Секция 1. ИЗМЕРИТЕЛЬНЫЕ СИСТЕМЫ И ПРИБОРЫ, ТЕХНИЧЕСКИЕ СРЕДСТВА БЕЗОПАСНОСТИ

УДК 628.74

ПРОГРАММИРУЕМЫЕ ТЕПЛОВЫЕ ПОЖАРНЫЕ ИЗВЕЩАТЕЛИ В СИСТЕМАХ ПРОТИВОПОЖАРНОЙ ЗАЩИТЫ Антошин А.А.¹, Галузо В.Е.², Пинаев А.И.²

¹Белорусский национальный технический университет ²Белорусский государственный университет информатики и радиоэлектроники Минск, Республика Беларусь

Аннотация. Дан анализ существующих автоматических пожарных извещателей. Предложен программируемый адаптивный тепловой пожарный извещатель.

Ключевые слова: система пожарной сигнализации, автоматические пожарные извещатели, тепловой пожарный извещатель.

PROGRAMMABLE HEAT FIRE DETECTORS IN FIRE PROTECTION SYSTEMS Antoshin A.¹, Haluzo V.², Pinaev A.²

¹Belarusian State Technical University
²Belarusian State University of Informatics and Radioelectronics
Minsk, Republic of Belarus

Abstract. The analysis of existing automatic fire detectors is given. A programmable adaptive thermal fire detector is proposed.

Key words: fire alarm system, automatic fire detectors, thermal fire detector.

Адрес для переписки: Галузо В.Е., ул. П. Бровки, 6, Минск 220113, Республика Беларусь e-mail: valga51@yandex.ru

Согласно строительным нормам СН 2.02.03-2019 «Пожарная автоматика зданий и сооружений» выбор оборудования пожарной автоматики в значительной степени определяется функциональным назначением здания (помещения). Одним из наиболее сложных объектов противопожарной защиты являются здания, в которых размещено технологическое оборудование со значительным выделением тепла в процессе работы. Сложность защиты такого объекта обусловлена трудностью в применении пожарных извещателей из-за высокой вероятности ложного срабатывания. Как правило, это обусловлено наличием в окружающей среде вблизи технологических установок большой концентрации примесей в виде аэрозоля, неравномерного распределения температуры среды в разных технологических циклах работы оборудования, а также возникающими пиковыми выделениями тепла. Использование для защиты таких объектов автоматических систем пожаротушения предъявляет высокие требования к своевременности обнаружения пожара при исключении ложных срабатываний. При позднем обнаружении возгорания высок риск снижения эффективности пожаротушения, при ложном срабатывании - возникает угроза персоналу и оборудованию от непосредственного воздействия огнетушащих составов при отсутствии пожара. Все это автоматически поднимает требования к пожарным извещателям.

В таких условиях наиболее широко используются тепловые пожарные извещатели в том числе максимально-дифференциальные. Интерес к те-

пловым пожарным извещателям в последнее время не ослабевает [1]. В указанном обзоре отмечается, что в настоящее время интенсивно развиваются системы раннего предупреждения о пожаре с возможностью обнаружения факторов пожара, возникающих в процессе до пламенного горения. Обращается внимание на то, что системы пожарной сигнализации становятся все более и более «умными», т.е. более широко используются элементы искусственного интеллекта. Например, в [2] предлагается, используя машинное обучение распознавать стадию пожара. Однако основное внимание в обзоре [1] уделяется принципам обнаружения факторов пожара.

Широкое применение для этих целей современных максимально-дифференциальных тепловых извещателей т.е. извещатели с индексом S ограничивается их особенностями, к которым следует отнести отсутствие возможности изменять в процессе эксплуатации минимальную статическую температуру срабатывания, соответствующую классу извещателя. Названная особенность может привести к необходимости устанавливать параметры извещателя на наиболее высокую температуру срабатывания, соответствующую наиболее «тяжелому» режиму работы оборудования, в противном случае повышается вероятность ложных срабатываний.

Решением возникшей проблемы может служить реализация теплового пожарного извещателя с индексом R согласно СТБ ЕН 54-5-2009 или СТБ 2218-2011. Предлагается реализация такого извещателя как автоматически программируемого

теплового извещателя в котором температура срабатывания или время обнаружения пожара будет определяться скоростью нарастания температуры воздушного потока, соответствующей пожару. Управление температурой срабатывания извещателя осуществляются автоматически блоком управления, представляющим из себя либо единое целое с датчиком температуры, либо отдельно расположенным.

Управление извещателем может осуществляться как по командам дополнительных датчиков, так и по командам самого технологического оборудования. Например, оборудование находится в технологическом цикле с минимальным тепловыделением, которое способно вызвать рост температуры со скоростью 1 °С/мин. В этом случае по соответствующей команде показатели чувствительности извещателя автоматически «повышаются», при работе в более «тяжелом» цикле — «понижаются». Аналогичным образом это можно осуществить по сигналам от других датчиков (температуры, освещенности, загазованности и т. п), реализовав дополнительный канал контроля. Если извещатель

контролирует время срабатывания, то по соответствующей команде извещатель сформирует сигнал «пожар» через 29 мин, когда температура изменится на 29 °С и достигнет значения 34 °С при температуре окружающей среды 5 °С. Если тепловыделение и как следствие этого скорость роста температуры больше, то время срабатывания извещателя будет меньше, а температура ниже.

Таким образом используя автоматический программируемый тепловой извещатель, можно существенно повысить эффективность обнаружения возгорания без риска ложных срабатываний. Практическое применение продемонстрировало его высокую эффективность в системах пожаротушения транспортных средств.

Литература

- 1. Recent Advances on Early-Stage Fire-Warning Systems: Mechanism, Performance, and Perspective / Xiaolu Li [et al.] // Nano-Micro Lett. 2022. Vol. 14.
- 2. Development o a machine-learning approach for identifying the stages of fire development in residential room fires / H. Fang et al.] // Fire Saf. J. 2021. Vol. 126.

УДК 629.8

УГЛОВЫЕ ИЗМЕРЕНИЯ ОРБИТ КОСМИЧЕСКИХ ОБЪЕКТОВ СИСТЕМОЙ ОБРАБОТКИ ВИДЕОДАННЫХ

Баранова В.С., Спиридонов А.А., Лешкевич С.В., Ушаков Д.В., Саечников В.А.

Белорусский государственный университет Минск, Республика Беларусь

Аннотация. В работе представлены аппаратная и программная реализация архитектуры системы обработки видео данных, интегрированная в оптическую наземную станцию наблюдения за низкоорбитальными космическими объектами Белорусского государственного университета. Система позволяет проводить угловые измерения орбит и идентификацию космических объектов до 7-ой звездной величины в режиме автономного динамического детектирования с точностью до 0,1 град. и независимой временной синхронизацией с точностью до 1 мс.

Ключевые слова: низкоорбитальный космический объект, оптическая станция наблюдения, угловые измерения орбиты, обработка видеоданных.

SPACE OBJECTS ORBIT ANGULAR MEASUREMENTS BY VIDEO DATA PROCESSING SYSTEM

Baranova V., Spiridonov A., Liashkevich S., Ushakov D., Saetchnikov V.

Belarusian State University Minsk, Republic of Belarus

Abstract. The paper presents the video data processing system architecture hardware and software implementation integrated into the optical ground station for monitoring low-orbit space objects of the Belarusian State University. The system allows carrying out orbit angular measurements and space objects identification up to the 7th magnitude in the autonomous dynamic detection mode with an accuracy of 0.1 deg. and independent time synchronization with an accuracy of 1 ms.

Key words: low-orbit space object, optical observation station, orbit angular measurements, video data processing.

Адрес для переписки: Баранова В.С., ул. Курчатова, 5, Минск 220108, Республика Беларусь e-mail: vbaranova@bsu.by

Введение. Методы обработки видеоданных в режиме реального времени позволяют разрабатывать автономные программируемые системы распознавания для астрометрических измерений,

проводимых наземными оптическими станциями. Астрометрические измерения подразумевают определение угловых небесных координат космического объекта в нескольких точках во время его