УДК 621

РАЗРАБОТКА НОВЫХ КОНСТРУКЦИЙ И ТЕХНОЛОГИЙ ДЛЯ ДАТЧИКОВ НОВОГО ПОКОЛЕНИЯ

Кернасовский Ю.М.¹, Моспанов А.Н.¹, Таратын И.А.^{1,2}

¹OAO «Минский НИИ радиоматериалов» ²Белорусский национальный технический университет Минск, Республика Беларусь

Аннотация. Рассмотренны ключевые задачи и приоритеты научных и прикладных исследований по направлению разработки технологий для датчиков нового поколения.

Ключевые слова: датчик, сенсорная техника, микроэлектромеханические системы, импортозамещение.

DEVELOPMENT OF NEW DESIGNS AND TECHNOLOGIES FOR NEW GENERATION SENSORS Kernasouski Y.¹, Mospanov A.¹, Taratyn I.^{1,2}

¹JSC «Minsk Research Institute of Radio Materials» ²Belarusian National Technical University Minsk, Republic of Belarus

Annotation. The key tasks and priorities of scientific and applied research in the direction of developing technologies for new generation sensors are considered.

Key words: sensor, sensor technology, microelectromechanical systems, import substitution.

Адрес для переписки: Таратын И.А., пр. Независимости, 65, Минск 220013, Республика Беларусь e-mail: mnt@bntu.by

Актуальность развития данного направления в Республике Беларусь обусловлена, прежде всего, ситуацией в мире, которая характеризуется ограничениями, накладываемыми на доступ к наукоемкой продукции, санкциями, стремлением государств самостоятельно развивать высокотехнологичные производства и обеспечивать импортозамещение критических электронных компонентов.

В нашей стране потребителями датчиков являются структурообразующие предприятия автомобилестроения, машиностроительного комплекса, различных отраслей народного хозяйства, включая организации жилищно-коммунального хозяйства и др., для которых вопрос импортозамещения в настоящее время стоит весьма остро. Подтверждением этому являются совместные совещания представителей Министерства промышленности Республики Беларусь и Минпромторга России по вопросам импортозамещения электронных комплектующих, которые состоялись в текущем году. В совещаниях принимал участие и наш институт.

Поэтому важнейшей задачей является практическая реализация результатов научно-технической деятельности, скорейшее освоение производства критических компонентов сенсорной техники в интересах белорусских и российских предприятий.

Рабочей группой инновационно-промышленного кластера «Микро-, опто- и СВЧ-электроника» определены задачи и перечень основных НИОКР, которые необходимы для развития данного направления и организации производства датчиков нового поколения.

Запачи•

- развитие критических технологий МЭМС;

- разработка и изготовление чувствительных мэмс элементов и датчиков;
- разработка и изготовление систем на основе датчиков;
- совершенствование материально-технической базы для выполнения исследований и разработок;
- разработка и освоение производства импортозамещающей номенклатуры сенсорной техники.

Приоритеты научных исследований:

- технологии сборки 2-*d*, 3-*d* для многофункциональных МЭМС;
- создание новых типов интегральных микроэлектромеханических чувствительных элементов на основе сегнетоэлектриков;
- разработка интегральных газовых сенсоров с низким энергопотреблением и высокой избирательностью контролируемых газов;
- технологии высокоточных датчиков угла наклона навигационного уровня с использованием мэмс технологий;
 - оптические сенсоры.

НИОКР выполняются в рамках ГПНИ «Энергетические и ядерные процессы и технологии», «Материаловедение, новые материалы и технологии»; «Фотоника и электроника для инноваций», ГП «Наукоемкие технологии и техника» и за счет собственных средств. Работы являются комплексными, выполняются совместно с организациями Министерства образования и НАН Беларуси, входящими в состав кластера.

Примеры совместных НИОКР:

-НИР «Исследование и разработка методов формирования интегральных сенсоров на основе сегнетоэлектрических нанокомпозитов группы перовскита» (МНИИРМ);

- НИР «Разработка структурированных и многослойных метаматериалов и метаповерхностей для гибридных микроэлектронных сенсорных систем» (МНИИРМ);
- -НИР «Моделирование и расчет характеристик датчика угла наклона навигационного уровня» (БНТУ, МНИИРМ);
- -НИР «Разработка научных основ, конструкции и технологии изготовления маломощной мультисенсорной системы для детектирования составов газов» (БГУИР, БНТУ, МНИИРМ);
- НИР «Технология сварки стекло-кремний, стекло-металл с использованием процесса анодной сварки» (БНТУ,МНИРМ); задание формируется;
- НИР «Разработка многопараметрических оптических сенсоров изображений» (ГНПО «Оптика, оптоэлектроника и лазерная техника», БГУ);
- ОКР «Разработать семейство датчиков на основе кремниевых лавинных фотодиодов и фотоумножителей с системами регистрации и обработки оптических излучений малой интенсивности» (ГНПО «Оптика, оптоэлектроника и лазерная техника», НИИПФП им. А.Н. Севченко БГУ);
- ОКР «Разработка системы контроля нагрузки на ось автомобиля» (МНИИРМ);
- НИР «Разработка и создание встречно-штыревой структуры в качестве коллектора тока для микросуперконденсатора» (БГУИР, МНИИРМ);
- -ОКР «Создание пленочных высокочувствительных селективных газовых сенсоров высокого быстродействия на основе тонкопленочных углеродных наноструктур» (НИИ ЯП БГУ, БГУ).

При выполнении исследований будут активно использоваться возможности отраслевых лабораторий, созданных и укомплектованных современным оборудованием, в том числе оборудованием ОАО Планар, входящего в состав Кластера.

«Отраслевая научно-исследовательская лаборатория инновационных приборов МЭМС-технологий», которая организована на кафедре «Микро- и нанотехника» БНТУ. Лаборатория является базой не только для подготовки высококвалифицированных специалистов по направлению «микромеханические системы», но и выполнения НИР в области МЭМС.

«Отраслевая лаборатория разработки критических технологий производства МЭМС и СВЧ электронных компонентов в интересах гражданского и оборонного сектора экономики Республики Беларусь», которая организована в ОАО «Минский НИИ Радиоматериалов» в 2021 году.

В рамках отраслевой лаборатории МЭМС и СВЧ будут сформированы 9 участков:

- участок деионизованной воды;
- участок химической обработки;
- участок сборки;
- участок контрольно-измерительный;
- участок напыления металлических слоев и гравления;
 - участок испытаний;

- участок ионного легирования и отжига, участок нанесения диэлектриков;
 - участок фотолитографии.

В 2022 году за счет средств инновационного фонда Мингорисполкома приобретено 11 единиц оборудования, в том числе камера микроклиматическая. Камера микроклиматическая предназначена для создания в ОАО «МИНСКИЙ НИИ РАДИОМАТЕРИАЛОВ» новых чистых помещений площадью 300 м² в соответствии с требованиями микроэлектронного производства.

Процесс освоения критических технологий МЭМС и формирования соответствующей отрасли выстраивается по следующей схеме: подготовка высококвалифицированных специалистов, выполнение исследований — БНТУ, исследования, разработка и изготовление опытных партий и мелких серий МЭМС и датчиков — МНИИРМ, освоение массового производства МЭМС — ОАО «ИНТЕГРАЛ».

Принимая во внимание необходимость создания импортозамещающей продукции, к важнейшим результатам следует отнести следующие изделия:

1. В соответствии с требованиями ОАО «МАЗ» доработана Система мониторинга концентрации метана в критичных точках автомобиля. Ближайший аналог компании TEQ SA (Тек, Швейцария). Система повышает безопасность и надежность автомобильной техники и увеличивает ее экспортный потенциал.

Система обеспечивает мониторинг концентрации СН₄ в моторном отсеке, в местах установки газовых баллонов, отсеке предпусковых жидкостных подогревателей двигателя и у редукторов газовых баллонов транспортного средства.

Конструкция датчиков $\mathrm{CH_{4}}$, имеет устройство нагрева и охлаждения обеспечивающее работу датчиков при температуре окружающей среды до плюс 95 °C.

Унифицированная аппаратная часть и стандартные протоколы обмена позволяет менять конфигурацию системы без доработки ПО и блока мониторинга.

Система введена в КД на автобусы МАЗ 203946, 206946, 203948, 206948. Заключен договор с ОАО «МАЗ» от 14.06.2022 № 516/97257 на поставку двух систем мониторинга метана. В соответствии с запросом ОАО «МАЗ» (письмо от 05.07.2022 № 516-8-7/7927) о поставке 889 штук таких систем ведется подготовка серийного производства. Объем реализации в 2023 году может составить около 2 100 000 рублей.

2. «Индукционный датчик конечного положения (ИДКПТ). Разработан по техническим требованиям ОАО «МТЗ».

Предназначен для бесконтактной коммутации исполнительных устройств в составе электронных систем управления тракторов «Беларус».

Надежность и долговечность датчика обспечивается за счет применения новых схемотехнических решений и материалов корпуса, а также расширенного температурного диапазона (–40…+ 85°C).

Получено заключение ОАО «МТЗ» № 7231 о допуске датчиков конечного положения на серийное производство. Поставка ведется в соответствии с запросами ОАО «МТЗ».

- 3. Бесконтактные индуктивные выключатели ВИБ М12 и ВИБ М18. Разработаны по требованиям ОАО Станкозавод «Красный борец» на базе конструктивных решений датчика ИДКПТ. Поставляются по договору с ОАО Станкозавод «Красный борец» от 31.05.2022 № 03-2022/80.
- 4. Дифференциальный зонд (ДЗ) с магнитным сердечником. Предназначен для контроля дефектности круглого стального проката. (трещины шириной более 0,1 мм и длиной более 11,5 мм). Решает проблему регулярной замены дорогостоящего импортного комплектующего стоимостью 6 тыс. евро на ОАО «БМЗ».

Датчик обеспечит стабильную работу трубопрокатного цеха при отсутствии оригинальных импортных запчастей (Корпорация Fluke, США). Потребность ОАО «БМЗ – 20 штук в год. Заключен договор от 22.08.2022 № 22013598 с ОАО «БМЗ – управляющая компания холдинга «БМК» на поставку первой партии (4 штуки) датчиков на сумму 63 595,06 рублей.

Дальнейшее развитие разработки – замена двух микрокатушек на микроминиатюрные преобразователи Холла белорусского производителя. Это позволит расширить область применения для контроля дефектности различных металлических конструкций.

5. Датчик угла наклона ДУН-15-1. Датчик угла наклона ДУН-15-1 (рис. 1) предназначен для определения угла наклона транспортных средств (тангаж, крен). Датчик определяет положение объекта в пространстве относительно двух координатных осей и передает информацию по САЛ протоколу стандарта SAE J1939.

Потребители - ОАО «МАЗ», ОАО «БЕЛАЗ», ОАО «МТЗ» и др.

Получено разрешение ОАО «БЕЛАЗ» (Протокол от 09.09.2022) на применение датчика угла наклона ДУН-15-1. в конструкции карьерных самосвалов и спецтехнике ОАО «БЕЛАЗ».

МИНСКИЙ НИИ РАДИОМАТЕРИАЛОВ

Датчик угла наклона ДУН-15-1

Датчик угла наклона для определения угла наклона транспортных средств (тангаж, крен). Датчик определяет положение объекта в пространстве относительно двух координатных осей и передает информацию по CAN протоколу стандарта SAE J1939.

Потребители - MA3, OAO «БЕЛАЗ», МТ3 и др.

Получено разрешение ОАО «БЕЛАЗ» (Протокол от 09.09.2022г.) на применение датчика угла наклона ДУН-15-1 в конструкции карьерных самосвалов и спецтехнике OAO «БЕЛАЗ».

Технические характеристики:

TEXTIFICENCE Adpartic prictings.	
Диапазон углов наклона, град, не менее	±15
Количество осей чувствительности	2
Погрешность измерения угла наклона в диапазоне рабочих температур (с термокомпенсацией), град, не более	±0.25
Напряжение питания, В	от 18 до 36
Рабочий диапазон температур, С	-40+70
Габаритные размеры, мм, не более	87x58x30
Тип выходного интерфейса	CAN 2.0 A/B
Скорость выходного интерфейса, кбит/с	250
Масса г	450

Рисунок 1 – Описание датчика угла наклона ДУН-15-1

Автоматизированный метеорологический комплекс

Аналог финской фирмы Vaisala.

Области применения:

■ военная техника (ОАО «ВОЛАТАВТО»,

ОАО «Агат - электромеханический завод», БСВТ, ОАО «Пеленп»),

- системы точного земледелия,
- гидрометеослужбы и пр.

Характеристики:

- диапазон измерения скорости ветра, м/с от 0 до 50. точность измерения при скорости ветра от 0 до 40 м/с
- диапазон измерения давления, гПа от 300 до 1100.
- ▶ точность измерения давления, гПа ±0,5.
- ▶ диапазон измерения температуры, °C от -40 до +60.
- > точность измерения температуры, °С ±0,5.
 > диапазон измерения влажности, % от 0 до 100.
- точность измерения влажности от 0 до 90, % ±3.
- ▶ точность измерения влажности от 90 до 100, % ±5.

Рисунок 2 – Описание автоматизированного метеорологического комплекса

6. Автоматизированный метеорологический комплекс. Комплекс (рис. 2) разработан для ряда предприятий Республики Беларусь. В настоящее время выполняется сертификация разработанного в институте автоматизированного метеорологического комплекса (аналог финской фирмы Vaisala). Метеокомплекс обеспечивает контроль параметров атмосферы: давления, температуры, влажности воздуха, скорости ветра (до 50 м/с) и направления ветра с обработкой текущей информации. В данный комплекс возможна интеграция других

датчиков (например, детектирования гамма-излучения, выносные датчики температуры и влажности почвы и др.). Области применения: военная техника (ОАО «ВОЛАТАВТО», ОАО «Агат — электромеханический завод», БСВТ), гидрометеослужбы, системы точного земледелия и пр.

Выполняемые НИОКР в полной мере соответствуют тенденциям развития данного направления в мире и будут способствовать созданию востребованной предприятиями Республики Беларусь и Российской Федерации продукции.

УДК 621

ПРОБЛЕМЫ КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ В МИКРОМЕХАНИКЕ Чижик С.А.^{1,2}, Чикунов В.В.², Лапицкая В.А.²

¹Белорусский национальный технический университет ²Институт тепло- и масообмена им. А.В. Лыкова НАН Беларуси Минск, Республика Беларусь

Аннотация. В работе представлены диагностическое оборудование и оригинальные методики для количественной оценки данных факторов с использованием метода сканирующей зондовой микроскопии. Рассмотрены примеры использования предложенных подходов.

Ключевые слова: микромеханика, контактное взаимодействие, микроэлектромеханические системы, сканирующая зондовая микроскопия.

PROBLEMS OF CONTACT INTERACTION IN MICROMECHANICS Chizhik S.^{1,2}, Chikunov V.², Lapitskaya V.²

¹Belarusian National Technical University
²A.V. Luikov heat and mass transfer institute of the Academy of scinces of Belarus
Minsk, Republic of Belarus

Annotation. The paper presents diagnostic equipment and original methods for the quantitative assessment of these factors using the method of scanning probe microscopy. Examples of using the proposed approaches are considered. **Key words:** micromechanics, contact, microelectromechanical systems, scanning probe microscopy.

Адрес для переписки: Чижик С.А., пр. Независимости, 65, Минск 220013, Республика Беларусь e-mail: mnt@bntu.by

Проектирование и эксплуатация микроэлектромеханических систем (МЭМС) сопряжены с необходимостью учета специфики физико-механического поведения материалов и рабочих поверхностей на микронном масштабном уровне. В качестве основных факторов влияющих на формирование площади фактического контакта и адгезионного сцепления подвижных поверхностей можно определить капиллярные силы, силы межмолекулярного взаимодействия, упругие свойства материала и наношероховатость. Силы, которыми можно пренебречь при эксплуатации машин на макроуровне, оказываются критически значимыми для МЭМС, приводящими к разрушению микроконструкций.

В работе представлены диагностическое оборудование и оригинальные методики для количественной оценки данных факторов с использованием метода сканирующей зондовой микроскопии. Изображения топографии и фазового контраста позволяют получить информацию о структуре, пространственной геометрической и материаловедческой неоднородности материала

поверхностных слоев микроизделий. С помощью методик статической и динамической силовой спектроскопии определяются локальные упругие свойства и поверхностная энергия контактирующих материалов, в том числе, и молекулярнотонких покрытий. Разработаны методы осциллирующей трибометрии для экспериментальной оценки характеристик трения и изнашивания поверхностей при эксплуатации микромашин. Также обсуждаются компьютерные модели контактного взаимодействия шероховатых поверхностей МЭМС с учетом внешней нагрузки, упругих свойств материалов, молекулярных и капиллярных сил. Пари этом представлены возможности 3D-визуализации зоны фактического контакта.

Рассмотрены примеры использования предложенных подходов к проектированию сочленения в системах магнитной записи (магнитный диск — магнитная головка), рабочих поверхностей в микропинцетах и при решении задачи подбора материалов для реализации технологии «печатания» микро- и наноструктур.