- 3. Капский, Д.В. Методика определения экологических потерь с учетом транспортного шума / Д. В. Капский, А. И. Рябчинский // Вестн. Бел. гос. ун-та транспорта. Наука и транспорт. -2012. -№ 1 (24) C. 39–42.
- 4. Капский, Д.В. Методика оценки транспортного шума на перекрестках / Д.В. Капский // Организация и безопасность дорожного движения в крупных городах : сб. докл. девятой междунар. науч.практ. конф., Санкт-Петербург, 23–24 сент. 2010 г. СПб.: СПбГА-СУ, 2010. С. 209–212.

Представлено 22.03.2022

УДК 656.025.2

ОЦЕНКА ВЛИЯНИЯ ВЫСОКОСКОРОСТНОЙ ЖЕЛЕЗНОДОРОЖНОЙ МАГИСТРАЛИ НА ОБЪЕМЫ ПЕРЕДВИЖЕНИЙ НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ

IMPACT ASSESSMENT OF HIGH-SPEED RAIL ON THE VOLUME OF THE PASSENGER ROAD TRANSPORT

Иващенко О. В., Ногова Е. Г., канд. техн. наук, ООО «Санкт-Петербургский институт транспортных систем», г. Санкт-Петербург, Россия О. Ivashchenko, E. Nogova, Ph.D. in Engineering, Saint-Petersburg Institute for transport systems, St. Petersburg, Russia

В статье приведена оценка влияния перспективной высокоскоростной железнодорожной магистрали Москва — Санкт-Петербург на изменение спроса на поездки на автомобильном транспорте, а также характеристика прогнозных расчетов распределения пассажиропотока по видам транспорта.

The article presents the future Moscow – St. Petersburg high-speed rail impact on the change in demand for road transport trips and description of the forecast calculations of passenger flow by modes of transport.

 $\underline{\mathit{Kлючевые}}$ слова: высокоскоростная железнодорожная магистраль (BCM), автомобильный транспорт, пассажиропоток.

Keywords: high speed rail (HSR), road transport, passenger flow.

ВВЕДЕНИЕ

Появление нового удобного вида транспорта приводит к перераспределению пассажиропотоков с ранее существовавших видов, включая автомобильный транспорт, что делает актуальным прогноз передвижений по автомобильным дорогам.

ВЛИЯНИЕ ПЕРСПЕКТИВНОЙ ВСМ НА ИЗМЕНЕНИЕ СПРОСА НА ПОЕЗДКИ НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ

По ВСМ поезда могут двигаться со скоростями свыше 200 – 250 км/ч. Первая такая магистраль была открыта в Японии в 1964 г., сегодня протяженность линий ВСМ превышает 50 тыс. км, из них свыше 30 тыс. км построено в Китае [1]. В России уже более десяти лет рассматриваются варианты строительства ВСМ из Москвы в восточном, южном и северо-западном направлениях [2], но ни один из них пока не реализован.

В настоящее время завершается проектирование ВСМ, которая свяжет центры четырех регионов: Москву, Санкт-Петербург, Тверь и Великий Новгород. В коридоре ее прохождения в 2019 году было совершено более 34 млн. поездок, при этом около половины приходилось на связь Москва — Санкт-Петербург. Эти поездки осуществлялись на скоростных поездах (29,9 %), поездах дальнего следования (31,3 %), самолетах (17,6 %, без учета транзитных полетов через Москву), личных автомобилях по автодорогам М-11 «Нева» (14,2 %) и М-10 «Россия» (6,3 %) и автобусах (менее 1 %). Сейчас поездка на скоростном поезде между Москвой и Санкт-Петербургом занимает не менее 3,5 часов, на ВСМ преодолеть это расстояние можно будет за 2 часа 15 мин.

ООО «СПБ ИТС» выполнял прогноз пассажиропотоков на ВСМ в составе проекта создания высокоскоростной железнодорожной магистрали Санкт-Петербург — Москва. Согласно расчётам, к 2036 г. половину пассажиропотока на ВСМ составит пассажиропоток, переключаемый с других видов транспорта.

Анализ опыта прогнозирования пассажиропотоков на BCM [3] показал отсутствие единого подхода к выполнению этих работ. Важно отметить, что использование программных продуктов транспортного моделирования, таких как PTV Vision Visum и аналогичных, для таких прогнозов невозможно, поскольку они

не позволяют дифференцировать по корреспонденциям чувствительность пользователей к затратам на передвижения, а также корректно учесть тариф в структуре этих затрат.

При выполнении прогноза пассажиропотоков ООО «СПБ ИТС» была использована модель множественного дискретного выбора. Применение такой модели обосновано в монографиях [4] и [5], в работе [6] оно характеризуется как общепринятое.

В данной модели вероятность выбора вида транспорта для каждой корреспонденции и цели поездки пропорциональна $e^{-\gamma_{\rm LII}\times {\rm O3}_{\rm LII}^{\rm BT}}$, где O3 — обобщенные затраты, γ — коэффициент предпочтения, отражающий отношение участников движения к затратам на поездку, ЦП — цель поездки, BT — вид транспорта.

Несмотря на кажущуюся простоту использование данной модели связано со значительными сложностями.

Во-первых, точный подбор коэффициента γ , который рассчитывается исходя из сложившегося распределения пассажиропотоков, возможен только при наличии двух существующих видов транспорта. В коридоре прохождения ВСМ Москва — Санкт-Петербург на каждой корреспонденции представлено не менее четырех видов транспорта. Для решения задачи подбора γ , которая максимально бы соответствовала сложившемуся распределению, было разработано четыре альтернативных метода. Выбор итогового варианта осуществлялся путем анализа результатов расчетов по каждому из методов, при этом оказалось, что для разных корреспонденций и целей поездки наиболее походящими могут быть разные методы.

Другая сложность состояла в том, что для обеспечения адекватного описания поведения пассажиров при расчете величины ОЗ требовалось учесть разнородные составляющие — затраты времени, стоимость и удобство расписания, то есть определить их сопоставимость и привести к единой величине. Разработанный метод расчета ОЗ позволил учесть время и стоимость поездки, включая подъезды до терминалов с учетом способов их выполнения, уровни доходов пассажиров, время на дополнительные процедуры (досмотр, регистрация, получение багажа и пр.), структура пассажиропотоков по местам проживания пассажиров,

удобство расписания и даже резерв времени, который пассажиры учитывают во избежание опоздания.

Результаты расчетов показали, что на связи Москва — Санкт-Петербург (прогноз на 2036 год) со скоростного поезда Сапсан на ВСМ пересядут почти все его пользователи (что объясняется отменой движения скоростных поездов), с воздушного транспорта и поездов дальнего следования переключится 21 % пассажиров, с автомобильного транспорта — 22 %. Строительство ВСМ практически не повлияет на количество поездок по бесплатной автомобильной дороге М-10 «Россия» в связи со стремлением ее пользователей к финансовой экономии.

По результатам прогноза были выявлены следующие закономерности влияния BCM на пассажиропотоки на автомобильном транспорте:

- 1) на протяженных хорошо обслуженных даже в отсутствии ВСМ связях объемы переключений пассажиропотоков с автомобильного транспорта соответствуют общемировому опыту [4] (связь Москва Санкт-Петербург);
- 2) на коротких расстояниях (менее 200 км), где преимущества от использования ВСМ снижаются, доля переключаемого пассажиропотока ниже общемировой: связи Москва Тверь (10 %) и Санкт-Петербург Великий Новгород (15 %);
- 3) при низких доходах населения обоих городов доля переключаемого пассажиропотока ниже общемировой: связь Тверь Великий Новгород (16 %).
- 4) при низком качестве обслуживания связи в отсутствии ВСМ доля переключаемого пассажиропотока превышает общемировую: связи Москва Великий Новгород (29 %) и Тверь Санкт-Петербург (34 %).

ЗАКЛЮЧЕНИЕ

Разработанные методы расчета позволяют корректно учесть специфику транспортного поведения пассажиров. Адекватность модели подтверждается соответствием полученных результатов мировому опыту.

ЛИТЕРАТУРА

- 1. ВСМ в мире. АО «Скоростные магистрали» [Электронный ресурс]. Режим доступа: http://www.hsrail.ru/press-center/news/vsmm. Дата доступа: 20.04.2022.
- 2. Программа организации скоростного и высокоскоростного железнодорожного сообщения в Российской Федерации (проект). М.: ОАО «РЖД», 2020.
- 3. О моделировании пассажирского потока для высокоскоростных железных дорог / А. С. Мишарин [и др.] // International Journal of Open Information Technologies. T.6. N olimins 5. C.15-20.
- 4. Вильсон А. Дж. Энтропийные методы моделирования сложных систем. М.: Наука, 1978. 248 с.
- 5. Ortúzar, Juan de Dios, Luis G. Willumsen. Modelling Transport. 4th Edition / Juan de Dios Ortúzar, Luis G. Willumsen. UK: John Wiley & Sons Ltd, 2011.
 - 6. High Speed Rail Study, AECOM Australia, 2011.

Представлено 14.04.2022