УДК 681.2

СИНУСОИДАЛЬНАЯ МОДУЛЯЦИЯ СВЕТОВОГО ИЗЛУЧЕНИЯ ПРИ ИЗМЕРЕНИИ ПОВЕРХНОСТНОЙ ФОТО-ЭДС Микитевич В.А., Жарин А.Л.

Белорусский национальный технический университет Минск, Республика Беларусь

Аннотация. При измерении поверхностной фото-ЭДС важно значение оказывает форма модуляции светового излучения. При использовании прямоугольной модуляции усложняется обработка выходного сигнала и появляется погрешность измерения. Синусоидальная модуляция позволяет упростить обработку выходного сигнала.

Ключевые слова: поверхностная фото-ЭДС, модуляция светового излучения.

SINUSOIDAL MODULATION OF LIGHT RADIATION WHEN MEASURING THE SURFACE PHOTOVOLTAGE Mikitsevich U., Zharin A.

Belarusian National Technical University Minsk, Republic of Belarus

Abstract. When measuring surface photovoltage, the form of modulation of light radiation is important. When using rectangular modulation, the processing of the output signal becomes more complicated and a measurement error appears. Sinusoidal modulation allows you to simplify the processing of the output signal. **Key words:** surface photovoltage, light modulation.

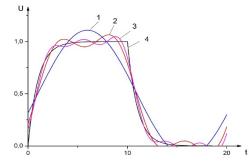
Адрес для переписки: Микитевич В.А., пр. Независимости, 65, Минск 220113, Республика Беларусь e-mail: mikitevichva@bntu.by

Для измерения поверхностной фото-ЭДС бесконтактным методом требуется модуляция светового излучения. В зависимости от формы модулируемого светового излучения зависит форма выходного сигнала. Обычно величина сигнала очень мала и сравнима с уровнем шумов, что требует фильтрации и усиления [1].

В случае применения модуляции светового излучения прямоугольной формы изменение концентрации неравновесных носителей заряда (ННЗ) будет выполняться в соответствии со выражениями (1) и (2):

$$\frac{\Delta n}{\Delta n_{\rm cr}} \sim 1 - e^{-\frac{t}{\tau}},\tag{1}$$

$$\frac{\Delta n}{\Delta n_{\rm cr}} \sim e^{-\frac{t}{\tau}},\tag{2}$$


где Δn — концентрация неравновесных носителей заряда; $\Delta n_{\rm cr}$ — концентрация неравновесных носителей заряда в стационарном режиме; τ — время жизни неравновесных носителей заряда.

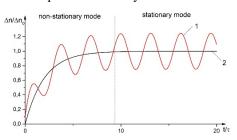
Если выполнять измерения поверхностной фото-ЭДС при воздействии прямоугольными импульсами, то сигнал в измерительной цепи будет иметь экспоненциальную форму. В процессе фильтрации сигнала будет происходить искажение формы выходного сигнала, что приводит к погрешности измерения. Моделирование выходного сигнала при использовании фильтров с разной постоянной времени приведено на рис. 1.

Модуляции светового излучения, которое будет изменяться по синусоидальному закону определяется следующим выражением:

$$I = I_{\text{amil}} \cdot (1 - \cos(\omega \cdot t)), \tag{3}$$

где $I_{\text{амп.}}$ — амплитудное значение интенсивности светового излучения; ω — циклическая частота, определяется выражением.

1, 2, 3 – моделирование сигнала после фильтрации; 4 – исходный идеальный сигнал


Рисунок 1 – Измерительный сигнал после фильтрации

Тогда изменение концентрации носителей заряда также будет происходить по синусоидальному закону в соответствии со следующим выражением:

$$\Delta n = \beta \cdot k \cdot I_{\text{amii.}} \cdot \tau \left(1 - \frac{2 + (\tau \cdot \omega)^{2}}{1 + (\tau \cdot \omega)^{2}} \cdot e^{-\frac{t}{\tau}} \right) + \frac{\beta \cdot k \cdot I_{\text{amii.}} \cdot \tau}{1 + (\tau \omega)^{2}} (\tau \cdot \omega \cdot \sin(\omega t) + \cos(\omega t)).$$
(4)

На рис. 2 представлена временная зависимость изменения концентрации ННЗ при воздействии светового излучения синусоидальной формы. Первое слагаемое выражения (4) описывает изменение среднего значения концентрации ННЗ (рис. 2 кривая *I*). Второе слагаемое выражения (4) описывает изменение концентрации ННЗ в установившемся режиме.

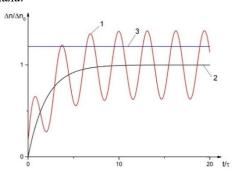
Откликом на синусоидальное изменение концентрации ННЗ будет синусоидальный сигнал. Любое изменение формы сигнала свидетельствует о нестационарном режиме работы. Такой сигнал значительно проще усиливать, фильтровать от помех. Построение усилителей сигналов синусоидальной формы значительно проще построения широкополосных усилителей.

I – кривая изменения концентрации ННЗ;
 2 – усредненное значение кривой изменения концентрации ННЗ

Рисунок 2 – Временная зависимость изменения концентрации ННЗ при воздействии светового излучения синусоидальной формы

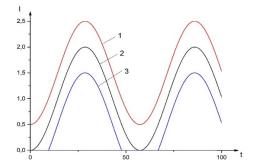
При измерении поверхностной фото-ЭДС бесконтактным методом очень важно получение максимальной амплитуды выходного сигнала. Поэтому важно увеличение амплитуды переменной составляющей выражения (3). К постоянной составляющей бесконтактные методы измерения нечувствительны. Однако можно попасть в область насыщения (кривая 3 рис. 4). В результате произойдет искажение кривой *I* (рис. 3). Время релаксации ННЗ после насыщения обычно несколько больше, что приводит к увеличению времени переходных процессов.

Второй способ увеличения амплитуды выходного сигнала заключается в том, чтобы уменьшить постоянную составляющую концентрации ННЗ. При этом переменная концентрация ННЗ будет находиться в диапазоне между равновесной и границей насыщения полупроводника. Это возможно при уменьшении постоянной составляющей светового излучения. На рис. 4 представлено несколько вариантов изменения светового излучения. Кривые 1, 2 и 3 соответствует следующему выражению:


$$I = S + I_{\text{amp.}} \cdot (1 - \cos(\omega \cdot t)), \tag{5}$$

где S — постоянное смещение.

Смещение может принимать следующие значения: S > 0 (рис. 5 кривая I); S = 0 (рис. 5 кривая 2); S < 0 (рис. 6 кривая 3).


При S > 0 возникает постоянная засветка исследуемого образца. Это может привести к выходу в зону насыщения полупроводника (рис. 4).

При S < 0 в соответствии с выражением (5) I в некоторые моменты времени будет принимать отрицательное значение. Однако световой поток не может быть меньше нуля. Поэтому отрицательное смещение приведет к искажению формы светового излучения, а следовательно, и выходного сигнала.

1 – расчетная кривая изменения концентрации ННЗ;
 2 – среднее значение кривой изменения концентрации ННЗ;
 3 – кривая насыщения полупроводника

Рисунок 3 — Временная зависимость изменения концентрации ННЗ при воздействии светового излучения синусоидальной формы

1, 2, 3 – кривые с разными значениями постоянного смещения

Рисунок 4 — Кривая интенсивности светового излучения

При S=0 световое излучение находится в диапазоне от нуля до $I_{\rm амп}$. Это позволяет исключить постоянную засветку и уменьшить постоянную составляющую в выходном сигнале.

Литература

1. Растровая сканирующая фотостимулированная электрометрия для контроля прецизионных поверхностей / Р. И. Воробей [и др.] // Известия ТулГУ. Технические науки. — 2021. — N2. 10. — C. 66—73.