ВЛИЯНИЕ ПРОДУКТОВ КОРРОЗИИ АРМАТУРЫ НА ФЕРРОМАГНИТНЫЕ СВОЙСТВА БЕТОНА

ЧИКУЛАЕВ Г. С.

Белорусский национальный технический университет

Большинство зданий и сооружений из бетона, и железобетона, возведенных в мире подвергаются агрессивным воздействиям внешней среды. Со временем при длительном воздействии агрессивной среды они разрушаются, что приводит к невозможности дальнейшей эксплуатации зданий и сооружений. Особенно интенсивно подвергаются разрушающим воздействиям агрессивной среды промышленные здания, где они могут подвергаться воздействиям продуктов и отходов производства. Разрушение конструкции вызывается коррозией материалов, применяемых в строительстве. Так коррозия арматуры в железобетоне может привести к потери несущей способности конструкции. Это вызвано тем что ржавчина занимает в 2–3 раза больший объем, чем прокорродировавшая сталь, и отличается рыхлостью [1, 4]. Что приводит к росту трещин в защитном слое бетона и увеличению скорости разрушения конструкции.

Коррозионное разрушение арматуры может проявляться в виде сплошной (общей) коррозии, которая охватывает всю поверхность металла и бывает равномерной или неравномерной по глубине или местной коррозии, поражающей лишь отдельные участки поверхности металла (пятна, язвы, коррозионные трещины). Наиболее опасна питтинговая коррозия которая развивается вглубь арматуры, а не по поверхности [2, 5].

В связи с этим существует необходимость в оценивании состояния арматуры в эксплуатируемых конструкциях. На данный момент разработан частотный разностно-ферромагнитный метод оценки коррозионного состояния арматуры момент на кафедре «Технология бетона и строительные материалы» БНТУ. Данный метод основан на том что в определенной области генерируемых частот ферромагнитные свойства самой стали и продуктов ее коррозии разли-

чаются [3]. И этот факт позволяет установить зависимости ухода частоты от коррозионных потерь стали. В результате разрабатывается прибор «измеритель степени коррозии арматуры» (ИСКА), который позволит вначале определить толщину защитного слоя бетона, а затем определить степень коррозии арматуры с достаточной точностью.

Точность оценки коррозионного состояния арматуры (степени ее поражения) данным прибором непосредственно зависит от ряда факторов, связанных с состоянием арматуры (наличие или отсутствие коррозии, разновидности образующихся продуктов коррозии и плотности коррозионных «новообразований») в бетоне, особенностями ее химического состава (содержанием в железе углерода и легирующих добавок, отражаемого маркой стали), различием в диаметре сечения арматурных элементов.

Для выявления закономерностей влияния вещественного состава продуктов коррозии на их ферромагнитные свойства с учетом некоторой неопределенности вещественного состава продуктов коррозии, образующихся в естественных условиях проведено ряд испытаний. Изготавливались имитационные цементные образцы с различным количеством и соотношением специально введенного ферромагнитного наполнителя, в виде порошков: FeO, Fe(OH) $_2$ и Fe $_2$ O $_3$.

На основании данных обследований эксплуатируемых конструкций и опытно-экспериментальных исследовательских данных установлено, что концентрация продуктов коррозии в защитном слое бетона может доходить до $0.5~\text{г/cm}^3$, что явилось основанием для количественной дозировки ферромагнитного наполнителя в цемент.

Образцы представляли собой пластинки портландцементного камня размером $100 \times 100 \times 10$ мм с ферромагнитным или кварцевым наполнителем (песок крупностью менее 0,315 мм). Смесь сухих материалов (цемент и наполнитель) предварительно гомогенизировали в лабораторной шаровой мельнице в течение 10 минут, затем затворяли водой, перемешивали и формовали на стандартной лабораторной виброплощадке. Образцы твердели трое суток в воде, а затем в пропарочной камере по режиму 3+6+3 ч при температуре изотермической выдержки 80 °C. Длительная 3-x суточная выдержка до пропаривания понадобилась ввиду резкого замедления

темпа твердения цемента в присутствии ферромагнитного наполнителя.

Параллельно, для имитирования бетона, были изготовлены также образцы-пластинки только с кварцевым наполнителем. Набором этих пластин можно было изменять толщину защитного слоя (ступенчато, через 10 мм) по отношению к исследуемому образцу с ферромагнитным наполнителем. Всего было изготовлено 17 партий образцов с различным соотношением наполнителей (таблица 1).

Таблица 1 Состав образцов с различным соотношением наполнителя

$N_{\underline{o}}$	Наполнитель, %								
состава	Fe ₂ O ₃	FeO	Fe(OH) ₂	Песок					
1	0	0	100	0					
2	0	0	67	33					
3	0	0	33	67					
4	0	100	0	0					
5	0	67	0	33					
6	0	33	0	67					
7	0	33	67	0					
8	0	67	33	0					
9	33	0	67	0					
10	67	0	33	0					
11	33	67	0	0					
12	67	33	0	0					
13	33	33	33	0					
14	0	33	33	33					
15	33	0	33	33					
16	33	33	0	33					
17	100	0	0	0					

На диэлектрическое основание, выполненное из гетинакса, устанавливалась исследуемая пластинка (или пластинки) с наполнителем. Затем на нее последовательно устанавливали пластики с кварцевым наполнителем для воссоздания толщины защитного слоя от 10 до 60 мм. После установки всех пластинок, сверху прикладывался датчик прибора и снимались показания, полученные прибором. Для первых шести составов показания датчика снимались при толщине слоя с наполнителем 10 и 20 мм (таблица 2).

Таблица 2 Ферромагнитные свойства бетонных образцов с различныминаполнителями и толщиной защитного слоя

No	Толщина слоя с	Толщина защитного слоя, мм							
co-	наполнителем,	10	20	30	40	50	60		
става	MM	10	20	30	40	30	00		
1	10	124	78	43	27	19	14		
	20	158	99	60	35	24	19		
2	10	82	52	33	21	14	9		
	20	103	64	38	25	18	12		
3	10	63	38	26	18	13	8		
	20	89	55	36	24	17	12		
4	10	126	80	48	37	31	26		
	20	163	110	75	52	38	32		
5	10	103	63	45	34	27	24		
	20	135	85	57	41	35	31		
6	10	55	29	21	16	13	10		
	20	78	45	28	21	18	17		
7	10	117	90	58	35	25	21		
8	10	108	80	48	21	23	19		
9	10	100	70	43	28	20	15		
10	10	83	58	37	24	18	14		
11	10	62	38	24	19	16	13		
12	10	55	33	21	17	14	12		
13	10	105	67	41	30	23	19		
14	10	94	64	38	27	21	18		
15	10	68	48	28	22	18	16		
16	10	58	32	22	18	16	14		
17	10	21	18	16	15	14	13		

Сравнив и проанализировав полученные данные, можно установить влияние наполнителей на показания прибора и расположить их по степени убывания в следующий порядке: $Fe(OH)_2$, FeO, Fe_2O_3 . Как видно из полученных данных наибольший вклад на показания прибора оказывает $Fe(OH)_2$

Одновременно на показания прибора оказывает влияние глубина проникновения ферромагнитных продуктов коррозии в защитный слой бетона. Так, с увеличением толщины образца с ферромагнитным наполнителем на 10 мм, что эквивалентно, в первом прибли-

жении, проникновению ферромагнитных продуктов коррозии на это расстояние, показания прибора возрастают на 15–18 %.

В реальных условиях эксплуатации погрешность измерений будет, естественно, ниже вследствие неравномерной миграции в защитный слой ферромагнитных продуктов коррозии, что обусловлено неоднородностью бетона.

Заключение. Проведенные эксперименты выявили что наибольшее влияние на показания прибора ИСКА оказывается таким продуктом коррозии как $Fe(OH)_2$. Два других продукта коррозии FeO, Fe_2O_3 так же оказывают влияние на показания прибора, но в меньшей степени. Так же экспериментально выявлено что с увеличением толщины образца с ферромагнитным наполнителем на $10\,$ мм, что эквивалентно, в первом приближении, проникновению ферромагнитных продуктов коррозии на это расстояние, показания прибора возрастают на $15-18\,$ %.

Список использованных источников:

- 1. Алексеев, С. Н. Коррозия и защита арматуры в бетоне / С. Н. Алексеев. Москва: Стройиздат, 1968. 233 с.
- 2. Алексеев С. Н. Долговечность железобетона в агрессивных средах/ С. Н. Алексеев, Ф. М. Иванов, С. Модры, П. Шиссль. Москва: Стройиздат, 1990. 320 с.
- 3. Барташевич, А. А. Новый неразрушающий метод контроля степени коррозии стальной арматуры / А. А. Барташевич, Л. Я. Френкель, В. В. Бабицкий // Бетон и железобетон. -1974. № 12. С. 36-38.
- 4. Жарский, И. М. Коррозия и защита металлических конструкций и оборудования / И. М. Жарский, Н. П. Иванова, Д. В. Куис, Н. А. Свидунович. Минск: Вышейшая школа, 2012. 303 с.
- 5. Пухонто, Л. М. Долговечность железобетонных конструкций инженерных сооружений / Л. М. Пухонто. Москва: Издательство АСВ, 2004.-424 с.