a)
$$z_{\min} = z(0; 0) = 0$$
; **6)** $z_{\min} = z(0; 3) = -9$.

12.5. a)
$$z_{\text{Hall}} = z(4; 2) = -64$$
, $z_{\text{Hall}} = z(2; 1) = 4$;

6)
$$z_{\text{Haum}} = z(1; 0) = -3$$
, $z_{\text{Hau6}} = z(1; 2) = 17$.

12.6. a)
$$z_{\min} = z(-3/2; -3/2) = -19/4;$$

6)
$$z_{\min} = z(1; 0) = 0$$
, $z_{\max} = z(1/3; 1/3) = 1/27$.

Занятие 13

Интегрирование дифференциальных уравнений первого порядка с разделяющимися переменными и однородных дифференциальных уравнений первого порядка Аудиторная работа

13.1. Решить уравнения:

a)
$$(1-x)dy - ydx = 0$$
.

6)
$$xyy' = 1 - x^2$$
.

B)
$$\sqrt{1-y^2} dx + y\sqrt{1-x^2} dy = 0$$
.

$$\mathbf{r)} \ y' = e^{x+y}.$$

д)
$$xdy - ydx = 0, y(1) = 1.$$

e)
$$y' = y \cos x, y(0) = 1.$$

ж)
$$y' \sin x = y \ln y, y \left(\frac{\pi}{2}\right) = e$$
.

3)
$$y' = (x^2 - x)(1 + y^2)$$
.

u)
$$y' = \frac{y^2}{x^2} - 2$$
.

K)
$$y' = \frac{2xy}{x^2 - y^2}$$
.

л)
$$(y + \sqrt{x^2 + y^2})dx - xdy = 0$$
, $y(1) = 0$.

M)
$$xy' = x + \frac{1}{2}y$$
, $y(1) = 0$.

H)
$$(y-x)dx - (y+x)dy = 0$$
.

o)
$$xy' = y(\ln y - \ln x)$$
.

$$\mathbf{n}) \ y' = \frac{y^2 - 2xy - x^2}{y^2 + 2xy - x^2}, \ y(1) = -1.$$

Домашнее задание

13.2. Решить уравнения:

a)
$$v'\sqrt{1-x^2} = 1 + v^2$$
.

a)
$$y'\sqrt{1-x^2} = 1 + y^2$$
. **6)** $ye^{2x}dx - (1+e^{2x})dy = 0$.

$$\mathbf{B)} \ y' = \cos(x+y) \ .$$

B)
$$y' = \cos(x + y)$$
. Γ) $(xy^2 + x)dy + (x^2y - y)dx = 0, y(1) = 1$.

д)
$$y' \operatorname{tg} x = y, y \left(\frac{\pi}{2} \right) = 1.$$
 e) $y' = \frac{y}{x} + \frac{x}{y}.$

e)
$$y' = \frac{y}{x} + \frac{x}{y}$$
.

ж)
$$(\sqrt{xy} - x)dy + ydx = 0$$
, $y(1) = 1$. **3)** $y' = \frac{y}{x} + e^{-\frac{y}{x}}$, $y(1) = 0$.

Ответы

13.1. a)
$$y = \frac{c}{1-x}$$
.

6)
$$x^2 + y^2 = 2 \ln cx$$
.

B)
$$1 + y^2 = c(1 - x^2)$$
.

$$\mathbf{r)} \ e^{x} + e^{-y} + c = 0.$$

$$\mathbf{J}$$
) $y = x$.

e)
$$y = e^{\sin x}$$
.

ж)
$$y = e^{\operatorname{tg} \frac{x}{2}}$$

3)
$$y = tg \left(\frac{x^3}{3} - \frac{x^2}{2} + c \right)$$
.

u)
$$y = \frac{x(2+cx^3)}{1-cx^3}$$
.

$$\mathbf{K}) \ x^2 + y^2 = cy.$$

л)
$$y = \sqrt{x^2 + y^2}$$
.

M)
$$4x = (2x - y)^2$$
.

$$\mathbf{H)} \, \ln c \sqrt{x^2 + y^2} = \operatorname{arctg} \frac{y}{x}.$$

13.2. a)
$$\arctan y - \arcsin x = C$$
.

6)
$$y = C\sqrt{1 + e^{2x}}$$
.

$$\mathbf{B)} \quad \mathsf{tg} \frac{x+y}{2} - x = C \, .$$

$$\Gamma$$
) $\frac{1}{2}(x^2 + y^2) + \ln \left| \frac{y}{x} \right| = 1$.

$$\mathbf{J}(\mathbf{J}) \quad y = \sin x.$$

e)
$$y = \pm x\sqrt{2 \ln |x| + C}$$
.

ж)
$$\ln |y| + 2\sqrt{\frac{x}{y}} = 2$$
.

3)
$$y = x \ln(1 + \ln x)$$
.

Занятие 14

Интегрирование линейных дифференциальных уравнений и уравнений Бернулли. Уравнения в полных дифференциалах

Аудиторная работа

14.1. Решить дифференциальные уравнения:

a)
$$y' + 2xy = xe^{-x^2}$$
.

6)
$$y' + \frac{y}{x} = 2 \ln x + 1$$
.

B)
$$y' + y \log x = \frac{1}{\cos x}$$
, $y(0) = 0$. $y' + \frac{1 - 2x}{x^2}y = 1$.

д)
$$y' = 2y + e^x - x$$
, $y(0) = \frac{1}{4}$. **e)** $y' + \frac{3y}{x} = \frac{2}{x^3}$, $y(1) = 1$.

ж)
$$y' = y \operatorname{ctg} x + \frac{y^3}{\sin x}$$
. 3) $y' + 4xy = 2xe^{-x^2} \sqrt{y}$.

H)
$$xy' - 4y = x^2 \sqrt{y}$$
. **K)** $y' + 2xy = 2x^3 y^3$.

л)
$$y' - y = xy^2$$
, $y(0) = 1$.
м) $(2x + y)dx + (x + 2y)dy = 0$.

H)
$$e^y dx + (xe^y - 2y)dy = 0$$
. **o)** $\frac{y}{x} dx + (y^3 + \ln x)dy = 0$.

$$\mathbf{n}$$
) $2x\cos^2 y dx + (2y - x^2 \sin 2y) dy = 0$.

p)
$$\frac{xdy}{x^2 + y^2} = \left(\frac{y}{x^2 + y^2} - 1\right) dx$$
.

c)
$$(x^2 + y^2 + y)dx + (2xy + x + e^y)dy = 0$$
; $y(0) = 0$.

Домашнее задание

14.2. Решить дифференциальные уравнения:

a)
$$(1+x^2)y'-2xy=(1+x^2)^2$$
. **6)** $y'-\frac{2y}{x}=x^3$.

B)
$$y' - \frac{y}{x \ln x} = x \ln x$$
, $y(e) = \frac{1}{2}e^2$. **r)** $4xy' + 3y = -e^x x^4 y^5$.

д)
$$y' + y = \frac{1}{2}e^x \sqrt{y}$$
; $y(0) = \frac{9}{4}$. **e)** $y' - \frac{y}{\sqrt{x}} = e^{2\sqrt{x}}y^2$.

ж)
$$ye^x dx + (y + e^x) dy = 0$$
. 3) $e^{-y} dx - (xe^{-y} + 2y) dy = 0$, $y(5) = 0$.

Ответы

14.1. a)
$$y = e^{-x^2} \left(c + \frac{x^2}{2} \right)$$

$$\mathbf{6)} \ \ y = x \ln x + \frac{c}{x}.$$

$$\mathbf{B}) \ \ y = \sin x.$$

$$\mathbf{r}$$
) $y = cx^2 e^{\frac{1}{x}} + \frac{1}{x^2}$.

д)
$$y = -e^x + \frac{1}{2}x + \frac{1}{4} + e^{2x}$$
.

e)
$$y = \frac{2}{x^2} - \frac{1}{x^3}$$
.

$$\mathbf{x}) \ \ y = \frac{\sin x}{\sqrt{2\cos x + c}}.$$

3)
$$y^2 = e^{-2x^2} \left(c + \frac{1}{2} x^2 \right)^2$$
.

H)
$$y = x^4 \left(\frac{1}{2} \ln |x| + c \right)^2$$
.

$$\kappa) \frac{1}{v^2} = x^2 + \frac{1}{2} + ce^{2x^2}.$$

л)
$$y = \frac{1}{1-x}$$
.

M)
$$x^2 + xy + y^2 = c$$
.

H)
$$xe^y - y^2 = c$$
.

o)
$$y \ln x + \frac{1}{4v^4} = c$$
.

n)
$$x^2 \cos y + y^2 = c$$
.

p)
$$\arctan \frac{x}{v} - x = c$$
.

c)
$$\frac{1}{2}x^3 + xy^2 + xy + e^y = 1$$
.

14.2.a)
$$(1+x^2)(x+C)=y$$
.

6)
$$y = \frac{1}{6}x^4 + \frac{C}{r^2}$$
.

B)
$$y = \frac{1}{2}x^2 \ln x$$
.

$$\mathbf{r}$$
) $y^{-4} = (e^x + C)x^3$.

д)
$$y = e^{-x} \left(\frac{1}{2} e^x + 1 \right)^2$$
.

e)
$$y = e^{2\sqrt{x}} \left(\frac{1}{2} e^{\sqrt{2x}} \sqrt{x} - \frac{1}{8} e^{2\sqrt{x}} + C \right)$$
. **ж)** $ye^x + \frac{1}{2} y^2 = C$.

ж)
$$ye^x + \frac{1}{2}y^2 = C$$
.

3)
$$xe^{-y} + y^2 = 5$$
.

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Аудиторная работа

15.1. Решить дифференциальные уравнения, допускающие понижение порядка:

a)
$$y'' = \ln x + x$$
.

6)
$$y''' = x\sqrt{x}$$
.

B)
$$y'' = \operatorname{arctg} x$$
.

r)
$$xy'' + y' = 0$$
.

д)
$$2xy'y'' = (y')^2 - 1$$
.

e)
$$xy'' = y' \ln \frac{y'}{x}$$
.

ж)
$$y'' \operatorname{tg} y = 2(y')^2$$
.

3)
$$yy'' = (y')^2$$
.

u)
$$2yy'' - 3(y')^2 = 4y^2$$
, $y(0) = 1$, $y'(0) = 0$.

Домашнее задание

15.2. Проинтегрировать уравнения:

a)
$$y''' = xe^{-x}$$
.

6)
$$y''' = \sqrt{x-2}$$
.

B)
$$xy'' + \text{ctg } y' = 0$$

B)
$$xy'' + \text{ctg } y' = 0$$
. **r)** $xy'' + y' = -x + 2$.

д)
$$y^3y''=1$$
.

e)
$$yy'' = y'(y'+1)$$
.

Ответы

15.1. a)
$$y = \frac{1}{2}x^2 \ln x - \frac{3}{4}x^2 + \frac{x^3}{6} + C_1x + C_2.$$

6)
$$y = \frac{8}{315}x^4\sqrt{x} + C_1x^2 + C_2x + C_3$$
.

B)
$$y = \frac{1}{2}(x^2 - 1)\arctan(1 + x^2) + \frac{1}{2}x + C_1x + C_2$$
.

$$\mathbf{r}$$
) $y = C_1 \ln |x| + C_2$.

д)
$$9C_1^2(y+C_2)^2=4(C_1x+1)^3$$
.

e)
$$y = (C_1 x - C_1^2) e^{\frac{x}{C_1} + 1} + C_2$$
. **ж)** $C_1 x + C_2 + C \operatorname{tg} y = 0$.

K)
$$C_1 x + C_2 + C \operatorname{tg} y = 0.$$

3)
$$y = C_2 e^{C_1 x}$$
, $y = C$.

e)
$$y = \frac{1}{\cos^2 x}$$
.

K)
$$y = -(x+3)e^{-x} + C_1x^2 + C_2x + C_3$$
.

л)
$$y = \frac{8}{125}(x-2)^{7/2} + C_1x^2 + C_2x + C_3$$
.

M)
$$y = x \arccos C_1 x + \frac{1}{C_1} \sqrt{1 - C_1^2 x^2} + C_2$$
.

H)
$$y = 2x - \frac{x^2}{4} + C_1 \ln x + C_2$$
.

o)
$$C_1 y^2 - 1 = (C_1 x + C_2)^2$$
.

n)
$$C_1y-1=C_2e^{C_1x}$$
, $y=C_1-x$.

Решение линейных однородных дифференциальных уравнений с постоянными коэффициентами. Метод Лагранжа

Аудиторная работа

16.1. Решить дифференциальные уравнения:

a)
$$y'' + 4y' - 5y = 0$$
.

6)
$$y'' + 4y' = 0$$
.

B)
$$4y'' - 4y' + y = 0$$
.

$$\mathbf{r)} \ y'' - 6y' + 9y = 0.$$

д)
$$y^{(V)} + 3y^{(IV)} + 3y''' + y'' = 0$$
.

e)
$$y^{(V)} - y''' = 0$$
.

ж)
$$y^{IV} + 5y'' + 4y = 0$$
.

3)
$$y^{IV} + 2y^{II} + y = 0$$
.

и)
$$y'' + 6y' + 9y = 0$$
, $y'(0) = y(0) = 1$.

K)
$$y'' - 2y' + 2y = 0$$
, $y(0) = 1$, $y(0) = 1$.

16.2. Решить дифференциальные уравнения методом Лагранжа:

a)
$$y'' - y = \frac{e^x}{e^x + 1}$$
.

6)
$$y'' + 4y = \frac{1}{\cos 2x}$$
.

B)
$$y'' + y = \frac{1}{\sin x}$$
.

$$\mathbf{r)} \ y'' + 3y' + 2y = \frac{1}{1 + e^x}.$$

д)
$$y'' + 2y' + y = \frac{e^x}{\sqrt{4 - x^2}}$$
.

Домашнее задание

16.3. Решить уравнения:

a)
$$y'' + 3y' - 4y = 0$$
.

6)
$$y'' - 2y' + y = 0$$
.

B)
$$y'' + 4y' + 5y = 0$$
.

$$\mathbf{r)} \ \ y^{IV} - 3y'' - 4y = 0 \ .$$

д)
$$y'' + 4y = \frac{1}{\sin^2 x}$$
.

e)
$$y'' + 2y' + y = \frac{e^{-x}}{x}$$
.

Ответы

16.1. a)
$$y = C_1 e^x + C_2 e^{-5x}$$
.

6)
$$y = C_1 + C_2 e^{-4x}$$
.

B)
$$y = e^{\frac{1}{2}x} (C_1 + C_2 x).$$

$$\mathbf{r)} \ \ y = e^{3x} (C_1 + C_2 x).$$

д)
$$y = C_1 + C_2 x + e^{-x} (C_3 + C_4 x + C_5 x^2).$$

e)
$$y = C_1 + C_2 x + C_3 x^2 + C_4 e^x + C_5 e^{-x}$$
.

ж)
$$y = C_1 \cos x + C_2 \sin x + C_3 \cos 2x + C_4 \sin 2x$$
.

3)
$$y = C_1 \cos x + C_2 \sin x + x(C_3 \cos x + C_4 \sin x)$$
.

$$y = e^{-3x}(1+4x).$$

$$\kappa$$
) $y = e^{x} \sin x$.

16.2. a)
$$y = C_1 e^x + C_2 e^{-x} + \frac{1}{2} \left(x - \ln(e^x + 1)e^x + \frac{1}{2} - \frac{1}{2}e^{-x} \ln(e^x + 1) \right)$$

6)
$$y = \frac{x}{2}\sin 2x + \frac{\cos 2x}{4}\ln|\cos 2x| + C_1\sin 2x + C_2\cos 2x$$
.

B)
$$y = (C_1 + \ln|\sin x|)\sin x + (C_2 - x)\cos x.$$

$$\mathbf{r}) \ \ y = C_1 e^{-x} + C_2 e^{-2x} + \left(e^{-x} + e^{-2x} \right) \ln \left(e^x + 1 \right).$$

д)
$$y = e^{-x} \left(C_1 + C_2 x + \sqrt{4 - x^2} + x \arcsin \frac{x}{2} \right).$$

16.3. a)
$$y = C_1 e^x + C_2 e^{-4x}$$
;

6)
$$y = e^x (C_1 + C_2 x)$$
.

B)
$$y = e^{-2x} (C_1 \cos x + C_2 \sin x)$$
.

r)
$$y = C_1 e^{-2x} + C_2 e^{2x} + C_3 \sin x + C_4 \cos x$$
.

д)
$$y = (C_1 - \ln|\sin x|)\cos 2x + (C_2 - x - \frac{1}{2}\operatorname{ctg} x)\sin 2x$$
.

e)
$$y = (C_1 + C_2 x)e^{-x} + xe^{-x} \ln |x|$$
.

Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами с правой частью специального вида

Аудиторная работа

17.1. Решить дифференциальные уравнения:

a)
$$y'' + 4y = 2x^2 + 3x + 1$$
.

6)
$$y'' + 2y' + y = 8e^{-x}$$
.

B)
$$y'' - 4y' + 3y = (2x + 3)e^{2x}$$
. Γ) $y'' + 3y' - 4y = 5\sin x$.

$$\mathbf{r)} \ \ y'' + 3y' - 4y = 5\sin x$$

д)
$$y'' + 6y' + 10y = x^2 + 4e^x$$
.

e)
$$y'' + y = 2 + \cos 2x$$
.

ж)
$$y'' + 3y' = 1 + \sin 3x + 4e^{2x}$$
. 3) $y'' - 4y = 2\sin x + \cos 2x$.

3)
$$y'' - 4y = 2\sin x + \cos 2x$$
.

u)
$$y'' - 4y' = 3x + 1$$
, $y(0) = 1$, $y'(0) = 2$.

K)
$$y'' + 9y' = 3\cos 3x$$
, $y(0) = 0$, $y'(0) = 1$.

Домашнее задание

17.2. Решить дифференциальные уравнения:

a)
$$y'' + y' = 2x - 1$$
.

6)
$$y'' - 3y' + 2y = (34 - 12x)e^{-x}$$
.

B)
$$y'' - 2y' + y = -12\cos 2x - 9\sin 2x$$
, $y(0) = -2$, $y'(0) = 0$.

r)
$$y'' + 16y = 32e^{4x}$$
, $y(0) = 2$, $y'(0) = 0$.

д)
$$y'' - 4y = e^{2x}$$
, $y(0) = 1$, $y'(0) = -8$.

Ответы

17.1. a)
$$y = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{2}x^3 + \frac{3}{4}x$$
.

6)
$$y = C_1 e^{-x} + C_2 x e^{-x} + 4x^2 e^{-x}$$
.

B)
$$y = C_1 e^x + C_2 e^{3x} + (2x+3)e^{2x}$$
.

$$\Gamma$$
) $y = C_1 e^{-4x} + C_2 e^x - \frac{15}{34} \sin x$.

д)
$$y = C_1 e^{-3x} \cos x + C_2 e^{-3x} \sin x + \frac{\left(221 - 510x + 425x^2 + 1000e^x\right)}{4250}$$
.

e)
$$y = C_1 \cos x + C_2 \sin x + \frac{1}{6} (9 \cos^2 x + \cos x \cos 3x + 15 \sin^2 x + \sin x \sin 3x)$$
.

ж)
$$y = C_1 e^{-3x} + C_2 + \frac{x}{3} + \frac{2}{5} e^{2x} - \frac{1}{18} (\cos 3x + \sin 3x).$$

3)
$$y = C_1 e^{2x} + C_2 e^{-2x} - \frac{1}{40} (5\cos 2x + 16\sin 2x).$$

u)
$$y = \frac{1}{64} (25 + 39e^{4x} - 28x - 24x^2)$$
.

$$\mathbf{K}) \ \ y = -\frac{1}{90}e^{-9x} \Big(7 - 10e^{9x} + 3e^{9x}\cos 3x - 9e^{9x}\sin 3x \Big).$$

17.2. a)
$$y = C_1 + C_2 e^{-x} + x^2 - 3x$$
.

6)
$$y = C_1 e^x + C_2 e^{2x} + (4 - 2x)e^{-x}$$
.

B)
$$y = -2e^{-x} - 4xe^{-x} + 3\sin 2x$$
.

$$y = \cos 4x - \sin 4x + e^{4x}$$
.

д)
$$y = 3e^{-2x} - 2e^{2x} + 2xe^{2x}$$
.

Решение систем дифференциальных уравнений. Метод исключения

Аудиторная работа

18.1. Решить системы дифференциальных уравнений:

a)
$$\begin{cases} \frac{dx}{dt} = \frac{y}{t}, \\ \frac{dy}{dt} = \frac{y(x+2y-1)}{t(x-1)}. \end{cases}$$

$$\mathbf{6}\mathbf{)} \begin{cases} \frac{dx}{dt} = 2y - 5x + e^t, \\ \frac{dy}{dt} = x - 6y + e^{-2t}. \end{cases}$$

B)
$$\begin{cases} xy' = y, \\ xzz' + x^2 + y^2 = 0. \end{cases}$$

r)
$$\begin{cases} x' = y & x(0) = 0, \\ y' = -x + 1 & y(0) = 1, 5. \end{cases}$$

д)
$$\begin{cases} x' = x + y, \\ y' = x - y. \end{cases}$$

e)
$$\begin{cases} x' = 2x + y + \cos t, \\ y' = -x + 2\sin t. \end{cases}$$

ж)
$$\begin{cases} x' = 2x + y, \\ y' = 3x + 4y. \end{cases}$$

3)
$$\begin{cases} x' = \frac{1}{y}, \\ y' = \frac{1}{x}. \end{cases}$$

Домашнее задание

18.2. Решить системы дифференциальных уравнений:

$$\mathbf{a)} \begin{cases} y' = \frac{z-1}{z} \\ z' = \frac{1}{y-x} \end{cases}.$$

$$\begin{cases} x' = \frac{y^2}{x} \\ y' = \frac{x^2}{y} \end{cases}.$$

B)
$$\begin{cases} \dot{x} = 3x - 2y & x(0) = 1 \\ \dot{y} = 4x + 7y & y(0) = 0 \end{cases}$$

$$\Gamma) \begin{cases} \dot{x} = x - 4y \\ \dot{y} = x - 3y \end{cases}.$$

Ответы

18.1. a)
$$x = \frac{C_1 t + C_2 - 1}{C_1 t + C_2}, \quad y = \frac{C_1 t}{(C_1 t + C_2)^2}.$$

6)
$$x = C_1 e^{-4t} + C_2 e^{-7t} + \frac{1}{5} e^{-2t} + \frac{7}{40} e^t$$
,

$$y = \frac{1}{2}C_1e^{-4t} - C_2e^{-7t} + \frac{3}{10}e^{-2t} + \frac{1}{40}e^t$$
.

B)
$$y = C_1 x$$
, $z = \pm \sqrt{C_2 - x^2 (1 + C_1^2)}$.

r)
$$x = 1 - \cos t + 1.5 \sin t$$
, $y = \sin t + 1.5 \cos t$.

д)
$$x = C_1 e^{\sqrt{2}t} + C_2 e^{-\sqrt{2}t}$$
, $y = C_1 (\sqrt{2} - 1) e^{\sqrt{2}t} - C_2 (\sqrt{2} + 1) e^{-\sqrt{2}t}$.

e)
$$x = (C_1 + C_2 t)e^t + \frac{1}{2}\cos t$$
, $y = (C_2(1-t) - C_1)e^t - 2\cos t - \frac{1}{2}\sin t$.

ж)
$$x = C_1 e^t + C_2 e^{5t}$$
, $y = -C_1 e^t + 15C_2 e^{5t}$.

3)
$$C_1 x^2 = 2t + C_2$$
, $y^2 = C_1(2t + C_2)$.

18.2. a)
$$y = x + \frac{1}{C_1 C_2} e^{-C_1 x}, z = C_2 e^{C_1 x}.$$

6)
$$x^2 = C_1 e^{2t} + C_2 e^{-2t}$$
, $y^2 = C_1 e^{2t} - C_2 e^{-2t}$.

B)
$$x = e^{5t} (\cos 2t - \sin 2t), y = 2e^{5t} \sin 2t$$
.

$$\Gamma$$
) $x = (2C_1t + 2C_2 + 1)e^{-t}$, $y = (C_1t + C_2)e^{-t}$.

Типовой расчет № 3

Неопределенный и определенный интегралы

В заданиях:

№ 1-6 – найти неопределенные интегралы;

№ 7 – вычислить определенный интеграл;

№ 8 – вычислить несобственный интеграл или доказать его расходимость.

Вариант 1

1.
$$\int \frac{xdx}{2x+1}$$
.

2.
$$\int (2x-1)\sin^2 x dx$$
. 3. $\int \frac{x dx}{2+\sqrt{x+4}}$.

$$4. \int \sin^3 2x \cos^2 2x \ dx$$

4.
$$\int \sin^3 2x \cos^2 2x \, dx$$
. 5. $\int \frac{x^4 + 2x^2 + 3}{x^3 - 8} dx$. 6. $\int \frac{\arctan 2x}{1 + 4x^2} dx$.

6.
$$\int \frac{\arctan 2x}{1+4x^2} dx$$

7.
$$\int_{0}^{1} \frac{e^{2x} dx}{\sqrt{e^x + 1}}$$
.

8.
$$\int_{0}^{+\infty} \frac{x dx}{4 + x^2}$$
.

9. Вычислить площадь фигуры, ограниченной линиями $\rho = a \cos \phi$, $\rho = 2a\cos\varphi$.

10. Найти длину полукубической параболы $y^2 = \frac{2}{3}(x-1)^2$,

заключенной внутри параболы $y^2 = \frac{x}{3}$.

$$1. \int x^2 e^{x^3} dx.$$

$$2. \int \sqrt[3]{x} \ln x \, dx.$$

$$3. \int \frac{\sin^2 x + x \sin 2x}{x \sin^2 x} dx.$$

$$4. \int \sin^4 \frac{3}{2} x dx.$$

$$5. \int \frac{2x+3}{x(x^2+2x-3)} dx.$$

6.
$$\int \frac{\sqrt[3]{x} + 1}{\sqrt{x} + 1} dx$$
.

$$7. \int_{1}^{e} \frac{dx}{x\sqrt{4 + \ln x}}.$$

8.
$$\int_{0}^{1} \frac{dx}{(x-1)^3}$$
.

- 9. Найти площадь криволинейной трапеции, ограниченной линиями $y=x^2\,,\;\;y=2-x\,.$
 - 10. Найти длину кардиоиды $\rho = 2(1 \sin \varphi)$.

$$1.\int \frac{\sin x dx}{4 + \cos^2 x}.$$

 $2.\int e^x \cos 2x dx.$

$$3. \int \sin^2 x \cos x dx.$$

$$4. \int \frac{dx}{\cos x + 3\sin x}.$$

$$5. \int \frac{(x^2+1) \, dx}{x^3 + 4x^2}.$$

$$6. \int \frac{\sqrt{x} \, dx}{\sqrt{x} + 1}.$$

$$7.\int_{1}^{4} \frac{1+\sqrt{y}}{v^2} dy.$$

$$8. \int_{0}^{+\infty} xe^{-x^2} dx.$$

- 9. Найти площадь фигуры, ограниченной линией $\rho = a(1 \cos \phi)$.
- 10. Найти объем тела, полученного вращением фигуры, ограниченной линиями $y = x^2$, y = 2 x, y = 0, вокруг оси Ox.

Вариант 4

$$1. \int \frac{x^2 dx}{9 - x^3}.$$

 $2. \int \operatorname{arctg} 2x dx.$

$$3. \int \frac{dx}{1 + \sin^2 x}.$$

$$4. \int \frac{2\sqrt{\ln x} \, dx}{x}.$$

$$5. \int \frac{x^3 dx}{(x^2 + 1)(x^2 + 4)}.$$

$$6.\int \frac{xdx}{\sqrt{x}+4}$$
.

$$7. \int_{0}^{\pi/4} \frac{\sin x}{\cos^3 x} dx.$$

$$8. \int_{1}^{e} \frac{dx}{x \ln^2 x}.$$

- 9. Найти площадь фигуры, ограниченной линиями xy = 6, x + y = 7.
- 10. Найти периметр фигуры, ограниченной линиями $y = x^2, \ y = \sqrt{x}$.

$$1. \int \frac{dx}{\sin^2 x \sqrt{1 - \text{ctg}x}}.$$

$$2. \int \ln 4x dx.$$

$$1. \int \frac{dx}{\sin^2 x \sqrt{1 - \text{ctg}x}}.$$

$$2. \int \ln 4x dx.$$

$$3. \int \frac{dx}{\arccos x \sqrt{1 - x^2}}.$$

$$4. \int \frac{6\sin x + \cos x}{1 + \cos x} dx. \qquad 5. \int \frac{x^4 dx}{x^3 + 1}. \qquad 6. \int \frac{x + 1}{\sqrt[3]{x^2 + 2}} dx.$$

$$5. \int \frac{x^4 dx}{x^3 + 1}.$$

$$6. \int \frac{x+1}{\sqrt[3]{x^2}+2} dx$$

$$7. \int_{1}^{e} \frac{\ln x + 4x^{2}}{x} dx. \qquad 8. \int_{0}^{+\infty} \frac{x dx}{(1+x^{2})^{2}}.$$

$$8. \int_{0}^{+\infty} \frac{x dx}{\left(1 + x^2\right)^2}$$

- 9. Найти длину дуги кривой $y = e^x 1$ от точки (0; 0) до точки (1; e-1).
- объем тела, полученного вращением фигуры, 10. Найти ограниченной линиями $y = x^2$, y = 0, x = 2, вокруг оси Oy.

Вариант 6

$$1. \int \frac{\cos^2 x \, dx}{\sin^4 x} \, .$$

 $2. \int x \arccos 2x dx$.

$$3. \int \frac{2 \operatorname{tg} x + 3}{\sin^2 x + 2 \cos^2 x} dx. \qquad 4. \int x \sin(1 - 3x^2) dx.$$

$$5. \int \frac{x^5 + 2x - 1}{x^4 - 1} dx.$$

6. $\int \frac{\sqrt{2x+1} dx}{4+\sqrt{2x+1}}$.

$$7. \int_{0}^{\pi/3} \sin^2 x dx.$$

$$8. \int_{0}^{+\infty} \frac{dx}{x^2 + 1}.$$

9. Вычислить площадь фигуры, ограниченной кривой $x = t - \sin t$, $y = 1 + \cos t$, $0 \le t \le \pi$.

10. Найти объем тела полученного вращением вокруг оси *Оу* фигуры, ограниченной линиями xy = 1, x = 3, y = 3.

Вариант 7

1.
$$\int \frac{1 + \lg x}{\cos^2 x} dx$$
.
2. $\int \frac{2x - 1}{\cos^2 x} dx$.
3. $\int x^2 \sqrt{1 - 3x^3} dx$.
4. $\int \frac{dx}{\cos x - 3\sin x}$.
5. $\int \frac{x^2 + 3x + 1}{x^3 + 2x^2 - 3x} dx$.
6. $\int \frac{\sqrt{x} + 1}{\sqrt[3]{x^2} - \sqrt[3]{x}} dx$.
7. $\int \int \frac{\arctan x}{1 + x^2} dx$.
8. $\int \frac{dx}{x \sqrt{\ln x}}$.

- 9. Вычислить площадь фигуры, ограниченной линией $\, \rho = 2\cos 3\phi \, . \,$
- 10. Вычислить длину кривой $x = \cos^3 t$, $y = \sin^3 t$.

$$1. \int \frac{x^{3} dx}{\sqrt{1 - x^{4}}}.$$

$$2. \int \ln(1 + x^{2}) dx.$$

$$3. \int e^{\sqrt{x}} \frac{dx}{\sqrt{x}}.$$

$$4. \int \frac{dx}{5 + 2\sin x + 3\cos x}.$$

$$5. \int \frac{x^{3} + 2x^{2}}{(x - 1)(x^{2} + 1)} dx.$$

$$6. \int \frac{\sqrt{x + 1} - 1}{\sqrt{x + 1}(\sqrt[3]{x + 1} + 1)} dx.$$

$$7. \int_{0}^{2} \sqrt{4 - x^{2}} dx.$$

$$8. \int_{0}^{3} \frac{dx}{\sqrt{9 - x^{2}}}.$$

- 9. Вычислить длину кривой $y = \ln x$ от точки (1;0) до точки (e;1).
- 10. Найти объем тела, полученного вращением вокруг оси Ox фигуры, ограниченной линиями $x = \cos t, \ y = 3\sin t, \ 0 \le t \le \pi/2$.

$$1.\int \frac{(1+\sqrt{x})^5 dx}{\sqrt{x}}.$$

$$2.\int (2x-1)e^{4x}dx$$
. $3.\int \frac{x^6dx}{10+x^7}$.

$$3. \int \frac{x^6 dx}{10 + x^7}.$$

4.
$$\int \sin^4 2x \cos^2 2x dx$$
. 5. $\int \frac{4-3x}{x^3+8x^2} dx$. 6. $\int \frac{dx}{x\sqrt{x+2}}$.

$$5. \int \frac{4-3x}{x^3+8x^2} dx$$

$$6.\int \frac{dx}{x\sqrt{x+2}}$$

$$7.\int_{4}^{9} \frac{y+1}{\sqrt{y-1}} dx.$$

$$8. \int_{1}^{+\infty} e^{-\sqrt{x}} \frac{dx}{\sqrt{x}}.$$

- 9. Найти площадь фигуры, ограниченной линией $\rho = 2a \sin \varphi$.
- 10. Найти объем тела, полученного вращением вокруг оси Оу фигуры, ограниченной линиями $y^2 = x$, x = 4.

Вариант 10

$$1. \int x^2 \sin x^3 dx.$$

1.
$$\int x^2 \sin x^3 dx$$
. 2. $\int x^2 \sin 3x dx$. 3. $\int (x^2 + 1)e^{x^3 + 3x} dx$.

$$4. \int \frac{\sqrt{\sin x} \, dx}{\sqrt{\cos^5 x}}$$

$$4. \int \frac{\sqrt{\sin x} \, dx}{\sqrt{\cos^5 x}} \, . \qquad 5. \int \frac{x^2 + 1}{x^3 + 2x^2 + 3x} \, dx \, . \qquad 6. \int \frac{\sqrt{x} + \sqrt[3]{x}}{\sqrt{x} + \sqrt[6]{x}} \, dx \, .$$

$$6. \int \frac{\sqrt{x} + \sqrt[3]{x}}{\sqrt{x} + \sqrt[6]{x}} dx$$

$$7. \int_{0}^{\ln 4} \frac{dx}{e^x + 1}.$$

7.
$$\int_{0}^{\ln 4} \frac{dx}{e^x + 1}$$
. 8. $\int_{0}^{1} \frac{\arccos x}{\sqrt{1 - x^2}} dx$.

- 9. Найти длину кривой $\rho = 4 \sin \varphi$.
- 10. Найти площадь фигуры, ограниченную линиями $x = 4\cos t$, $y = 3 \sin t$.

$$1. \int (1 + \operatorname{ctg}^{3} x) \frac{dx}{\sin^{2} x}; \quad 2. \int (x^{2} + 1) \ln x dx; \quad 3. \int \sqrt{9 - x^{2}} dx;$$

$$4.\int \frac{dx}{2\cos x + 3}$$
;

$$5. \int \frac{x^2+4}{x^3+4} dx$$
;

4.
$$\int \frac{dx}{2\cos x + 3}$$
; 5. $\int \frac{x^2 + 4}{x^3 + x} dx$; 6. $\int \frac{\sqrt{2x - 1}}{\sqrt[3]{2x - 1}} + \sqrt[6]{2x - 1}}{\sqrt[3]{2x - 1}}$;

7.
$$\int_{0}^{\pi/2} \cos x 2^{\sin x} dx$$
; 8. $\int_{1}^{2} \frac{x^{3} dx}{\sqrt{16 + x^{4}}}$.

$$8. \int_{1}^{2} \frac{x^3 dx}{\sqrt{16 - x^4}}$$

- 9. Найти площадь фигуры, ограниченной линиями: $x^2 = 16x 4y$, x = 4 + y .
- 10. Найти объем тела, полученного вращением вокруг оси Ох фигуры, ограниченной линиями $x^2 - y^2 = a^2$, x = 2a.

$$1. \int \frac{\cos\sqrt{x}}{\sqrt{x}} dx. \qquad 2. \int \frac{\ln x}{x^4} dx. \qquad 3. \int x^3 e^{4x^4} dx.$$

$$2. \int \frac{\ln x}{x^4} dx .$$

$$3. \int x^3 e^{4x^4} dx$$

$$4. \int tg^4 3x dx.$$

4.
$$\int tg^4 3x dx$$
. 5. $\int \frac{2x+9}{x^4-x^2-12} dx$. 6. $\int \frac{\sqrt[6]{x} dx}{\sqrt{x+\sqrt[3]{x}}}$

$$6. \int \frac{\sqrt[6]{x} \, dx}{\sqrt{x} + \sqrt[3]{x}}$$

$$7.\int_{1}^{e^2} \frac{\ln^2 x}{x} dx.$$

$$7. \int_{1}^{e^{2}} \frac{\ln^{2} x}{x} dx. \qquad 8. \int_{1}^{+\infty} \frac{x^{2} dx}{(x^{3} + 1)^{4}}.$$

- 9. Найти длину кривой $y = \ln \cos x$ от точки (0; 0) до точки $(\frac{\pi}{4}; \ln \frac{\sqrt{2}}{2})$.
 - 10. Найти площадь фигуры, ограниченной одним витком $\rho = 2\phi$.

$$1.\int tg3xdx.$$

$$2. \int (4x-1)\cos^2 2x dx . \qquad 3. \int \frac{\sqrt{1-\sqrt{x}}}{\sqrt{x}} dx .$$

$$3.\int \frac{\sqrt{1-\sqrt{x}}}{\sqrt{x}} dx$$

$$4. \int \frac{dx}{5\sin^2 x - 3\cos^2 x}$$

$$4. \int \frac{dx}{5\sin^2 x - 3\cos^2 x} . \qquad 5. \int \frac{3x + 4}{x^3 + 5x^2 - 6x} dx . \qquad 6. \int \frac{\sqrt{x} dx}{1 - \frac{4}{3}\sqrt{x}} .$$

$$6. \int \frac{\sqrt{x} \, dx}{1 - \sqrt[4]{x}}$$

7.
$$\int_{0}^{\sqrt{3}} x^{3} \sqrt{1+x^{2}} dx$$
. 8. $\int_{1}^{2} \frac{x dx}{(x-1)^{2}}$.

- 9. Найти площадь фигуры, ограниченной линиями: $y^2 = x + 5$, $y^2 = 4 x$.
 - 10. Найти длину кривой $x = e^t \cos t$, $y = e^t \sin t$ $(0 \le t \le 1)$.

1.
$$\int \frac{dx}{x\sqrt{x^2 + 1}}$$
 2. $\int \ln^2 2x dx$ 3. $\int e^x \cos^x dx$ 4. $\int \cot^3 3x dx$ 5. $\int \frac{3x + 8}{x^3 - x} dx$ 6. $\int \frac{6\sqrt{x + 1}}{\sqrt[3]{x + 1} - \sqrt{x + 1}} dx$ 7. $\int \frac{4}{1 + \sqrt{x}} dx$ 8. $\int \frac{\ln^2 x}{x} dx$.

- 9. Найти площадь фигуры, ограниченной линией $\rho = 4 \sin 2\phi$.
- 10. Найти объем тела, полученного вращением вокруг оси *Оу* фигуры, ограниченной линиями $y^2 = 9 x$, x = 0.

1.
$$\int \cos x \sqrt{1 - \sin x} \, dx$$
. 2. $\int \frac{x dx}{\sin^2 2x}$. 3. $\int x 4^{x^2} \, dx$.
4. $\int \frac{dx}{2 + \cos x}$. 5. $\int \frac{2x - 1}{x^4 + 5x^2 + 6} \, dx$. 6. $\int \frac{\sqrt{x^2 - 1}}{x} \, dx$.
7. $\int_{0}^{\pi/3} \sin x \cos^2 x \, dx$. 8. $\int_{1}^{+\infty} \frac{\sin \frac{1}{x^2}}{x^3} \, dx$.

9. Вычислить площадь фигуры, ограниченной линиями $y = \frac{1}{1+x^2}$,

$$y = \frac{x^2}{2}.$$

10. Найти длину кривой $x = 2(\cos t + t \sin t)$, $y = 2(\sin t - t \cos t)$, $0 \le t \le \pi$.

Вариант 16

$$1. \int \frac{\sqrt{1 - 2\ln x}}{x} dx. \qquad 2. \int e^{2x} \sin^2 x \, dx. \qquad 3. \int \frac{2x + 3}{x^2 + x + 2} \, dx.$$

4.
$$\int \sin^4 2x \cos^4 2x \, dx$$
. 5. $\int \frac{3x^2 + 4x - 1}{x^4 + x^2} \, dx$. 6. $\int \frac{\sqrt{x} + \sqrt[3]{x}}{\sqrt{x} + \sqrt[6]{x}} \, dx$.

7.
$$\int_{\pi/6}^{\pi/3} \operatorname{tg}^2 x dx$$
. 8. $\int_{+1}^{4} \frac{x dx}{x^2 - 1}$.

- 9. Найти длину кривой $y^2 = (x-1)^3$ от точки (1;0) до точки $(6;\sqrt{125})$.
- 10. Найти объем тела, полученного вращением вокруг оси Oy фигуры, ограниченной линиями $y = x^2 x$, y = 0.

1.
$$\int 2^{x} \sqrt{1 + 2^{x}} dx$$
; 2. $\int \frac{3x + 5}{\cos^{2} 3x} dx$; 3. $\int \frac{4x - 3}{\sqrt{2 - 2x - x^{2}}} dx$; 4. $\int \frac{\sin 2x dx}{4 \sin^{2} x + \cos^{2} x}$; 5. $\int \frac{x^{4} + x^{2} + 1}{x^{4} - 8x^{2} - 9} dx$; 6. $\int \frac{\sqrt{x} - \sqrt[3]{x}}{\sqrt[3]{x} - \sqrt[6]{x} - 1} dx$; 7. $\int_{0}^{\pi/6} \sin^{3} 2x dx$; 8. $\int_{1}^{2} \frac{x^{2} dx}{x^{3} - 1}$.

- 9. Найти площадь фигуры, ограниченной линиями $y^2 = 9x$, y = 3x.
- 10. Вычислить длину кривой $x = 5\cos^2 t$, $y = 5\sin^2 t$ $(0 \le t \le \pi/2)$.

$$1. \int \frac{4x-1}{\sqrt{2x^2-x+3}} dx. \qquad 2. \int x \arctan 2x dx. \qquad 3. \int \sin 2x \cos^2 x dx.$$

4.
$$\int \text{tg}^5 2x dx$$
. 5. $\int \frac{x^2 + 4x - 3}{x^4 + 4x^2} dx$. 6. $\int \frac{\sqrt{x} - 1}{\sqrt{x}(\sqrt[3]{x} + 1)} dx$.

7.
$$\int_{0}^{\pi/2} \frac{dx}{3+5\cos x}$$
. 8. $\int_{0}^{1} \frac{dx}{\sqrt[3]{2-4x}}$.

- 9. Найти площадь фигуры, ограниченной линиями xy = 4, y = 1, y = 4, x = 0.
- 10. Найти объем тела, полученного вращением вокруг оси *Оу* фигуры, ограниченной линиями y = 2x, y = x, x = 3.

1.
$$\int \frac{\cot 3^{3} x}{\sin^{2} x} dx$$
. 2. $\int \frac{\ln^{2} x}{x^{2}} dx$. 3. $\int \frac{x^{2} dx}{2x^{2} + 1}$.

4. $\int \frac{\sin x dx}{1 + \cos x}$. 5. $\int \frac{x^{4} + 2x - 1}{8 - x^{3}} dx$. 6. $\int \frac{x + 2}{1 + \sqrt{x + 1}} dx$.

7. $\int_{0}^{\pi/4} \sin^{5} x dx$. 8. $\int_{1}^{+\infty} e^{-x^{2}} x dx$.

- 9. Найти объем тела, полученного вращением вокруг оси Ox фигуры, ограниченной линиями $y = \sin x$, y = 0 ($0 \le x \le \pi$).
- 10. Найти длину кривой $x = 8\sin t + 6\cos t$, $y = 6\sin t 8\cos t$ ($0 \le t \le \pi/2$).

$$1.\int 3^{\lg 3x} \frac{dx}{\cos^2 3x} \cdot 2.\int x^2 e^{3x} dx \cdot$$

$$2. \int x^2 e^{3x} dx.$$

$$3. \int \frac{4x+1}{x+2} dx.$$

$$4.\int \frac{dx}{\sin^2 x + 6\sin x \cos x - 16\cos^2 x}.$$

$$5. \int \frac{x^3 + x - 1}{x^3 - 2x^2 + x} dx.$$

$$6. \int \frac{x-1}{x\sqrt{x-2}} dx$$

7.
$$\int_{\pi/2}^{\pi} \frac{\sin 2x}{4 + \cos^2 x} dx$$

6.
$$\int \frac{x-1}{x\sqrt{x-2}} dx$$
. 7. $\int_{\pi/2}^{\pi} \frac{\sin 2x}{4 + \cos^2 x} dx$. 8. $\int_{0}^{\pi/4} 4^{\operatorname{ctg} x} \frac{dx}{\sin^2 x}$.

- 9. Найти площадь фигуры, ограниченной линией $\rho = 3\cos\varphi$.
- 10. Найти длину кривой $y = e^{-x}$ от точки (0;1) до точки (5; e^{-5}).

Вариант 21

$$1. \int \frac{2x+3}{\sqrt{x^2+3x+5}} dx. \qquad 2. \int \arccos 2x dx. \qquad 3. \int 2^x \operatorname{tg} 2^x dx.$$

$$2. \int \arccos 2x dx$$

$$3. \int 2^x \operatorname{tg} 2^x dx$$

$$4. \int \frac{2 - \sin x + 3\cos x}{1 + \cos x} dx$$

$$4. \int \frac{2 - \sin x + 3\cos x}{1 + \cos x} dx. \qquad 5. \int \frac{4x^2 + 38}{(x+1)(x^2 - 4x + 13)} dx.$$

$$6. \int \frac{\sqrt{x} \, dx}{3x + \sqrt[3]{x^2}}$$

7.
$$\int_{0}^{\pi/4} \frac{x \, dx}{\cos^2 3x}$$

$$6. \int \frac{\sqrt{x} \, dx}{3x + \sqrt[3]{x^2}} \, . \qquad \qquad 7. \int_0^{\pi/4} \frac{x \, dx}{\cos^2 3x} \, . \qquad \qquad 8. \int_{e^2}^{+\infty} \frac{dx}{x \ln \ln x \ln x} \, .$$

- 9. Найти площадь фигуры, ограниченной линией $\rho = 4\cos 3\varphi$.
- 10. Найти объем тела, полученного вращением вокруг оси Оу фигуры, ограниченной линиями $y = x^2$, y = 2 - x, x = 0 (x > 0).

$$1. \int \frac{\sqrt[3]{\ln^2 x}}{x} dx$$

$$2. \int (2x+3)2^x dx$$

$$1. \int \frac{\sqrt[3]{\ln^2 x}}{x} dx . \qquad 2. \int (2x+3)2^x dx . \qquad 3. \int \frac{4x-1}{x^2+2x+2} dx .$$

$$4. \int \operatorname{ctg}^6 3x \, dx \, . \qquad 5. \int \frac{6x \, dx}{x^3 - 1} \, .$$

$$5. \int \frac{6x \, dx}{x^3 - 1} \, dx$$

6.
$$\int \frac{\sqrt{x+3} \, dx}{1+\sqrt[3]{x+3}}$$
.

7.
$$\int_{\pi/12}^{\pi/9} \text{ctg } 3x \, dx$$

7.
$$\int_{\pi/12}^{\pi/9} \operatorname{ctg} 3x \, dx$$
. 8. $\int_{0}^{1} \frac{\arcsin x}{\sqrt{1-x^2}} \, dx$.

- 9. Найти площадь фигуры, ограниченной линиями $x = 4\cos t$, $y = 9\sin t$.
 - 10. Найти длину кривой $\rho = 4(1 \sin \varphi)$.

$$1. \int \sin 2x \sqrt{1 + \sin^2 x} \, dx \, .$$

$$2. \lceil \log_2(3x-1) \, dx \, .$$

$$3. \int \frac{x-1}{\sqrt{13-6x+x^2}} dx.$$

$$4. \int \frac{dx}{2\sin x + 3\cos x + 3}.$$

$$5. \int \frac{3x-1}{x^4+13x^2+36} \, dx \, .$$

6.
$$\int \frac{x + \sqrt{x} + \sqrt[3]{x^2}}{x(1 + \sqrt[3]{x})} dx$$
.

$$7. \int_{\pi/16}^{\pi/12} \cos^2 4x \, dx \, .$$

$$8. \int_{1}^{2} \frac{x \, dx}{\sqrt[4]{(x^2 - 1)^3}}.$$

- 9. Найти длину кривой $y = \ln \sin x$ $(\frac{\pi}{6} \le x \le \frac{\pi}{3})$.
- 10. Найти объем тела, полученного вращением вокруг оси Oxфигуры, ограниченной линиями xy = 4, y = x, x = 1.

$$1. \int \frac{\sin x}{e^{\cos x}} dx .$$

$$2.\int \frac{x \arctan x}{\sqrt{1+x^2}} dx$$

2.
$$\int \frac{x \arctan x}{\sqrt{1+x^2}} dx$$
. 3. $\int \frac{3x-4}{x^2+6x+13} dx$.

4.
$$\int \frac{dx}{4\sin^2 x + 8\sin x \cos x}$$
. 5. $\int \frac{x^4 dx}{x^4 + 5x^2 + 4}$. 6. $\int \frac{\sqrt{x} dx}{2 + \sqrt[4]{x}}$.

$$5.\int \frac{x^4 dx}{x^4 + 5x^2 + 4}$$

$$6. \int \frac{\sqrt{x} dx}{2 + \sqrt[4]{x}}$$

7.
$$\int_{1}^{e/2} \ln 2x \, dx$$
. 8. $\int_{0}^{+\infty} x e^{-x} \, dx$.

- 9. Найти площадь фигуры, ограниченной линиями xy = 9, y = x, x = 5.
- 10. Найти объем тела, полученного вращением вокруг оси *Оу* фигуры, ограниченной линиями $y^2 = x$, x = 4.

$$1. \int \frac{\arctan^2 x}{1+x^2} dx . \qquad 2. \int (x^2 - 2x + 1) e^{3x} dx . \qquad 3. \int \frac{8x - 5}{\sqrt{x^2 + 4x + 5}} dx .$$

4.
$$\int \text{ctg}^5 4x \, dx$$
. 5. $\int \frac{x^3 + 2x + 3}{x^4 - 16} \, dx$. 6. $\int \frac{\sqrt{x} \, dx}{4x + \sqrt[3]{x^2}}$.

7.
$$\int_{1}^{\sqrt{3}} x\sqrt{4-x^2} dx$$
. 8. $\int_{0}^{1} \sqrt{\frac{\arcsin x}{1-x^2}} dx$.

- 9. Найти площадь фигуры, ограниченной линиями $y = x^2$, $y = 4 3x^2$.
 - 10. Найти длину кривой $\rho = 5(1 + \cos \varphi)$.

Типовой расчет № 4

Обыкновенные дифференциальные уравнения и системы дифференциальных уровней

В заданиях:

№ 1–8, 10, 11 найти общее решение дифференциальных уравнений. Если даны начальные условия, то решить задачу Коши;

№ 9 решить методом Лагранжа;

№ 12 – решить систему дифференциальных уравнений.

$$1. y' \sin x = y \ln y.$$

$$2. xy' \cos \frac{y}{x} = y \cos \frac{y}{x} - x.$$

$$3. (x^2 + 1)y' + 4xy = 3.$$

$$4. y' = \frac{4y}{x} + x\sqrt{y} .$$

5.
$$\frac{y}{x} dx + (y^3 + \ln x) dy = 0$$
.

6.
$$2yy'' = 3(y')^2 + 4y^2$$
.

7.
$$y'' = \frac{y'}{x}(1 + \ln \frac{y'}{x}), \begin{cases} y(1) = 1/2 \\ y'(1) = 1 \end{cases}$$
 8. $y^{IV} + 2y''' + y'' = 0$.

$$8. y^{IV} + 2y''' + y'' = 0.$$

9.
$$y'' + y = \frac{1}{\sqrt{\cos 2x}}$$
.

10.
$$y'' - 2y' = (2x + 3)e^{2x}$$
.

11.
$$y'' + 2y' + 2y = 1 + 4\sin x$$
.

$$12. \begin{cases} x' = 3x + y \\ y' = x + 3y \end{cases}.$$

1.
$$y' = (2y+1) \operatorname{tg} x$$
.

$$2. xy' = y(\ln y - \ln x).$$

$$3. x^2 v' + xv + 1 = 0.$$

$$4.2xv' + 2v = xv^2$$
.

5.
$$(2x + e^{x/y}) dx + (1 - \frac{x}{y}) e^{x/y} dy = 0$$
. 6. $e^y (y'' + (y')^2) = 2$.

6.
$$e^{y}(y'' + (y')^{2}) = 2$$
.

7.
$$e^{x}(y''e^{x}) = 1$$
, $\begin{cases} y(0) = 1 \\ y'(0) = 0 \end{cases}$.

$$8. y^{IV} - 3y'' - 4y = 0.$$

9.
$$y'' + 4y' + 4y = \frac{e^{-2x}}{x^3}$$
.

10.
$$y'' + y' = x^2 + 1$$
.

11.
$$y'' + 2y' - 3y = e^{2x} + 9\cos x$$
.

12.
$$\begin{cases} \dot{x} = 2y - x + 1 \\ \dot{y} = 3y - 2x \end{cases}$$
.

$$1. y' = \frac{e^{2x}}{\ln y}.$$

$$2. y dy = (2y - x) dx.$$

$$3. xy' + y + xe^{-x^2} = 0.$$

$$4.2y' + 2xy = x e^{-x^2} y^2.$$

5.
$$y'y^2 + yy'' = (y')^2$$
.

5.
$$y'y^2 + yy'' = (y')^2$$
. 6. $(10xy - 8y + 1) dx + (5x^2 - 8x + 3) dy = 0$.

7.
$$y'' = \frac{y'}{x} \ln \frac{y'}{x}$$
, $\begin{cases} y(1) = e, \\ y'(1) = e. \end{cases}$

$$8. y''' + 2y'' - 3y' = 0.$$

9.
$$y'' - 4y' + 5y = \frac{e^{2x}}{\cos x}$$
.

$$10.4y'' + 4y' + y = 3\cos 2x.$$

11.
$$y'' + 4y' + 5y = 2x + 3 + xe^x$$
. 12.
$$\begin{cases} \dot{x} = 2x - 4y \\ \dot{y} = x - 3y + 3e^t \end{cases}$$
.

12.
$$\begin{cases} \dot{x} = 2x - 4y \\ \dot{y} = x - 3y + 3e^t \end{cases}$$
.

1.
$$3e^{x}(\sin y) dx + (1 + e^{x}) \cos y dy = 0$$
.

$$2. \frac{dx}{xy - x^2} = \frac{dy}{2y^2 - xy}.$$

3.
$$y' = 2x(x^2 + y)$$
.

$$4. y' + 2xy = 2x^3y^3.$$

5.
$$(2x^3 - xy^2) dx + (2y^3 - x^2y) dy = 0$$
. 6. $y y'' = (y')e^3$.

6.
$$y y'' = (y')e^3$$
.

7.
$$y'' = \frac{y'}{x} + x \cos x$$
, $\begin{cases} y(\pi) = \pi + 1 \\ y'(\pi) = 2\pi \end{cases}$. 8. $y^{IV} - y'' = 0$.

8.
$$y^{IV} - y'' = 0$$
.

9.
$$y'' + 2y' + y = 3e^{-x}\sqrt{x+1}$$
.

10.
$$y'' + 9y = 4\cos 3x$$
.

11.
$$y'' - 4y' = 2x + 1 + 4e^{2x}$$
.

12.
$$\begin{cases} \dot{x} = 4x + y - 36t \\ \dot{y} = y - 2x - 2e^t \end{cases}$$

$$1.3^{y^2-x^2} = \frac{yy'}{x}.$$

$$2. \ y' = \frac{y}{x} - \frac{x}{y}.$$

3.
$$y' \cot x - y = 2 \cos^2 x \cot x$$
. 4. $xy' + y = y^2 \ln x$.

4.
$$xy' + y = y^2 \ln x$$
.

5.
$$e^{y} dx + (xe^{y} - 2y) dy = 0$$
. 6. $y''y + (y')^{2} = y'$.

6.
$$y''y+(y')^2=y'$$
.

7.
$$x(y''-x) = y'$$
, $y(1) = y'(1) = 1$. 8. $y^{IV} - y''' = 0$.

8.
$$y^{IV} - y''' = 0$$

$$9. y'' + y = \operatorname{tg} x.$$

10.
$$y'' + 6y' + 13y = 3e^{2x} \sin x$$
.

11.
$$y'' - 2y' + y = 2e^x + x - 1$$
.

12.
$$\begin{cases} \dot{x} = 2x + 3y + 5t, \\ \dot{y} = 3x + 2y + 8e^t. \end{cases}$$

1.
$$y'\sqrt{1-x^2} - \cos^2 y = 0$$
.

$$2. \, 4xy \, dy = (x^2 - y^2) \, dx \, .$$

$$3. y' - 3x^2y - x^2e^{x^3} = 0.$$

4.
$$y' - 9x^2y = (x^5 + x^2)y^{2/3}$$
.

$$5. \frac{x \, dy}{x^2 + y^2} = \left(\frac{y}{x^2 + y^2} - 1\right) dx.$$

$$6. y'' = y' + x.$$

7.
$$y''y^3 = 1$$
, $y(0,5) = y'(0,5) = 1$.

$$8. y^{IV} + 8y'' - 9y = 0.$$

9.
$$y'' - y = \frac{e^{2x}}{e^x - 1}$$
.

10.
$$y'' - 4y = 5e^{2x}$$
.

11.
$$y'' - 4y' = 2x - 3 + \cos 3x$$
.

12.
$$\begin{cases} \dot{x} = 4x - 3y + \sin t \\ \dot{y} = 2x - y + 2\cos t \end{cases}$$

1.
$$(1+e^{3y})x dx = e^{3y} dy$$
.

$$2. xy' = y + y \ln \frac{y}{x}.$$

3.
$$(x^2-1)y'-xy=x^3-x$$
.

$$4. xy' + y = xy^2.$$

$$5. x dx + y dy = 0.$$

6.
$$y'' + y'(y-1) = (y')^2$$
.

7.
$$xy'' = y'$$
, $y(1) = y'(1) = 2$.

8.
$$y^{IV} + 2y''' + 2y'' = 0$$
.

9.
$$y'' + 4y = 2 \operatorname{tg} x$$
.

10.
$$y'' - 4y' + 4y = 3e^{2x}$$
.

11.
$$y'' - 6y' + 13y = 4\sin 2x - \cos x$$
.

Вариант 8

12. $\begin{cases} y' = \frac{y^2}{z} \\ z' = \frac{1}{2}y \end{cases}$

1.
$$(x + 2xy) dx + (1 + x^2) dy = 0$$
.

$$2. y dx = (2\sqrt{xy} - x) dy.$$

3.
$$v' + 2v = e^{3x}$$
.

$$4. xy' - y = y^2.$$

$$5. \frac{dx}{y} - \frac{x}{y^2} dy = 0.$$

6.
$$2yy'' + y^2 = (y')^2$$
.

7.
$$x(y''+1) + y' = 2$$
, $y(1) = \frac{1}{2}$, $y'(1) = \frac{5}{2}$. 8. $y^{IV} + 8y'' + 16y = 0$.

$$8. y^{IV} + 8y'' + 16y = 0.$$

9.
$$y'' - y' = \frac{1}{e^x + 1}$$
.

10.
$$y'' + 10y' + 26y = (3x - 1)e^x$$
.

11.
$$y'' + 4y' = 1 + 4\cos^4 x$$
.

12.
$$\begin{cases} \dot{x} = y - \cos t, \\ \dot{y} = -x + \sin t. \end{cases}$$

1.
$$(1+y^2) dx - (2y + \sqrt{1+y^2})(1+x)^{3/2} dy = 0$$
.

$$2. y^2 - 3xy + 3x^2y' = 0.$$

3.
$$y' + \frac{y}{x} = 2 \ln x + 1$$
.

4.
$$y' + \frac{2y}{x} = \frac{2\sqrt{y}}{\cos^2 x}$$
.

5.
$$yy'' = y'(y'+1)$$
.

6.
$$(e^x + y + \sin y) dx + (e^y + x + \cos y \cdot x) dy = 0$$
.

7.
$$y'' = -\frac{x}{y'}$$
, $y(2) = 0$, $y'(2) = 1$.

$$8. y^{IV} + y'' = 0.$$

9.
$$y'' + 4y = \text{ctg } 2x$$
.

10.
$$y'' + y' = 3\cos x$$
.

$$11.4y'' - 4y' + y = x^2 + 4e^{2x}.$$

12.
$$\begin{cases} y' = -5y + 2t + 40e^{t}, \\ x' = y - 6t + 9e^{-t}. \end{cases}$$

$$1.(2xy^2 + x) dx + (3y - x^2y) dy = 0.$$

$$2. (x - y) dx + (x + y) dy = 0.$$

3.
$$y' + \frac{2y}{x+1} = e^x (x+1)^2$$
.

4.
$$y' - \frac{xy}{x^2 - 1} = x\sqrt{y}$$
.

5.
$$xy'' - y'' + \frac{1}{x} = 0$$
.

6.
$$2x\cos^2 y \, dx + (2y - x^2 \sin 2y) \, dy = 0$$
.

7.
$$y'' = 2yy'$$
, $y(0) = y'(0) = 1$.

8.
$$v''' - 8 v = 0$$
.

9.
$$y'' + 4y = \frac{1}{\cos 2x}$$
.

10.
$$y'' + 4y' + 29y + 26e^{-x}$$
.

11.
$$y'' + 4y' = 2x + 5 + xe^{3x}$$
. 12.
$$\begin{cases} \dot{x} = -y \\ \dot{y} = 3x + 4y \end{cases}$$
.

$$1.\left(\sqrt{xy} - \sqrt{x}\right)dy + y\,dx = 0.$$

$$2. xy' - y = x \operatorname{tg} \frac{y}{x}.$$

$$3. xy' + y = e^x.$$

4.
$$y' - y + y^2 \cos x = 0$$
.

5.
$$2xy \, dy + (x^2 + y^2 + 2x) \, dx = 0$$
. 6. $y'' + \frac{(y')^2}{1 - y} = 0$.

6.
$$y'' + \frac{(y')^2}{1 - y} = 0$$

7.
$$y'' - 2 \operatorname{ctg} xy' = \sin^3 x$$
, $y(\pi/4) = 0$, $y'(\pi/4) = 1$.

$$8.4y^{IV} + 4y''' + y'' = 0.$$

9.
$$y'' + y = \frac{1}{\sin x}$$
.

10.
$$y'' - 12y' + 36y = 32\cos 2x$$
.

11.
$$y'' - 2y' + 2y = 3x + (4x - 1)e^{2x}$$
. 12. $\begin{cases} \dot{x} = 2y - 3x, \\ \dot{y} = y - 2x + t. \end{cases}$

$$12. \begin{cases} \dot{x} = 2y - 3x, \\ \dot{y} = y - 2x + t \end{cases}$$

$$1. (x^2 + 2x) y' = y + 4$$

1.
$$(x^2 + 2x)y' = y + 4$$
. 2. $xy' - y = (x + y) \ln \frac{x + y}{x}$.

3.
$$xy' - \frac{y}{x+1} = x$$
.

3.
$$xy' - \frac{y}{x+1} = x$$
. 4. $y' = y \operatorname{ctg} x + \frac{y^3}{\sin x}$.

$$5.2yy'=y''.$$

$$6. (x^3 - 3xy^2 + 2) dx - (3x^2y - y^2) dy = 0.$$

7.
$$y^{IV} - 5y'' + 4y = 0$$

7.
$$y^{IV} - 5y'' + 4y = 0$$
. 8. $y''(x^2 + 1) = 2xy'$, $y(0) = 1$, $y'(0) = 3$.

9.
$$y'' + 2y' + y = \frac{e^{-x}}{x}$$
.

10.
$$y'' + y' = xe^{-x}$$
.

11.
$$y'' + 3y' + 10y = \sin 3x - \cos x$$
.

$$12. \begin{cases} \dot{x} = x - y + 18t \\ \dot{y} = 5x - y \end{cases}.$$

$$1. y^2 + y'x^2 = 0.$$

$$2. xy' = y \cos \ln \frac{y}{x}.$$

$$3. y' + y = \cos x.$$

4.
$$y' - \frac{y}{x} = \frac{x^2}{v}$$
.

5.
$$2(y')^2 = y''(y-1)$$
.

6.
$$(x^2 + y^2 + y) dx + (2xy + x + e^y) dy = 0$$
.

7.
$$y''x + y' = \ln x$$
, $y(1) = 1$, $y'(1) = 2$. 8. $y''' + 3y'' + 3y' + y = 0$.

8.
$$y''' + 3y'' + 3y' + y = 0$$
.

9.
$$y'' - 2y' + y = \frac{e^x}{\sqrt{4 - x^2}}$$
.

10.
$$y'' + 6y' + 9y = 2x^2 - 1$$
.

11.
$$y'' + 4y' + 5y = 4xe^{2x} + \cos x$$
. 12.
$$\begin{cases} \dot{x} = 2y - x, \\ \dot{y} = 4y - 3x + e^{3t}. \end{cases}$$

1.
$$2e^{y}(1+x^{2})dy - x(e^{y}+1)dx = 0$$
. 2. $x dy - y dx = \sqrt{x^{2}+y^{2}}dx$.

2.
$$x dy - y dx = \sqrt{x^2 + y^2} dx$$
.

$$3. y' - \frac{y}{x} = x.$$

4.
$$y' + 2y = y^2 e^x$$
.

5.
$$(y + x \ln y) dx + (\frac{x^2}{2y} + x + 1) dy = 0$$
. 6. $2xy'y'' = (y')^2 + 1$.

7.
$$y'' = y'e^y$$
, $y(0) = 0$, $y'(0) = 1$. 8. $y^{IV} + 4y''' - 5y'' = 0$.

$$8. y^{IV} + 4y''' - 5y'' = 0.$$

9.
$$y'' + y = tg^2 x$$
.

$$10.4y'' + 9y = 5\cos 3x.$$

11.
$$\begin{cases} \dot{x} = 2x + y + 2e^t, \\ \dot{y} = x + 2y - 3e^{4t}. \end{cases}$$

12.
$$y'' + 8y' + 17y = 2x^2 + 3x + 1 + 3e^{2x}$$
.

$$1. x \ln xy' = y.$$

2.
$$y' = \frac{x^2 + y^2}{xy}$$
.

3.
$$y' - \frac{y}{1-x^2} = 1 + x$$
.

3.
$$y' - \frac{y}{1 - x^2} = 1 + x$$
. 4. $xy' - 4y - 2x^2 \sqrt{y} = 0$.

5.
$$y'' - \frac{y'}{x-1} = x(x-1)$$

5.
$$y'' - \frac{y'}{y-1} = x(x-1)$$
. 6. $(3x^2y + \sin x)dx + (x^3 - \cos y)dy = 0$.

7.
$$y'' + 2y(y')^3 = 0$$
, $y(0) = 2$, $y'(0) = \frac{1}{3}$.

8.
$$v''' - 6v'' + 12v' - 8v = 0$$
.

9.
$$y'' - 3y' + 2y = \frac{e^x + 2}{e^x + 1}$$

9.
$$y'' - 3y' + 2y = \frac{e^x + 2}{e^x + 1}$$
. 10. $y'' + 4y' + 5y = 4e^x \cos 3x$.

11.
$$y'' - 4y' + 4y = 5e^{2x} + 3\cos 4x$$
.

12.
$$\begin{cases} \dot{x} = 2x - y, \\ \dot{y} = x + 2e^t. \end{cases}$$

1.
$$(4+x^2) dy - \sqrt{1-16y^2} dx = 0$$
.

$$2. x^2 + xy + y^2 = x^2 y'.$$

3.
$$y' - \frac{2y}{x} = x^3$$
.

$$4. xy^2y' = x^2 + y^3.$$

5.
$$x^2 \sin y \, dx + (1 + \frac{x^3}{3} \cos y) \, dy = 0$$
. 6. $y'' + 4y' = 2x^2$.

$$6. y'' + 4y' = 2x^2$$

7.
$$y'' = 2 - y$$
, $y(0) = 2$, $y'(0) = 2$.

8.
$$y^{IV} + y'' = 0$$
.

9.
$$y'' + 4y = \frac{1}{\sin^2 x}$$
.

10.
$$y'' + 9y = 3\cos 3x$$
.

11.
$$y'' - y' = 4x + 3 + 4e^{2x}$$
.

$$12. \begin{cases} \dot{x} = x + 2y \\ \dot{y} = x - 5\sin t \end{cases}.$$

1.
$$yy' = e^{2x-y}$$
.

2.
$$(x^2 + xy)y' = x\sqrt{x^2 - y^2} + xy + y^2$$
.

3.
$$y' \operatorname{tg} x - y = 1$$
.

$$4. xy' + y = \sqrt{x}.$$

5.
$$e^x dy + (ye^x - 2x) dx = 0$$
. 6. $x^2 y'' = (y')^2$.

6.
$$x^2y'' = (y')^2$$
.

7.
$$y'' = \frac{1}{v^3}$$
, $y(0) = 1$, $y'(0) = 0$. 8. $y^{IV} + 2y''' + y'' = 0$.

$$8. y^{IV} + 2y''' + y'' = 0.$$

9.
$$y'' - 2y' + y = \frac{e^x}{x}$$
.

$$10. y'' + 2y' + 5y = 3xe^{2x} .$$

11.
$$y'' + 4y' + 4y = 3x + 1 + 5\cos 3x$$
. 12.
$$\begin{cases} \dot{x} = 2x - y, \\ \dot{y} = y - 2x + 18t. \end{cases}$$

$$1. xy' + y = y^2.$$

$$2.4y' = \frac{y^2 + 4x^2}{x^2}.$$

3.
$$y' - \frac{y}{x} = x \cos 2x$$
.

4.
$$y' - \frac{y}{\sqrt{x}} = e^{2\sqrt{x}}y^2$$
.

5.
$$(\ln y - x) dx + (\frac{x}{y} - y) dy = 0$$
.

6.
$$y''(2y+3) = 2(y')^2$$
.

7.
$$x^3y'' + x^2y' = 1$$
, $y(1) = 1$, $y'(1) = 2$. 8. $y^{IV} - 3y''' + 3y'' - y' = 0$.

8.
$$y^{IV} - 3y''' + 3y'' - y' = 0$$
.

$$9. \ y'' + y = \operatorname{ctg} x.$$

10.
$$y'' - 16y = 3xe^{4x}$$
.

11.
$$y'' + 5y' = 4x + 3 + \cos 2x$$
.

12.
$$\begin{cases} \dot{x} = x - y \\ \dot{y} = y - x + \cos 3t \end{cases}$$

1.
$$y' = \frac{y-1}{x+1}$$
.

2.
$$(xy'-y)$$
 arctg $\frac{y}{x} = x$.

$$3. xy' + y = e^x.$$

4.
$$y' - \frac{2xy}{1+x^2} = \frac{4 \arctan x}{\sqrt{1+x^2}} \sqrt{y}$$
.

$$5. xy'' + y' = \ln x.$$

$$6.\left(\frac{\sin 2x}{y} + x\right)dx + \left(y - \frac{\sin^2 x}{y^2}\right)dy = 0.$$

7.
$$y'' + y(y')^3 = 0$$
, $y(0) = 1$, $y'(0) = 2$. 8. $y^{IV} + 18y'' + 81y = 0$.

8.
$$y^{IV} + 18y'' + 81y = 0$$
.

9.
$$y'' + y = \frac{1}{\cos^2 x}$$
.

10.
$$y'' + 5y' - 6y = (2x + 3)e^x$$
.

11.
$$y'' - 4y' = (3x+1)^2 + 5xe^x$$
. 12. $\begin{cases} \dot{x} = -y + t - 1 \\ \dot{y} = x + 2t \end{cases}$.

12.
$$\begin{cases} \dot{x} = -y + t - 1 \\ \dot{y} = x + 2t \end{cases}$$

$$1. \sin x \sin y dx + \cos x \cos y dy = 0.$$

2.
$$y^2 + x^2 y' = xy'y$$
.

$$3. x^2 y' + 2xy - 1 = 0.$$

4.
$$y' + \frac{y}{x} = x^2 y^4$$
.

$$5.\left(1+\frac{y^2}{x^2}\right)dx - \frac{2y}{x}dy = 0.$$

6.
$$y'' = 2(y'-1) \operatorname{ctg} x$$
.

$$7. y^{IV} + 2y''' = 0.$$

7.
$$y^{IV} + 2y''' = 0$$
. 8. $y'y^2 + yy'' = (y')^2$, $y(0) = 1$, $y'(0) = 2$.

9.
$$y'' + 4y' + 4y = e^{-2x} \ln x$$
.

10.
$$y'' - y' - 2y = x \cos x - \sin x$$
.

$$11. y'' + 9y = x^2 + 5 - 9e^{4x}.$$

12.
$$\begin{cases} \dot{x} = 3x - 4y - e^{-2t}, \\ \dot{y} = x - 2y - 3e^{-2t}. \end{cases}$$

$$1.(y-2) dx + x^2 dy = 0.$$

$$2. y' = \frac{3x}{y} + \frac{y}{x}.$$

$$3. xy' - y = x^2 e^x.$$

$$4. xy' + 2y + x^5 y^3 e^x = 0.$$

5.
$$(5x + xy^2) dx + (4y + x^2y) dy = 0$$
; 6. $3y'y'' = 2y$.

$$6.3v'v'' = 2v$$
.

7.
$$x(y'' + y') = y'$$
, $y(0) = -1$, $y'(0) = 0$. 8. $y^{V} - 2y^{IV} + y''' = 0$.

8.
$$y^V - 2y^{IV} + y''' = 0$$
.

9.
$$y'' + 5y' + 6y = \frac{1}{1 + e^{2x}}$$
.

10.
$$y'' + 2y' - 3y = (x+3)e^x$$
.

11.
$$y'' + 4y = 1 + 6\cos 3x$$
.

$$12. \begin{cases} \dot{x} = y - 5\cos t, \\ \dot{y} = 2x + y. \end{cases}$$

$$1.\sqrt{3+y^2}\ dx - ydy = x^2ydy.$$

2.
$$ydy = (2y - x) dx$$
.

2.
$$xy' - \frac{y}{x+1} = x$$
.

$$4.2y' - \frac{xy}{x^2 - 1} = \frac{x}{y}$$
.

5.
$$x(y'' - x) = y'$$
. 6. $(3x \sin y + 1) dx + (\frac{3}{2}x^2 \cos y + 1) dy = 0$.

7.
$$y^{IV} - 5y''' = 0$$
. 8. $3y'y'' = y + (y')^3 + 1$, $y(0) = -2$, $y'(0) = 0$.

9.
$$y'' + 9y = 3 \operatorname{tg} 3x$$
. 10. $y'' + 4y' = (x+1)^2$.

11.
$$y'' - 3y' + 4y = \cos 3x + 12e^{2x}$$
. 12.
$$\begin{cases} \dot{x} = y + 2e^{t}, \\ \dot{y} = x + t^{2}. \end{cases}$$

1.
$$(1+x)$$
 $y' = xy$. 2. $x^2y' = y(x+y)$.

3.
$$(1-x)(y'+y) = e^{-x}$$
. 4. $\frac{x}{v^2} = y'+y$.

5.
$$\frac{y}{x^2}dx - \frac{xy+1}{x}dy = 0$$
. 6. $(x+1)y'' + x(y')^2 = y'$.

7.
$$y^{IV} + 13y'' + 36y = 0$$
. 8. $y'(1+(y')^2) = 3y''$; $y(2) = 1$, $y'(2) = 2$.

9.
$$y'' + 6y' + 9y = 4e^x(\cos x - \sin x)$$
. 10. $y'' + 4y' + 4y = \frac{e^{-2x}}{x^3}$.

11.
$$y'' + 4y' = x^2 + 2x - 3 + 5e^{3x}$$
. 12.
$$\begin{cases} y' = \frac{y}{x}, \\ z' = y + z. \end{cases}$$

$$1. y' - 2\sqrt{y} \ln x = 0.$$

$$2. (4x^2 + 3xy + y^2) dx + (4y^2 + 3xy + x^2) dy = 0.$$

$$3. y' + y \cos x = \sin x \cos x.$$

$$4. y' - 3y = x\sqrt[3]{y} .$$

$$5.\left(1+\frac{2x}{y^3}\right)dx + \left(\frac{1}{y^2} - \frac{3x^2}{y^4}\right)dy = 0. \quad 6. \ y''(1+\ln x) + \frac{y'}{x} = 2 + \ln x.$$

6.
$$y''(1 + \ln x) + \frac{y'}{x} = 2 + \ln x$$

7.
$$2y'' = 3y^2$$
, $y(-2) = 1$, $y'(-2) = 1$. 8. $y^{IV} + 4y''' + 5y'' = 0$.

8.
$$y^{IV} + 4y''' + 5y'' = 0$$

9.
$$y'' + 2y' + y = e^{-x} \ln x$$
.

$$10.2y'' + 9y' = 4\sin 3x + \cos 3x.$$

11.
$$y'' + 6y' + 9y = 4x + 3 - 5e^{-3x}$$
. 12.
$$\begin{cases} \dot{x} = x + y + t, \\ \dot{y} = -4x - 3y + 2t. \end{cases}$$

12.
$$\begin{cases} \dot{x} = x + y + t, \\ \dot{y} = -4x - 3y + 2t. \end{cases}$$

1.
$$(4x + xy^2) dx + (3y - x^2y) dy = 0$$
.

$$2. y = \left(y' - e^{\frac{y}{x}}\right) x.$$

3.
$$y' - y \operatorname{tg} x = \frac{1}{\cos x}$$
.

4.
$$y' - xy = -y^3 e^{-x^2}$$
.

5.
$$(3x^2y - \frac{4}{x^2})dx + (\cos y + x^3)dy = 0$$
. 6. $y(y'' + 1) = (y')^2$.

6.
$$y(y'' + 1) = (y')^2$$
.

7.
$$y''x \ln x = 2y'$$
, $y(e) = 1$, $y'(e) = 2$. 8. $y^{IV} - 15y'' - 16y = 0$.

$$8. y^{IV} - 15y'' - 16y = 0.$$

9.
$$y'' - 4y' + 4y = \frac{e^{2x}}{4 + x^2}$$
.

$$10.4y'' - 4y' + y = 4x^2 + 5x.$$

11.
$$y'' - 8y' + 20y = 4\sin 2x + xe^{2x}$$
.

12.
$$\begin{cases} \dot{x} = -y + e^{3t}, \\ \dot{y} = -x + 2e^{3t}. \end{cases}$$

ЛИТЕРАТУРА

- 1. Беклемишев Д. В. Курс аналитической геометрии и линейной алгебры. М.: Наука 1980. 336 с.
- 2. Бугров Я. С., Никольский С. М. Задачник. М.: Наука 1982. 192 с.
- 3. Бугров Я. С., Никольский С. М. Элементы линейной алгебры и аналитической геометрии. М.: Наука, 1980. 176 с.
- 4. Воеводин В. В. Линейная алгебра и некоторые ее приложения. М.: Наука, 1975. 176 с.
- 5. Высшая математика для экономистов / Под ред. Н. Ш. Кремера. М: ЮНИТИ, 2002. 471 с.
- 6. Высшая математика. Общий курс / Под общей ред. С. А. Самаля. Мн.: Вышэйшая школа, 2000. 351 с.
- 7. Высшая математика. Общий курс / Под ред. А. И. Яблонского. Мн.: Высшая школа, 1993.
- 8. Головина Л. И. Линейная алгебра и некоторые ее приложения. М.: Наука, 1985. 480 с.
- 9. Ильин В. А., Позняк Э. Г. Аналитическая геометрия. М.: Наука, 1971. 232 с.
- 10. Коваленко Н.С., Чепелева Т.И. Высшая математика. Линейная алгебра. Векторная алгебра. Аналитическая геометрия. Мн.: Юнипресс, 2006. 208с.
- 11. Лихолетов И. И. Высшая математика, теория вероятностей и математическая статистика. Мн.: Высшая школа, 1976. 720с.
- 12. Мантуров О. В., Матвеев Н. М. Курс высшей математики. Линейная алгебра. Аналитическая геометрия. Дифференциальное исчисление функции одной переменной. М.: Высшая школа, 1986.
- 13. Рублев А. Н. Курс линейной алгебры и аналитической геометрии. Мн.: Высшая школа, 1972. 424 с.
- 14. Сборник задач по математике для втузов: Линейная алгебра и основы математического анализа / Под ред. А. В. Ефимова и Б. П. Демидовича. М.: Наука. 1975. 480 с.
- 15. Сухая Т. А, Бубнов В. Ф. Задачи по высшей математике. І. Мн.: Высшая школа, 1993. 446 с.
- 16. Элементы линейной алгебры / Р. Ф. Апатенок, А. М. Маркина, Н. В. Попова, В. Б. Хейнман. Мн.: Высшая школа, 1977. 256 с.