дицинский, физиологический, психологический, эргономический, технический, организационно-оперативный, экономический.

Перечисленные аспекты лежат в основе рассмотрения основных направлений безопасности жизнелеятельности.

Литература

- 1. Безопасность жизнедеятельности: учебник для вузов / С.В. Белов, А.В. Ильницкая, А.Ф. Козьяков и др.. М.: Высш. шк., 1999. 448 с.
- 2. Попспирова Н.М., Домуладжанов И.Х. Безопасность в процессе производственной деятельности: уч. пособие. Фергана: Техника, 2003. 205 с.

Гречук А.И, Девин Л.Н.

Институт сверхтвердых материалов им. В.Н. Бакуля НАН Украины, Киев, Украина

КОНСТРУКЦИЯ СВЕРЛА СО ВСТАВКАМИ ИЗ СВЕРХТВЕРДЫХ МАТЕРИАЛОВ ДЛЯ СВЕРЛЕНИЯ ДЕТАЛЕЙ ИЗ КОМПОЗИТОВ

Современное машиностроение увеличивает темпы использования волокнистых композиционных материалов (ВПКМ). Соотношение прочности к весу, жесткости, коррозионная и электромагнитная стойкость и высокая теплопроводность [1] делают ВПКМ незаменимыми конструкционными материалами. За последние десятилетия наблюдается скачек применения ВПКМ в самолетах производящих ГП «АНТОНОВ» и зарубежных предприятий «ВОЕІNG» и «AIRBUS». Их

изделия на сегодняшний день содержат до 50% композиционных материалов [2]. Большинство деталей из ВПКТМ скрепляются болтовыми или клепочными соединениями. Поэтому актуальной задачей является сверление в них большого количества отверстий. Например, для изготовления небольшого самолета необходимо изготовить 100 тыс. отверстий и миллионы для большого транспортного самолета [3].

Сверление изделий из ВПКМ сопровождается рядом явлений, которые не встречаются при традиционной металлообработке.

Это обуславливает возникновение ряда специфических дефектов, способных снизить качество отверстия [4]. К таким дефектам можно отнести: дела-

минацию (расслоение), несрезанные волокна, выкрашивание и термодеструкцию.

С целью обеспечения высокого качества сверления отверстий в волокнистых композиционных материалах в Институте сверхтвердых материалов имени В.Н. Бакуля НАН Украины было разработано и изготовлено специальное сверло (рис. 1) [5].

Сверло имеет форму перьевого сверла, оснащенного двумя симметрично расположенными алмазно-твердосплавными пластинками или

пластинками из КНБ и двумя прямыми канавками. Режущая часть сверла представляет собой две главные режущие кромки, две вспомогательные и ломаную перемычку, которая состоит из сверхтвердого материала на периферии и твердого сплава в центре.

Острие сверла подвергается значительному износу во время сверления, а так как сверхтвердые материалы в основном отличаются высокой твердостью, острие обеспечит высокую износостойкость.

Вспомогательные режущие кромки параллельны оси сверла, что обеспечивает дополнительную обработку поверхности отверстия и срезание ранее не срезанных волокон на входе сверла.

В отличие от спиральных сверл, ко-

Рисунок 1 – Специальное сверло

«Инженер-механик»

материалы конференций и семинаров

торые применяются во всех отраслях машиностроения, передняя поверхность разработанного специального сверла является плоской. Такое решение обеспечивает постоянный передний угол вдоль главных и вспомогательных режущих кромок. Также, передняя поверхность состоит из алмаза или КНБ, что обеспечивает высокую теплопроводность, низкую теплоемкость и снижает трение со стружкой. Дополнительная доводка передней поверхности понижает шероховатость и уменьшает радиус скругления режущих кромок.

Контроль геометрии сверла был произведен на 3D микроскопе Alicona Infinite Focus (рис. 2, а) в Лундском университете (Швеция).

Радиус закругления сверла был измерен, используя стандартную утилиту Alicona – IF-Edge Master Module путем построения 50 сечений вдоль режущей кромки. Профиль с усредненны-

ми значением, изображен на рис. 2, б. Для определения параметров геометрии вспомогательных режущих кромок была создана 3D модель сверла (рис. 2, в) и построены различные сечения, пример которых показан на рис. 2, г. Геометрические параметры специального сверла: углы: задний -9.89° , задний вспомогательный -14.96° , передний -1.91° , в плане -119.8° ; диаметр -7.9 мм; радиус РК -17.26 мм.

Сверло показала хорошую работоспособность и высокое качество обработанных отверстий при испытаниях при сверлении образцов серийного стеклопластика НТК Антонов (г. Киев) с ортотропным армированием, толщиной 4 мм. Результаты исследований показали, что использование сверхтвердых материалов в лезвийном инструменте является эффективным при сверлении волокнистых полимерных композиционных материалов.

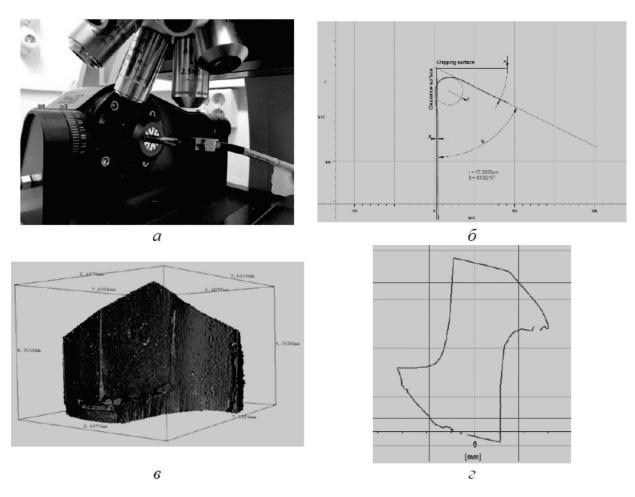


Рисунок 2 – Измерение геометрии сверла

МАТЕРИАЛЫ КОНФЕРЕНЦИЙ И СЕМИНАРОВ

Литература

- 1. Liu D.F., Tang Y.J., Cong W.L. A review of mechanical drilling for composite laminates // Composite Structures. 2012. - V.94, №.4. - P. 1265-1279.
- 2. Кива Д.С. Этапы становления и начала развернутого применения полимерных композиционных материалов в конструкциях пассажирских и транспортных самолетов (1970-1995 гг.) // Авиационно-космическая техника и технология. – 2014. – № 6. – С. 5–16.
- 3. Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model / S.R. Karnik, V.N. Gaitonde et al. // Mat. and Design. – 2008. – №29. – P. 1768–1775.
- 4. Machining of carbon fiber reinforced plastics/polymers: A literature review / D. Che et al. // J. of Manufact. Sc. and Eng. -2014. -V. 136. $-N_{2}$.3.
- Пат. UA112821U МПКВ23В 51/08 (2006.01)/Свердло для обробки полімерних композиційних матеріалів / Л.Н. Девин, А.И. Гречук, В.М. Боженок // Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України// 26.12.2016, Бюл.№ 24.

Голякевич А.А., Евтушенко В.В. ООО «ТМ.ВЕЛТЕК», Киев, Украина

НОВАЯ ПОРОШКОВАЯ ПРОВОЛОКА для восстановительной и УПРОЧНЯЮЩЕЙ НАПЛАВКИ ДЕТАЛЕЙ машин преимущественно из СРЕДНЕУГЛЕРОДИСТЫХ СТАЛЕЙ

Предприятие ООО «ТМ.ВЕЛТЕК» разработало новую порошковую проволоку, предназначенную для автоматический и полуавтоматической наплавки при восстановлении и упрочнении деталей, работающих в условиях трения металла о металл.

Проволока хорошо себя зарекомендовала при наплавке на среднеуглеродистые конструкционные и низколегированные стали марок сталь 35, сталь 45, 30ХГСА, 35ХН2М, 38ХГНМ, 40Х, 40ХН2МА, 38Х2МЮА и др. Данные марки сталей относятся к классу трудносвариваемых.

Проволоке присвоена марка ВЕЛТЕК-Н351.

наплавке порошковой проволокой ВЕЛТЕК-Н351 получается мартенситный наплавленный слой с системой легирования Cr, Ni и Mo.

С использованием минимального подогрева (200–250 °C) наплавляемой детали, проволока ВЕЛТЕК-Н351 обеспечивает качественный наплавленный слой, характеризующийся отсутствием хрупких закалочных структур и дефектов в виде пор и трещин. Твердость наплавленного металла в зависимости от содержания углерода, составляет 24-40 HRC.

Проволока ВЕЛТЕК-Н351 прошла всесторонние испытания и применяется при наплавке буферных слоев перед упрочняющей наплавкой, наплавкой зубьев шестерен, рабочих колес кранов и бандажей, восстановительной наплавки шеек роликов МНЛЗ, посадочных мест крупногабаритных валов и др.

Проволока обеспечивает стабильное горение сварочной дуги, низкое разбрызгивание и благоприятное формирование наплавляемого металла, легкую отделимость шлаковой корки.

По требованию заказчика проволока марки ВЕЛТЕК-Н351 может быть изготовлена в 3-х вариантах:

- · самозащитная, ВЕЛТЕК-H351-O (Ø1,6–3,2 мм);
- в среде защитных газов 100% СО, или 80% $Ar + 20\% CO_2$, BЕЛТЕК-H351-G (Ø 1,2–2,6 мм);
- · под флюсом марок АН-348A, АН-60, АН-26,

ВЕЛТЕК-Н351- S (Ø 2,0–4,0 мм).