

Рисунок 2 - Зависимость стойкости шлифовального круга, машинного времени и шероховатости от величины подачи

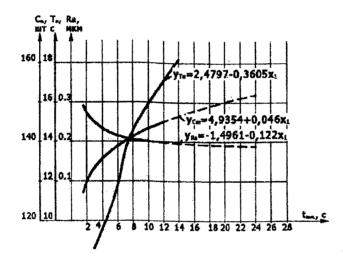


Рисунок 3. - Зависимость стойкости шлифовального круга, машинного времени и шероховатости от времени выхаживания

УДК 621.923

Кривко Г.П., Саковец А.В.

ИССЛЕДОВАНИЕ ПРОЦЕССА ФИНИШНОЙ ОБРАБОТКИ НАРУЖНЫХ КОЛЕЦ ПОДШИПНИКОВ МЕТОДОМ «ПЕРЕСЕКАЮЩИХСЯ» ОСЕЙ

Белорусский государственный технический университет Минск, Беларусь

Из результатов усталостных испытаний двухрядных сферических роликоподшипников с несимметричными и симметричными роликами, проведенными на АП МПЗ видно, что они не отрабатывают расчетный ресурс времени.

Усталостному разрушению в 20% случаев подвержены ролики, в 45% - внутренние кольца, а в 35% - наружные кольца. Было замечено, что на работоспособность внутренних колец влияют величина монтажного натяга при посадке на вал, размер, форма и метод обработки галтелей, положения точек контакта роликовых дорожек относительно борта и сопря-

жения с ним. В то время на долговечность наружных колец в основном влияют эксплуатационные свойства их рабочих поверхностей.

Требования к поверхностному слою сводятся к следующему: шероховатость поверхности должна находиться в пределах $R_a = 0,1...0,2$ мкм, волнистость -0,1...0,3 мкм, количество остаточного аустенита должно быть минимальным, остаточные напряжения первого рода должны быть сжимающими.

В подшипниковой промышленности применяются различные методы финишной обработки сферической поверхности наружных колец подшипников: окончательное шлифование методом качания бабки изделия с применением мелкозернистых кругов на вулканитовой связке, врезное шлифование, чистовое шлифование чашечным кругом, полирование абразивной лентой, суперфиниширование осциллирующими брусками.

Каждый из методов обеспечивает определенные показатели качества сферической поверхности. К основным показателям качества поверхности относятся: макрогеометрия поверхности, т.е. погрешность формы по всему сечению детали в виде огранки, непостоянство диаметра, микрогеометрия поверхности — параметры в виде шероховатости и волнистости; физико-механические свойства поверхностного слоя, которые характеризуются величиной, знаком и градиентом остаточных напряжений, количеством остаточного аустенита.

Результаты проведенного анализа показали, что перспективным является метод финишной обработки сферы наружных колец «пересекающимися» осями, когда оси инструмента и деталь перпендикулярны или находятся под углом.

Анализ существующих схем обработки сферической поверхности наружных колец подшипников позволяет выделить следующие основные схемы финишной обработки: классическую схему суперфиниширования осциллирующим бруском; схему диагонального короткоходового суперфиниширования; схему вращательного суперфиниширования бруском; схему тонкого шлифования мелкозернистым абразивным или алмазным чашечным кругом (рис. 1).

Схема 1 применяется в американских станках фирмы «Хилд», в станках российского производства ЛЗ-265, и ЛЗ-259 модернизированных станках ЛЗ-29. В литературных источниках этот метод называется методом финишной обработки «пересекающимися» осями. Последний метод обработки характеризуется заменой осциллирующего движения инструмента на вращательное, а сам процесс резания существенно улучшает форму обрабатывающей в продольном сечении сферы.

При применении алмазного инструмента обеспечивается рост производительности процесса, повышается культура производства и значительно повышается эксплуатационные свойства обработанной поверхности.

По имеющимся опытным данным недостатки классической схемы обработки осциллирующим бруском и схемы диагонального короткоходового суперфиниширования заключается в необходимости предварительного профилирования бруска. При значительном износе инструмента необходимо компенсировать смещение центра качания инструмента относительно центра сферы, наличие механизма осцилляции приводит к возникновению вибрации, что может влиять на величину волнистости суперфинишированной поверхности. К недостаткам схемы 1 можно только отнести необходимость строгого совмещения оси вращения инструмента с центром обрабатываемой сферы. А преимущества схемы в следующем: замена осциллирующего движения вращательным, применением чашечного или кольцевого инструмента без предварительного профилирования, возможность применения нескольких кругов одновременно, значительное улучшение формы образующей в продольном сечении.

Исходя из преимуществ, которыми обладает схема обработки «пересекающимися» осями нами поставлена цель детального исследования ее с целью разработки в дальнейшем новых процессов финишной обработки и нового оборудования для ее осуществления в различных вариантах.

Существует несколько инженерных решений по созданию рабочего давления на инструмент, например, за счет встроенной тарированной пружины. В соответствии с этим существует несколько исполнений инструментальных головок.

Планшайба к шпинделю может крепиться посредствам восьми или двенадцати упругих элементов сжатия (тарельчатых или цилиндрических пружин).

Вышеуказанные инженерные решения были реализованы на модернизированных сферошлифовальных станках ЛЗ-29. Алмазные чашки или абразивные чашечные круги крепятся непосредственно на фланце шпинделя, обрабатываемые детали базируются на двух жестких опорах с прижимом по торцу магнитным патроном.

С целью совмещения центра сферы кольца с осью круга корпус инструментальной головки крепится к стойке стола так, чтобы головка могла самоустанавливаться относительно горизонтальной оси.

За основу метода обработки «пересекающимися» осями положена схема формообразования сферы, состоящая из двух вращательных движений относительно перпендикулярных осей — вращение детали и инструмента.

Картина нанесения царапин отдельным зерном на обрабатываемую поверхность (В — ширина кольца, πD — длина окружности на образующей обрабатываемой сферы).

При анализе относительного движения отдельного зерна инструмента и обрабатываемой сферы можно наложить на систему деталь — инструмент дополнительное вращательное движение относительно оси детали в сторону противоположную вращению детали и равную ей по величине. В данном случае деталь устанавливается неподвижно, а инструмент совершает два движения — относительное вращательное с угловой скоростью $\omega_{\mathbf{u}}$ и переносное поступательное со скоростью $V = \omega_{\mathbf{g}} \cdot R$ (R — радиус обрабатываемой сферы). В данном случае любое зерно инструмента совершает относительно обрабатываемой поверхности движение по циклоиде. В зависимости от соотношения окружной скорости круга ($V_{\mathbf{u}}$) к окружной скорости детали ($V_{\mathbf{d}}$) траектория зерна представляет собой обыкновенную циклоиду, укороченную циклоиду или удлиненную циклоиду (рис. 2). Выражая скорости вращения детали и отдельного зерна инструмента через частоту вращения и их радиуса, получим: $R_{\mathbf{u}} \cdot n_{\mathbf{u}} < R_{\mathbf{g}} \cdot n_{\mathbf{g}}$, следы обработки представляют укороченную циклоиду; $R_{\mathbf{u}} \cdot n_{\mathbf{u}} > R_{\mathbf{g}} \cdot n_{\mathbf{g}}$, следы обработки представляют укороченную циклоиду; $R_{\mathbf{u}} \cdot n_{\mathbf{u}} > R_{\mathbf{g}} \cdot n_{\mathbf{g}}$, следы обработки представляют укороченную циклоиду.

Примем за ось абсцисс линию, по которой катится без скольжения зерно инструмента расположенное на производящей окружности, а за начало координат начальное положение зерна, то тогда любая точка циклоиды М определяется параметрическими уравнениями:

$$X = \frac{R_u}{K} - R_u \sin \varphi; \qquad Y = \frac{R_u}{K} - R_u \cos \varphi, \qquad 1.1$$

где ф – угол поворота производящей окружности от первоначального положения;

$$K = \frac{V_u}{V_{\pi}}$$
.

Аналитическое выражение по определению величины относительной скорости зерна и обрабатываемой поверхности по оси X, в направлении вектора скорости детали:

$$V_{x} = R_{u} \cdot \omega_{u} \left(\frac{1}{K} - \cos \varphi\right), \qquad 1.2$$

по оси Y в направлении вектора скорости и инструмента в среднем сечении кольца:

$$V_{y} = R_{u} \cdot \omega_{u} \sin \varphi.$$
 1.3

Полная скорость относительного движения зерна и обрабатываемой поверхности:

$$V = R_{u}\omega_{u}\sqrt{1 - \frac{2\cos\phi}{K} + \frac{1}{K^{2}}}.$$
 1.4

Угол, составляемый вектором полной скорости с поперечной плоскостью симметрии кольца, определяется зависимостью:

$$\operatorname{ctg}\beta = \frac{V_{x}}{V_{y}} = \left(\frac{1}{K\sin V} - \operatorname{ctg}\phi\right).$$
 1.5

Из зависимости видно, что более благоприятное расположение следов обработки (сетки), когда угол β в пределах ширины кольца будет меняться незначительно. Это условие обеспечивается при возможно большем отношении $\frac{R_u}{B}$ или когда $K \leq 1$, т.е. траектория движения зерен соответствует ускоренной циклоиде. Укороченная циклоида имеет на каждой арке по две точки перегиба L и L', положение которые определяется параметром φ , где $\cos \varphi = K$.

Замечено, чем ближе точки перегиба укороченной циклоиды к среднему сечению кольца, тем однороднее следы обработки на обеих половинах обрабатываемой сферы. Теоретически это обеспечивается при K=0 и $\phi=90^{\circ}$. Согласно уравнений (1.2), (1.3) можно получить дифференцированием ускорения по осям координат:

$$a_{x} = R_{u}\omega_{u}^{2}\sin\varphi; \qquad 1.6$$

$$a_{v} = R_{u}\omega_{u}^{2}\cos\varphi$$
: 1.7

Полное значение ускорения:

$$a = R_u \omega_u^2. 1.8$$

Направление вектора ускорения зерна любой точки траектории определяется углом: $\cos \gamma = \cos(90 - \phi)$, 1.9

и направлена в центр производящей окружности (инструмента) для соответствующей точки циклоиды.

Движение зерна относительно обрабатываемой поверхности с одновременным вращением его по окружности приводит к тому, что происходит непрерывное изменение угла между вектором полной скорости резания и гранями зерна, а это в свою очередь способствует лучшему использованию его режущих свойств, обеспечиванию самозатачиваемости зерна и повышению производительности процесса. Использование граней зерна определяется величиной колебания угла γ между вектором скорости резания и плоскостью расположения зерна в круге, определяемой углом ϕ поворота производящей окружности. Условно угол ϕ может быть назван углом атаки.

На рисунке 3 представлено изменение углов атаки и соответствующих им годографов скорости резания, рассчитанных по зависимости 2.4 для абразивного зерна, расположенного на расстоянии 40 мм от оси вращения инструмента при обработке кольца R=85,75 мм и шириной B=64 мм при различных соотношениях скоростей инструмента и детали.

На рисунке 3а показана развертка обрабатываемой поверхности. Здесь точки A, B, C – положение зерна при работе в нижней половине детали, а тоски D, E, F – в верхней половине кольца. На рисунке 3 б, в, г приведены углы использования граней зерна и годографы скорости резания при K = 0.33, K = 1, K = 3. Соответствующие векторы скоростей с индексами обозначают скорости резания в точках траектории зерна, а углы ε – углы использования зерна в нижней и верхней половинах зерна.

Кинематика и жесткость системы при обработки методом «пересекающихся» осей позволяют повысить производительность и точность сферической поверхности.

Нами поставлена задача определить сначала теоретически, а затем экспериментально зависимость величины съема металла от технологических параметров, чтобы иметь возможность управлять процессом. При анализе погрешности профиля обрабатываемой поверхности можно заметить, что она в совокупности представляет оставшиеся следы отдельных зерен не только на данном проходе, но и на предыдущих.

ЛИТЕРАТУРА

1. Кривко, Г.П. Основы совершенствования способов и технологических процессов механической обработки деталей подшипников. –Мн.: УП «Технопринт», 2001. -220с.

УДК 621.7:621.8:621.9

Хейфец М.Л., Чемисов В.Б Абрамов В.И., Грецкий Н.Л., Толстиков С.К.

СОВМЕЩЕНИЕ КОМБИНИРОВАННЫХ ПРОЦЕССОВ ЭЛЕКТРОМАГНИТНОГО УПРОЧНЕНИЯ И НАПЛАВКИ ПРОВОЛОКИ НА ИЗНОШЕННЫЕ ПОВЕРХНОСТИ ДЕТАЛЕЙ

Полоцкий государственный университет Новополоик, Беларусь

Повышение надежности и долговечности машин и их составных частей в процессе ремонта — главная цель предприятий, занимающихся разработкой технологий и организацией ремонтного производства. Обеспечить высокое качество отремонтированных машин в процессе освоения технологий и организации ремонта можно за счет внедрения новых методов восстановления, упрочнения и обработки деталей машин [1].

Новые и традиционные методы восстановления, упрочнение и обработки деталей машин имеют свои рациональные области применения и не всегда решают комплексные задачи повышения долговечности изделий в конкретных условиях эксплуатации [2]. Так, например, при высоких параметрах качества упрочнения не обеспечиваются экономное восстановление до заданного размера сильно изношенной поверхности детали.

Поэтому рациональным представляется сочетание в технологическом процессе ремонтного производства различных методов упрочнения, восстановления и обработки, а в рамках самих методов комбинации разнообразных технологических воздействий [3].

В результате для улучшения комплекса параметров качества восстановления сильно изношенных поверхностей деталей с минимальными затратами предложено упрочнение производить в процессе электромагнитной наплавки легированных ферропорошков, совмещенном с поверхностным пластическим деформированием [4], а восстановление и обработку в процессе наплавки проволоки, совмещенном с упрочняюще-размерным ротационным резанием [5].

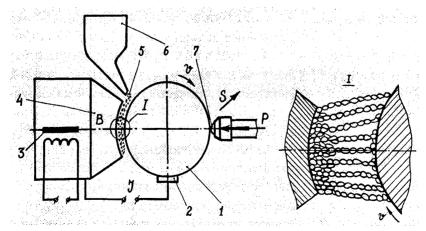


Рисунок 1 - Электромагнитная наплавка с поверхностным пластическим деформированием: 1 — обрабатываемая деталь; 2 — скользящий контакт; 3 — электромагнит; 4 — полюсный наконечник; 5 — ферромагнитный порошок; 6 — дозирующее устройство; 7 — шариковый обкатник; V — скорость главного движения; S — скорость подачи; P — усилие деформирования; В — магнитная индукция; I — сила тока электродуговых разрядов