## ОЦЕНКА МИКРОТВЕРДОСТИ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ МЕТОДОМ УДАРНОГО ВДАВЛИВАНИЯ

Аспирантка Степаненко А.Н. Д-р техн. наук, профессор Антонюк В.С. Национальный технический университет Украины «Киевский политехнический институт»

Композиционные сплавы являются важными и перспективными конструкционными материалами в приборо- и машиностроении благодаря высокой прочности, коррозийной стойкости и малом удельном весом. Уникальные механические свойства композиционных сплавов и недостаточная их изученность вызывает трудности при их проектировании и изготовлении. Поэтому разработка композиционных материалов требует новых подходов к исследованиям влияние легирующих элементов на их физико-механические свойства.

Для исследования влияния легирующих элементов, таких как вольфрам, титан, цирконий на физико-механические свойства композиционных материалы на основе боридов изготовлены образцы диаметром 8,25 мм, толщиной 3,5 мм, которые спекали при различной температуре в диапазоне от 1800 до 2000 °C.

Критерием оценки выбрана микротвердость образцов, которую измеряли методом ударного вдавливания, для чего использовали динамический твердомер ТД-32, производства Ультракон, ООО НПФ, Киев, Украина.

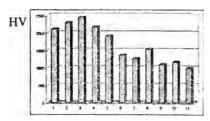



Рисунок 1 — Влияние состава композита на микротвердость: 1 —  $ZrB_{12}TiB_2$ ; 2, 3 —  $ZrB_{12}+WC$ ; 4,5 —  $ZrB_{12}+W_2B$ ; 6-8  $W_2B+WC$ ; 9-11 —  $W_2B$ ,

Как показали экспериментальные исследования, набольший диапазон микротвердости имели композиты легированные цирконием — ZrB<sub>12</sub>+WC спеченные при температуре 1800 °C.

Для композитов типа ZrB<sub>12</sub>+W<sub>2</sub>B повышение температуры спекания до 2000°С приводит к снижению микротвердости поверхности образцов.

Микротвердость композитов группы  $W_2B+WC$  и  $W_2B$  составляла от 1089 до 1530 HV (рисунок 1).

Полученные результаты исследований дают основания полагать, что

легирование цирконием значительно повышают микротвердость композиционных материалов на основе боридов.