ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ, ДЛИНЫ И ВРЕМЕНИ КОГЕРЕНТНОСТИ СВЕТА ПРИ ПОМОЩИ КОЛЕЦ НЬЮТОНА

Студенты гр. 103537 Неверо Д.Д., Соловей В.В., кандидат физ.-мат. наук, доцент А.М. Новоселов Белорусский национальный технический университет

На базе учебной лабораторной установки по наблюдению колец Ньктона проводились измерения длины волны, длины и времени когерентности света, степень монохроматичности $\left(\frac{\lambda}{\Delta\lambda}\right)$ которых, определялась полосой пропускания $(\Delta\lambda)$ используемых светофильтров.

Косвенные измерения длины волны базировались на теоретической зависимости диаметра темных колец (D_m) от номера кольца (m), радиуса линзы (R), длины волны (λ) и величины деформации линзы и пластины (δ) :

$$D_m^2 = 4Rm\lambda + 8R\delta,$$

из которой следует, что λ может быть рассчитана по формуле $\lambda = \frac{\mathrm{tg}\alpha}{4R}$, где тангенс угла наклона (tga) определялся из экспериментальной зависимости $D_m = f(m)$. Измерив диаметр центрального темного пятна (кольца Ньютона с m=0), определялась деформация линзы по формуле: $\delta = D_0^2 / 8R$. Число наблюдаемых интерференционных полос при использовании света с малой степенью монохроматичности было ограничено. При нормальном падении света, когда кольца Ньютона локализованы на верхней поверхности воздушного зазора между пластиной и линзой, это ограничение не связано с пространственной когерентностью, а обусловлено временной когерентностью света. Следовательно, предельное число наблюдаемых максимумов (светлых колец) (m_{mn}^1) определяет длину когерентности (L_k) : $m_{np}^1 \lambda = L_k$. На основании этого, определив m_{np}^1 , рассчитывалось L_k , время когерентности ($t_k = \frac{L_k}{c}$, где c – скорость света в вакууме) и $\Delta\lambda$ (т.к. $L_k = \frac{\lambda^2}{\Lambda \lambda}$). Проводились независимые измерения λ и Δλ по спектрам излучения используемого света Результаты исследований могут быть использованы при проведении лабораторных работ по интерференции.