затруднений. Ситуации успеха организуются преподавателем путем поощрения промежуточных действий студентов, то есть путем специального подбадривания его на новые усилия.

Определяя цель и намерения при обучении, формируют эмоциональное состояние, а именно интерес к изучаемой дисциплине. В ходе развития побуждений, цели и намерений формируется потребность к достижению успеха при изучении той или иной дисциплины.

УДК 378.014(072.8)

Образовательные технологии в подготовке инженера

Сторожилов А.И.

Белорусский национальный технический университет

Традиционно подготовка инженеров ведется в технических вузах без акцента на использование в учебном процессе каких-либо особых методов, методик, педагогических технологий. Длительное время это оказывалось вполне приемлемым. Современная образовательная парадигма требует новых подходов. В докладе рассмотрены основы инженерной педагогики, охарактеризованы некоторые современные образовательные технологии, используемые в высшем и профессиональном образовании [1]:

- диалога культур;
- коллективной мыследеятельности;
- компьютерная (информационная);
- кооперативного обучения;
- модульная;
- педагогических мастерских;
- технология обучения как учебного исследования;
- интегральная технология.

Наибольшее внимание уделено технологии ТОГИС – технологии образования в глобальном информационном сообществе [2].

Эта технология по мнению автора заслуживает ee названия "Технология XXI века", поскольку она опирается наиболее эффективные современные методы и средства поиска информации по поставленной задаче, активную (деятельностную) позицию обучающегося в формировании критической оценки полученной информации, выработки собственной оценки, отношения к проблеме с позиций общечеловеческих гуманистических ценностей, способности к принятию решения и чувства ответственности за принятое решение. Именно такими качествами должен обладать современный специалист в любой сфере деятельности и в первую очередь управленческой, проектной, производственной, что характерно для деятельности инженера.

Литература:

- 1. Управленческие и дидактические аспекты технологизации образования / Под ред. А.И. Жука Минск: АПО, 2000. 204с.
 - 2. Школа диалога культур / Под ред. В.С. Библера. Кемеров.

УДК519.674.001.57

Практическая реализация дисциплины "инженерная графика" на компьютере

Сторожилов А.И.

Белорусский национальный технический университет

Практика преподавания инженерной графики традиционно основана на решении геометрических задач. Методы решения, в свою очередь основаны на теоретических положениях начертательной геометрии. Налицо типичная ситуация традиционного обучения инженерной графике в технических вузах. Но оправданна ли такая практика сегодня?

Автором разработана и используется методика и лабораторный практикум, предназначенные для обучения решению задач инженерной графики на основе компьютерного моделирования.

Последовательность и содержание учебных тем мы оставили без изменения, но методы решения задач использовали новые, основанные на трехмерном компьютерном геометро-графическом моделировании. На конкретных примерах рассматриваются методы решения задач построения и выполнения преобразований, указаны используемые процедуры, последовательность действий, промежуточные и конечные результаты работы. В конце каждой работы, в приложениях, приведены варианты заданий для выполнения их после усвоения методики решения на приведенном примере.

Практикум содержит 10 лабораторных работ:

- построение пространственной ломаной линии и модели изогнутого в пространстве прутка для решения задачи определения их длины;
 - построение линии пересечения плоскостей;
- построение плоских моделей контуров, образованных сопряжением различных отрезков, дуг и окружностей;
 - эффективное построение проекционных моделей чертежей;
 - построение трехмерных проволочно-каркасных моделей;
 - создание трехмерной твердотельной модели геометрического тела;
 - построение проекционного чертежа на основе ее модели;
- решение задачи построения развертки сложного гранного геометрического тела;