ИНЖЕНЕРИЯ ПОВЕРХНОСТИ И РЕНОВАЦИЯ ИЗДЕЛИЙ

Материалы -17й Международной научно-технической конференции (29 мая—02 июня 2017 г., г. Одесса)

Научные направления конференции

- → Научные основы инженерии поверхности:
 - материаловедение
 - физико-химическая механика материалов
 - физикохимия контактного взаимодействия
 - износо- и коррозионная стойкость, прочность поверхностного слоя
 - функциональные покрытия и поверхности
 - технологическое управление качеством деталей машин
 - вопросы трибологии в машиностроении
- → Технология ремонта машин, восстановления и упрочнения деталей
- ◆ Метрологическое обеспечение ремонтного производства
- → Экология ремонтно-восстановительных работ
- ◆ Сварка, наплавка и другие реновационные технологии на предприятиях горнометаллургической, машиностроительной промышленности и на транспорте

Адамовский А.А., Варченко В.Т., Найдич Ю.В.

Институт проблем материаловедения им. И.Н.Францевича НАН Украины, Киев, Украина

ТРЕНИЕ И ИЗНОС СВЕРХТВЕРДЫХ И ВЫСОКОМОДУЛЬНЫХ МАТЕРИАЛОВ

Надежность машин и механизмов определяется совершенством узлов трения. Доминирующее влияние на работу узла трения оказывает материал трущихся тел, внешние факторы, конструкция узла трения. Более изучены процессы трения металлов. Известно, что в процессе трения меняется структура поверхности металлов, возникают вторичные фазы. Однако, металлы не выдерживают больших нагрузок и не пригодны для работы в экстремальных условиях — при сухом и полусухом трении, больших нагрузках, скоростях. В этих условиях наиболее перспективными

являются сверхтвердые и высокомодульные материалы. Известны сверхтвердые материалы — алмаз (твердость $100\,\Gamma\Pi a$), кубический нитрид бора (сВN, твердость $90,5\,\Gamma\Pi a$); высокомодульные материалы — карбид (WC, $E=710\,\Gamma\Pi a$) и борид (W $_2$ B $_5$, $E=790\,\Gamma\Pi a$) вольфрама. Установлено [1], что коэффициент сухого трения алмаза по алмазу равен f=0,05-0,25 и зависит от кристаллографической плоскости скольжения; алмаз выдерживает без разрушения давления до $0,1\,$ модуля Юнга. Теоретические расчеты показали [2], что коэффициент сухого трения при контакте сВN по

сВN равен f = 0,21. Исследования показали [3], что эффективными материалами при высокоскоростном (до 40 м/с) трении являются композиты с высокомодульными наполнителями.

Методом вакуумной пайки изготовлены образцы пар трения из сверхтвердых материалов на основе cBN (эльбор-Р, гексанит-Р, композит 05-ИТ) и высокомодульных материалов - твердых сплавов группы ВК и ТК (ВК6, ВК15, Т15К6), спеченных по стандартному режиму. Материалы испытаны в условиях сухого трения на воздухе в сравнении с нитридной керамикой (Si₂N₄). Использовали схемы испытания: образец (сверхтвердые материалы на основе cBN, Si_2N_4) – ролик (твердые сплавы). Режимы испытания: скорость скольжения V = 1-6 м/с; нагрузка P = 50-100 Н; давление в зоне трения 14,7-108,8 МПа. Исследовали коэффициенты трения, износ пар трения, температуры узла трения в зависимости от скорости скольжения и сочетания материалов пар трения.

Установлено, что с повышением скорости скольжения (1–6 м/с) коэффициент трения материалов на основе сВN по твердым сплавам

уменьшается с f=0.62 до 0,37, а температура в зоне трения возрастает до 300 °C. Существенного различия коэффициентов трения от марки сВN и твердых сплавов не наблюдали. Суммарный линейный износ пар трения составил, мкм/км: 2,5–9,0 (эльбор-Р — твердые сплавы); 5,8–14,0 (композит 05-ИТ — твердые сплавы); 2–6 (гексанит-Р — твердые сплавы). По уменьшению износа сверхтвердые материалы на основе сВN располагаются в следующей последовательности: композит 05-ИТ—эльбор-Р—гексанит-Р. Твердые сплавы в контакте со сверхтвердыми материалами изнашиваются в 3–6 раз больше сверхтвердых материалов.

Износ при сухом трении Si3N4 по твердым сплавам равен 2,0—15,1 мг/км, износ материалов на основе сВN составил 0,32—0,84 мг/км при нагрузке 100 H и скорости скольжения 3 м/с. Следовательно, износ сВN меньше $\mathrm{Si_3N_4}$ на два порядка. Такая разительная разница в износе по твердым сплавам обусловлена тем, что керамика $\mathrm{Si_3N_4}$ обладает меньшей твердостью (13,5—16 ГПа) и модулем упругости (E=280—320 ГПа) по сравнению с материалами на основе сВN (твердость 18,5—38,6 ГПа; E=715—840 ГПа).

Литература

- 1. Боуден Ф.П., Тейбор Д.. Трение и смазка твердых тел. М.: Машиностроение. 1968. 543 с.
- 2. Roskilinna J.O., Linnolahti M., Pakkanen T.A. Friction Paths for Cubic Boron Nitride: An Ab Initio Study // Tribology Letters. − 2007. − V.27. − №2. − P. 145–154.
- 3. Бондаренко В.П., Андреев И.В., Бондарь В.И. Перспективы повышения поверхностной прочности и противозадирнойстойкоститриботехнических материалов//Породоразрушающий иметаллообрабатывающий инструмент—техника и технология его изготовления и применения: Сб. науч. тр.— К.: ИСМ им. В.Н.Бакуля НАНУ, 2007. Вып. 10. С.455—459.

Бородавко В.И., Вабищевич П.А., Грецкий Н.Л., Пынькин А.М., Пуляев В.К. ГНПО «Центр» НАН Беларуси,

Волотовский Ф.А., Корзун А.Е. ОАО «ОКБ Академическое» НАН Беларуси, **Хейфец М.Л.** Президиум НАН Беларуси, Минск, Беларусь

ПРИМЕНЕНИЕ ЭЛЕКТРОННО-ЛУЧЕВОЙ СВАРКИ ПРИ ИЗГОТОВЛЕНИИ ПАКЕТА ЛОПАТОК ПАРОВЫХ ТУРБИН

Паровые турбины во время работы подвергаются воздействию различных факторов, высоких температур, коррозии, эрозии, а в результате материал испытывает статические, динамические и

температурные напряжения. Рабочие лопатки являются одними из наиболее ответственных и дорогих элементов турбины. От качества материала, выполнения и установки лопаточного аппара-