
$$B_{k1} = P_1 K_1 F_p (\tau_p - \tau_{k1}); \tag{18}$$

$$B_{k2} = P_1 K_2 F_p (\tau_p - \tau_{k2}); \tag{19}$$

$$\Delta B = B_{k1} - B_{k2} = P_1 F_p [\tau_p (K_1 - K_2) - \tau_{k2} (K_1 - K_2) + K_1 \Delta \tau_k],$$
 (20)

где $\Delta au_k = au_{k2} - au_{k1}$; $au_{k1} = au_{k2} - \Delta au_k$.

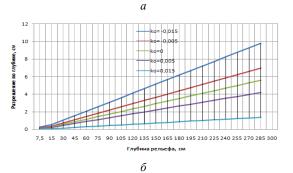


Рисунок 1 — Звисимости разрешающей способности $\Delta \xi_k$: по глубине рельефа поверхности ξ_k

Согласно графиков, для обеспечения более высокой разрешающей способности $\Delta \xi_k$ на переднем плане объекта $\xi_k \approx 0 \div \tau_p C/4$ оценку разрешающей способности целесообразно получать по

сигналам с задним фронтом, а разрешающую способность на заднем плане объекта для $\xi_k \approx \tau_p C/4 \div \tau_p C/2$ — по сигналам с передним фронтом. Из графиков следует, что при $\tau_p = 20$ нс и вариации k_0 в пределах $k_0 = 0 \pm 0,015$ и $k_N = 0,02$ разрешающая способность в диапазоне глубины рельефа поверхности объекта $\xi_k \approx 0 \div 3$ м не хуже $\Delta \xi_k \leq 6 \mp 4$ см. При уменьшении длительности лазерного импульса τ_p разрешающая способность также улучшается (т. е. $\Delta \xi_k$ уменьшается с уменьшением длительности). Так при $\tau_p = 10$ нс разрешающая способность в диапазоне $\xi_k \approx 0 \div 1,5$ м не более $\Delta \xi_k \leq 2,8 \mp 1,7$ см.

Следует отметить, что достигаемая при этом более высокая разрешающая способность переднего плана рельефа поверхности объектов $\Delta \xi_k$ (по задней части сигнала, рис. $1, \delta$), которая, например, для $k_0=0\pm0,015 < k_N$ в диапазоне $\xi_k\approx 0 \div 0,75$ м не превосходит величины $\Delta \xi_k \le 1,47 \mp 1,1$ см, позволяет обнаруживать и различать существенно более мелкие детали переднего плана различных замаскированных малогабаритных объектов с нулевым и квазинулевым контрастом: вооруженных и невооруженных людей, боеприпасы, малогабаритную робототехнику и др. с более высоким разрешением $\Delta \xi_k$.

Литература

- 1. Карасик, В. Е. Локационные лазерные системы видения / В. Е. Карасик, В. М. Орлов. М.: МГТУ им. Н.Э.Баумана, 2013.-478 с.
- 2. Зеге, Э. П. Перенос изображений в рассеивающей среде / Э. П. Зеге, А. П. Иванов, И. Л. Кацев. Минск: Наука и техника. 1985.-327 с.

УДК 621.373.826

ТЕОРЕТИЧЕСКИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ЛАЗЕРНОГО СПЕКЛ-АНАЛИЗА МИКРОВИБРАЦИЙ И СМЕЩЕНИЙ Иванов В.И., Иванов Н.И.

НИУ «Институт ядерных проблем» БГУ Минск, Республика Беларусь

Аннотация. Проведены теоретические и экспериментальные исследования, направленные на повышение чувствительности лазерного спекл-анализа для дистанционной диагностики микровибраций и смещений поверхностей объектов на основе анализа флуктуаций интегральной интенсивности лазерных спекл-полей. **Ключевые слова:** лазерная диагностика микровибраций и перемещений по спекл-полям.

THEORETICAL AND EXPERIMENTAL STUDIES OF LASER SPECKLE ANALYSIS OF MICROVIBRATIONS AND DISPLACEMENTS Ivanov V., Ivanov N.

Institute for nuclear problems of BSU Minsk, Republic of Belarus

Abstract. Theoretical and experimental studies aimed at increasing the sensitivity of laser speckle analysis for remote diagnostics of micro-vibrations and displacements of object surfaces based on the analysis of fluctuations in the integral intensity of laser speckle fields have been carried out.

Key words: laser diagnostics of micro-vibrations and movements in speckle fields.

Адрес для переписки: Иванов В.И., ул. Бобруйская, 11, Минск 220030, Республика Беларусь e-mail: ivanov.inp@gmail.com

Актуальность бесконтактной (дистанционной) вибродиагностики во многих случаях обусловлена необходимостью проведения измерений при высоких температурах и радиации, высоком уровне акустических помех, необходимостью исключения нагрузки диагностируемых виброповерхностей весом контактных датчиков и др. Для решения данной задачи в настоящее время широко применяются лазерные методы. Причем для диагностики как радиальной, так и тангенциальной вибраций (смещений) предпочтительнее использовать методы лазерной спекл-интерферометрии [1, 2] или методы прямого фотодетектирования и оценки интегральной интенсивности спекл-полей, попадающих в зону освещенности поверхности лазерным излучением [3].

На рис. 1 приведен внешний вид разработанного лазерного спекл-анализатора микровибраций и смещений.

Рисунок 1 — Внешний вид спекл-анализатора микровибраций и смещений

Принцип действия прибора основан на прямом колебаний f в точке $\vec{r}_1 = 0$.

Проведенный теоретический и экспериментальный анализ показал, что по мере увеличения амплитуды виброколебаний компоненты гармоник спектра с $m \neq 0$ сначала возрастают до некоторого максимального значения, а затем начинают монотонно уменьшаться, при этом компоненты более низкого порядка остаются всегда больше компоненты более высокого порядка. Когда амплитуда колебаний поверхности достаточно мала $\gamma \le 1$ в спектре кроме постоянной составляющей присутствует лишь одна компонента с частотой равной частоте акустических колебаний w. С возрастанием амплитуды колебания в спектре принимаемого сигнала появляются гармоники основной частоты все более высокого порядка, а разброс амплитуд гармоник различных порядков уменьшается, хотя форма спектра сохраняет монотонный спадающий характер. Если γ ≤ 1, то смещение спекл-структуры поля оказывается меньше характерного размера спеклов, поэтому интенсивность в данной точке модулируется пропорционально угловым колебаниям поверхности, а глубина модуляции зависит от градиента спекл-поля в точке наблюдения и амплитуды колебаний.

Если в случае точечного детектора относительная мощность компоненты спектра Gm не зависит от расфокусировки оптической системы, то в случае конечных размеров апертуры детектора эта зависимость появляется. Когда система сфокусирована точно на поверхность объекта, т. е. $\Psi_1 = 0$, величины Gm в случае конечных размеров фотодетектора отличаются от соответствующих величин для точечного детектора только коэффициентом $1/(æ^2+1)$. Параметр $æ^2$ можно интерпретировать как среднее число спеклов, укладывающихся в площадь апертуры фотодетектора.

Для оценки потенциальной чувствительности нами получено уравнение отношения сигнал/шум:

$$\delta_{1} = \frac{2e \, \eta_{0}^{2} G \text{or}^{2} \, \pi^{2} d^{4} \, E_{0}^{4} q^{2} \ell_{1}^{2} A_{0}^{2}}{\epsilon \phi \, \epsilon_{\phi} B n \, \ell_{2}^{4} \left[\frac{e \eta_{0}}{\epsilon \phi} G \text{or} \, \pi d^{2} E_{0}^{2} \frac{\ell_{2}^{2}}{\ell_{2}^{2}} + j \text{T} \right] \left(1 + \frac{d^{2} q^{2} K^{2}}{2 \ell_{2}^{2}} \right)}{\epsilon \phi}, \quad (5)$$

где e — заряд электрона; η_0 — квантовый выход фотодетектора; G от — коэффициент отражения поверхности объекта; d — радиус апертуры фотодетектора; E о — освещенность на поверхности объекта; A о — амплитуда вибраций; ϵ_{ϕ} — энергия кванта излучения; B п — полоса частот сигнала, обусловленная частотой вибраций; q — радиус апертуры приемной оптической системы; k — волновое число; j т — темновой ток фотодетектора; ℓ_1 — расстояние от поверхности объекта до O С; ℓ_2 — расстояние от O С до плоскости изображения O С, в которой установлен фотодетектор.

Основные параметры, определяющие чувствительность анализа микровибраций.

Параметр расфокусировки оптической системы (OC) прибора:

$$\Psi_{1} = \frac{\kappa q^{2}}{2} \left(\frac{1}{\ell_{1}} + \frac{1}{\ell_{2}} - \frac{1}{F_{\Lambda}} \right), \tag{1}$$

где $\kappa = 2\pi/\lambda$ – волновое число; q – радиус приемной апертуры; F_{Λ} – фокусное расстояние объектива (линзы) ОС; ℓ_1 – расстояние от поверхности объекта до приемной ОС; ℓ_2 – расстояние от ОС до плоскости изображения в которой установлен фотодетектор.

Параметр линейного разрешения ОС:

$$\rho_0 = \frac{l_1 \sqrt{2(1+\Psi_1)}}{k q}, \qquad (2)$$

имеет смысл линейного разрешения ОС, т. е. величина ρ_0 равна минимальному расстоянию между двумя точками в предметной плоскости, при котором они еще разрешаются оптической системой. Параметр Ψ_1 – характеризует расфокусировку системы. При точно сфокусированной системе $\Psi_1 = 0$.

Характерный радиус спекла:

$$r_s = 0.32 \, \frac{l \, \lambda}{q}. \tag{3}$$

Параметр æ характеризует среднее число спеклов, укладывающихся в апертуру фотодетектора, т. е. увеличение апертуры фотодетектора влечет увеличение параметра æ.

Амплитуда вибраций:

$$\gamma = 2\kappa \rho_0 A_0,\tag{4}$$

где $A_0 = |(\nabla f(0)| -$ амплитуда угловых колебаний вектора нормали к поверхности в точке наблюдения; $\nabla f(0) -$ градиент функции.

Из формулы (5) следует, что отношение сигнал/шум является монотонно возрастающей функцией радиуса апертуры фотодетектора d и достигает максимума, когда величина d равна радиусу изображения освещенного участка поверхности объекта. С другой стороны, δ_1 растет с увеличением освещенности E_0^2 на поверхности объекта, которая при фиксированной мощности лазерного излучения обратно пропорциональна площади освещенного участка. Следовательно, для увеличения δ_1 следует стремиться как можно лучше сфокусировать лазерный пучок на поверхности объекта. В случае равенства размеров изображения светового пятна на поверхности и размеров апертуры фотодетектора справедливо следующее соотношение между излучаемой мощностью лазерного излучения P_n и освещенностью на поверхности Eо:

$$P_{\pi} = \pi d^2 Eo \frac{\ell_1^2}{\ell_2^2},$$
 (6)

В результате, максимально возможное отношение сигнал/шум определяется величиной

$$\delta_{I} = \frac{e \, \eta_0^2 G \text{or}^2 P \pi^2 q^2 A_0^2}{\varepsilon \phi \, \varepsilon_{\phi}^2 B n \, \ell_1^2 \left[\frac{e \eta_0}{\varepsilon \phi} G \text{or} P \pi \frac{q^2}{\ell_{\star^2}} + j m \right]}. \tag{7}$$

Если расстояние ℓ_1 не слишком велико, то постоянная составляющая сигнального тока существенно больше $j_{\text{т}}$. В этом случае формула (7) упрощается:

$$\delta_I = \frac{\eta_0 \operatorname{GOT} P_{\pi} A_0^2}{\mathcal{E} \phi \operatorname{Bn}}, \tag{8}$$

и отношение сигнал/шум не зависит от расстояния до объекта, а определяется только параметрами поверхности объекта и приемно – детектирующей системы. Для надежной регистрации виброколебаний отношение сигнал/шум должно быть не менее 3. В случае применения фотодетектора с квантовой эффективностью $\eta_0=0.5$, мощности лазерного излучения $P_{\rm II}=30$ мВт ($\lambda=0.694$ нм.), $G_{\rm ort}=0.3$ и $B_{\rm II}=10^3$ Гц; из формулы (8) имеем, что $A_{\rm o min}=3.6\ 10^{-7}$ рад. Полученные расчетные и экспериментальные оценки указывают на высокую чувствительность метода, что позволяет дистанционно фиксировать вибрации и смещения поверхности объектов на уровне 350–400 нм.

Литература

- 1. Франсон, М. Оптика спеклов / М. Франсон. М.: Мир, 1980.-171 с.
- 2. Джоунс, Р. Голографическая спекл интерферометрия / Р. Джоунс, К. Уайкс. М.: Мир, 1986. 327 с.
- 3. Пресняков, Ю. П. Использование спекл эффекта для анализа колебаний шероховатой поверхности / Ю. П. Пресняков, В. П. Щепинов // Журнал технической физики. 1997. T. 67, № 8. C. 71-75.

УДК 621.38

УЧЕБНАЯ АУДИТОРИЯ ПО ЭКСПЕРИМЕНТАЛЬНОМУ ПРОЕКТУ «УМНЫЙ КЛАСС» Микитевич В.А., Свистун А.И., Исаев А.В., Воробоей Р.И., Тявловский К.Л., Тявловский А.К.

Белорусский национальный технический университет Минск, Республика Беларусь

Аннотация. Учебная аудитория по проекту «Умный класс» предназначена для проведения лекционных занятий, семинаров, конференций. Разработаны основные составляющие: адаптивное освещение, система контроля микроклимата и концентрации углекислого газа, рабочий стол преподавателя.

Ключевые слова: умный класс, адаптивное освещение, адаптивный электропривод.

LEARNING AUDIENCE FOR THE EXPERIMENTAL PROJECT "SMART CLASS" Mikitsevich U., Svistun A., Isaev A., Vorobey R., Tyavlovsky K., Tyavlovsky A.

Belarusian National Technical University Minsk, Republic of Belarus

Abstract. The classroom for the "Smart Class" project is intended for lectures, seminars, conferences. The main components have been developed: adaptive lighting, a microclimate and carbon dioxide concentration control system, and a teacher's desktop.

Key words: smart class, smart lighting, smart electric drive.

Адрес для переписки: Микитевич В.А., пр. Независимости, 65, Минск 220113, Республика Беларусь e-mail: mikitevichva@bntu.by

Назначение аудитории. Учебная аудитория предназначена для проведения лекционных и практических учебных занятий с использованием

интерактивных средств обучения, информационных технологий, дополнительного программного обеспечения (САПР, CAD, CAM, CAE и т.п.).