трудов. Вып. 1. В 3 т. Т. 2/ Под общ. ред. П.А. Витязя. – Мн.: УП «Технопринт», 2002. - С. 334 – 344.; 21. Почтенный Е.К. Анализ и синтез усталости элементов конструкций// Доклады НАН Беларуси, 2002, т. 46, №2, с.105-107.; 22. Почтенный Е.К. Кинетика усталости машиностроительных конструкций.-Мн., УП "Арти-Фекс", 2002, 186 с., ил.; 23. Почтенный Е.К., Капуста П.П. Анализ нагруженности и расчет ресурса конструкций при случайном нагружении// Современные методы проектирования машин. Вып. 2. В 7 томах. - Т. 1. Перспективные направления создания машин. - Мн., 2004. - С. 125-135.; 24. Капуста П.П. Прогнозирование нагруженности и долговечности несущих конструкций на стадиях ресурсного проектирования мобильных машин заданной надежности// Современные методы проектирования машин. Вып. 2. В 7 томах. - Т. 4. Надежность и ресурсное проектирование машин. - Мн., 2004. - С. 22 - 34.; 25. Капуста П.П., Швец И.В., Мальев Д.В., Вихренко Д.В., Рыбаков Д.В. Прогнозирование нагруженности несущих элементов подвески автомобильного полуприцепа с использованием имитационного моделирования// Современные методы проектирования машин. Вып. 2. В 7 томах. - Т. 4. Надежность и ресурсное проектирование машин. - Мн., 2004. - С. 95 - 99.; 26. Капуста П.П., Слабко И.А., Рубцов А.В. Системная экспериментальная оценка эксплуатационной нагруженности несущих конструкций магистрального автопоезда// Современные методы проектирования машин. Вып. 2. В 7 томах. - Т. 4. Надежность и ресурсное проектирование машин. - Мн., 2004. - С. 88 – 94.

УДК 621. 81: 621 – 192

Капуста П.П.

ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ УРАВНЕНИЙ НЕРЕГУЛЯРНОГО НАГРУЖЕНИЯ ДЕТАЛЕЙ МАШИН

Белорусский национальный технический университет, г. Минск, Беларусь

1. Общие сведения об уравнениях нерегулярной нагруженности деталей машин. В работе [1] автором опубликованы уравнения нерегулярного нагружения деталей машин (1) и (2), предназначенные для сравнительных оценок нагруженности на стадиях проектирования, а также для текущей диагностики с целью прогнозирования остаточного ресурса и риска эксплуатации.

$$\frac{\sigma_{i} - \overset{\vee}{\sigma}}{\overset{\vee}{\sigma} - \overset{\vee}{\sigma}} = \exp\left\{\frac{1}{w} \ln \left[\frac{\ln \left(\frac{n}{i}\right)}{\ln(n)}\right]\right\}. \tag{1}$$

При $\overset{\circ}{\sigma} = 0$, уравнение (1) примет вид

$$\frac{\sigma_i}{\sigma} = \exp\left\{\frac{1}{w} \cdot \ln\left[\frac{\ln\left(\frac{n}{i}\right)}{\ln(n)}\right]\right\}. \tag{1a}$$

$$\frac{\sigma_{i} - \overset{\vee}{\sigma}}{\overset{\wedge}{\sigma} - \overset{\vee}{\sigma}} = \frac{\sigma_{w}}{\overset{\wedge}{\sigma} - \overset{\vee}{\sigma}} \cdot \exp \left| \ln \left(\frac{\overset{\wedge}{\sigma} - \overset{\vee}{\sigma}}{\sigma_{w}} \right) \cdot \frac{\ln \ln \left(\frac{n}{i} \right)}{\ln \ln (n)} \right|. \tag{2}$$

При $\overset{\circ}{\sigma} = 0$, уравнение (2) примет вид

$$\frac{\sigma_i}{\overset{\sim}{\sigma}} = \frac{\sigma_w}{\overset{\sim}{\sigma}} \cdot \exp \left[\ln \left(\frac{\overset{\sim}{\sigma}}{\sigma_w} \right) \cdot \frac{\ln \ln \left(\frac{n}{i} \right)}{\ln \ln (n)} \right]$$
 (2a)

2. Анализ уравнений нерегулярной нагруженности деталей машин

2.1. Анализ уравнения (1) типа
$$\frac{\sigma_i - \sigma}{\sigma - \sigma} = f\left(w, n, \frac{i}{n}\right)$$

Для удобства анализа, был построен график с использованием указанного равнения, приняв $\overset{\checkmark}{\sigma} = 0$ (1a), в относительной системе координат $\frac{\sigma_i}{\hat{\sigma}} - \frac{i}{n}$. При том приняты следующие значения параметров уравнения:

$$n = 10^4 = const$$
; $w = (0.5;1.0;1.5;2.0;2.5;3.0;5.0;10.0;20.0) = var$.

Анализируя (1a) и построенную соответствующую графическую диарамму, можно констатировать, что получено уравнение, позволяющее описать любой режим нерегулярного нагружения в вероятностной его трактовке. Слелует отметить, что с ростом параметра w степень тяжести нагрузочного режима величивается, а для регулярного нагружения, при $w \to \infty$, $\frac{\sigma_i}{\Lambda} = \frac{\sigma_1}{\Lambda} = 1$.

Недостатком уравнений (1) и (1a) является отсутствие в них более чувстзительного к оценке тяжести нагрузочного режима параметра σ_w и величины
чаксимального напряжения нагрузочного блока $\hat{\sigma}$, которое желательно было
5ы увязать с прочностными характеристиками материала (например $\sigma \leq (0.85...1,0) \cdot \sigma_{\tau}$), что особенно важно при проектных расчетах.

2.2. Анализ уравнения (2) muna
$$\frac{\sigma_i - \overset{\vee}{\sigma}}{\overset{\wedge}{\sigma} - \overset{\vee}{\sigma}} = f\left(\sigma_w, \overset{\wedge}{\sigma}, n, \frac{i}{n}\right)$$

Для удобства анализа, был построен график с использованием указанного

уравнения, приняв $\overset{\checkmark}{\sigma} = 0$, в относительной системе координат $\frac{\sigma_i}{\overset{?}{\sigma}} - \frac{i}{n}$. При этом приняты следующие значения параметров уравнения: $n = 10^4 = const$; $\overset{?}{\sigma} = 400 \ \text{М}\Pi = const$;

 $\sigma_w = (10;30;50;100;150;200;250;300;350;390;400) = \text{var}.$

Анализ (2), (2a) и соответствующей графической диаграммы показывает, что полученное уравнение позволяет описать любой режим нерегулярного нагружения, а также и регулярное нагружение при $\sigma_w = \hat{\sigma}$. Здесь $0 \le \sigma_w \le \hat{\sigma}$.

Уравнение (2), (2a) содержит кроме того параметры: $\hat{\sigma}$ блока и размер нагрузочного блока n. Для оценки влияния $\hat{\sigma}$ и n были построены графики в системе координат $\frac{\sigma_i}{\hat{\sigma}} - \frac{i}{n}$:

- влияние максимального напряжения нагрузочного блока $\hat{\sigma}$ на значение функции (2a) при $n=10^4=const$; $\sigma_w=100 M\Pi a=const$; $\hat{\sigma}=(400;700;1000 M\Pi a)=var$;
- влияние размера нагрузочного блока n на значение функции (2a), при $\hat{\sigma}=400M\Pi a=const;\;\sigma_w=100M\Pi a=const;\;n=(10^3;5\cdot10^3;10^4)={\rm var}$;
- влияние размера нагрузочного блока n на значение функции (2a) при $\frac{\sigma_w}{\hat{\ \ \ }}=0, 4=const; \ n=(5;10;10^2;10^3;10^4;10^5;10^6)={\rm var} \ .$

Из проведенного анализа выше указанных зависимостей получены следующие выводы. Изменение $\hat{\sigma}$ (например от 400 до 1000 МПа) оказывает значительное влияние на степень тяжести режима нагружения. Изменение размера нагрузочного блока от 10^3 до 10^5 и более не оказывает существенного влияния на значения уравнения (2a), т.е. влиянием n в указанном диапазоне можно пренебречь. Уравнение (2a) можно использовать, как для описания всех возможных режимов нерегулярного, так и регулярного нагружения при соблюдении условия $\frac{\sigma_w}{\hat{\sigma}} = const$. При этом показано, что при размере нагрузочного блока $n \ge 10^3$, он не оказывает существенного значения на степень тяжести режима нагружения. Вместе с тем при $n < 10^3$ ($n = 10^2$;10;5;) не выполняются граничные условия функции (2a), что ограничивает ее применение при указанных значениях n.

Таким образом нагрузочный блок должен содержать не менее 10^3 экстремумов напряжений, что хорошо согласуется с рекомендациями ГОСТ 25. 101-83 [2]. Поэтому при построении графиков режимов нерегулярного нагружения [11], принимаем $n = 10^4 = const$ (на основании выводов по рис. 4.12 и 4.13).

При этом в (2a) отношение $\frac{\sigma_w}{\hat{\sigma}}$ одновременно характеризует степень тякести режима нагружения и максимальное напряжение нагрузочного блока, которое нужно связать с прочностью материала.

Из анализа очевидно, что степень тяжести режима нагружения характеритуется отношением $\frac{\sigma_w}{\hat{\sigma}}$, которое изменяется от 0 до 1: при $\frac{\sigma_w}{\hat{\sigma}}$ = 0 следует, что и σ_w =0, т.е. нагрузки отсутствуют; при $\frac{\sigma_w}{\hat{\sigma}}$ =1 σ_w = $\hat{\sigma}$, т.е. режим нагружения звляется регулярным. Следовательно, параметр σ_w может изменяться в пределах от 0 до $\hat{\sigma}$, а каждому режиму нерегулярного нагружения должно соответствовать свое отношение $\frac{\sigma_w}{\hat{\sigma}}$ = const в уравнении (2a). Не выясненным остается, σ_w здажений параметра σ_w соответствующих конкретным значениям отношения σ_w , т.к. параметр σ_w не входит явно в уравнение (2a).

3. Изучение влияния параметра w на степень наклона кривых режимов нерегулярного нагружения при $\frac{\sigma_w}{\hat{\rho}} = const$

Для решения данного вопроса было построено семейство кривых возможных нагрузочных режимов в системе координат $\frac{\sigma_i}{\hat{\sigma}} = \frac{i}{n}$ по уравнению (2a) три следующих значениях его параметров $\frac{\sigma_w}{\hat{\sigma}} = 0,4 = const$; w=(0,5;1,0;1,5;2.0;2,5;3,0)=var.

При выводе уравнения нерегулярного нагружения деталей машин (2) позучено уравнение [1]

$$\sigma_i - \overset{\vee}{\sigma} = \sigma_w \cdot \exp\left[\frac{1}{w} \cdot \ln\ln\left(\frac{n}{i}\right)\right]. \tag{3}$$

Разделив левую и правую части уравнения (3) на $\overset{\hat{}}{\sigma}$, и приняв $\overset{\hat{}}{\sigma}$ =0, полу-

$$\frac{\sigma_i}{\sigma} = \frac{\sigma_w}{\sigma} \cdot \exp\left[\frac{1}{w} \cdot \ln\ln\left(\frac{n}{i}\right)\right]. \tag{4}$$

Кроме семейства кривых, построенных по уравнению (4), была построена также одна возможная кривая по уравнению (2a) при $\frac{\sigma_w}{\hat{L}} = 0.4 = const$.

Проведенный анализ указанных зависимостей показал, что уравнения (2а) и (4) идентичны.

Совместный анализ кривых $\frac{\sigma_i}{\sigma} = \frac{i}{n}$, построенных по уравнению (4) позволяет сделать вывод, что при изменении w изменяется наклон кривых нагрузочного режима при $\frac{\sigma_w}{\hat{\sigma}} = const$. При этом все кривые, в том числе и кривая, построенная по уравнению (2a) имеют одну общую точку C с координатами ($\frac{\sigma_w}{\hat{\sigma}}$;0,3679), относительно которой осуществляется их поворот при изменении σ

Следует отметить, что при определенных значениях параметра w (кривые, соответствующие w=0,5; 1; 1,5) и $\frac{\sigma_w}{\hat{\sigma}} = const$ (например, при $\frac{\sigma_w}{\hat{\sigma}} = 0,4$) не выполняются граничные условия уравнений (2a) и (4). Этот факт говорит о необходимости ограничения диапазона изменения параметра w для каждого определенного значения отношения $\frac{\sigma_w}{\hat{\rho}}$.

Таким образом, требует ответа вопрос о численном значении параметра w для соответствующего отношения $\frac{\sigma_w}{\sigma}$ (или $\frac{\sigma_w}{\sigma - \sigma}$).

4. Вывод уравнения для определения значения параметра w, соответствующего заданной величине отношения $\frac{\sigma_w}{\hat{\sigma}}$ (или $\frac{\sigma_w}{\hat{\sigma}-\sigma}$)

Ранее [1], при выводе формулы (1а), получено уравнение:

$$\sigma_i = \sigma_w \cdot \exp\left[\frac{1}{w} \cdot \ln \ln\left(\frac{n}{i}\right)\right] \tag{5}$$

а при выводе формулы (2a) получено уравнение

$$\sigma_{i} = \sigma_{w} \cdot \exp \left[\ln \left(\frac{\hat{\sigma}}{\sigma_{w}} \right) \cdot \frac{\ln \ln \left(\frac{n}{i} \right)}{\ln \ln (n)} \right]. \tag{6}$$

Приравняв (5) и (6) и, заменив в (6) $\frac{\hat{\sigma}}{\sigma_w}$ на $\left(\frac{\sigma_w}{\hat{\sigma}}\right)^{-1}$, получим формулу для вычисления значений параметра w, соответствующего заданной величине отношения $\frac{\sigma_w}{\hat{\sigma}}$:

$$w = \frac{\ln \ln(n)}{\ln \left[\left(\frac{\sigma_w}{\hat{\rho}} \right)^{-1} \right]},\tag{7}$$

или при $\sigma_w \neq 0$

$$w = \frac{\ln \ln(n)}{\ln \left[\left(\frac{\sigma_{w}}{\hat{\sigma} - \sigma} \right)^{-1} \right]}.$$
 (7a)

Из анализа формул (7) и (7а) видно, что параметр w не зависит от отношения $\frac{i}{n}$, а зависит от размера нагрузочного блока n и отношения $\frac{\sigma_w}{\hat{\sigma}}$ (или $\frac{\sigma_w}{\sigma}$). Следовательно, каждому отношению $\frac{\sigma_w}{\hat{\sigma}}$ (при $\frac{\sigma_w}{\hat{\sigma}-\hat{\sigma}}$) при n = const долж50 соответствовать одно единственное значение параметра w.

5. Зависимость параметра w от размера нагрузочного

блока
$$n$$
 и отношения $\frac{\sigma_{_{\mathrm{W}}}}{\stackrel{\wedge}{\sigma}}$ (или $\frac{\sigma_{_{\mathrm{W}}}}{\stackrel{\wedge}{\sigma}-\stackrel{\vee}{\sigma}}$)

Для изучения данного вопроса были построены графические зависимости $\frac{\sigma_w}{\sigma} = f(w,n) \text{ и } \frac{\sigma_w}{\hat{\sigma}} = f(w) \text{ при } n = 10^4 = const \text{ , а некоторые результаты зависимости } \sigma$ $\cdot = f\left(\frac{\sigma_w}{\hat{\sigma}}\right) \text{ при } n = 10^4 = const \text{ сведены в таблицу 1.}$

Таблица 1 Зависимость параметра w от отношения $\frac{\sigma_w}{\sigma - \sigma}$ при $n = 10^4$ циклов= const

		The second secon	
$\frac{\sigma_{w}}{\stackrel{\wedge}{\sigma}-\sigma}$	w	$\frac{\sigma_{_{w}}}{\stackrel{\wedge}{\sigma}-\sigma}$	w
0,001	0,32	0,6	4,35
0,01	0,48	0,7	6,23
0,1	0,96	0,8	9,95
0,2	1,38	0,9	21,07
0,3	1,84	0,99	220,92
0,4	2,42	0,999	2219,22
0,5	3,20	0,9999	22204,38

Из анализа указанных графических зависимостей и результатов таблицы ! сделан вывод о незначительной зависимости w от размера блока при $n \ge 10^3$.

При этом значение параметра w возрастает с увеличением отношения $\frac{\sigma_w}{\hat{\sigma}}$. А для регулярного нагружения, при $\frac{\sigma_w}{\hat{\sigma}} = 1, \ w \to \infty$.

6. Предварительные рекомендации по использованию отношения $\frac{\sigma_w}{\hat{\sigma}}$ (или $\frac{\sigma_w}{\hat{\sigma}-\sigma}$) при оценке нерегулярного нагружения деталей машин $\sigma-\sigma$

На основании проведенного выше анализа графических зависимостей и формул (2) и (2а), а также, основываясь на выводах разделов 2-5 настоящей статьи, изменяя отношение $\frac{\sigma_w}{\hat{\sigma}}$ (или $\frac{\sigma_w}{\hat{\sigma}-\sigma}$) и соответствующее ему значение параметра **w** по формулам (7) или (7а), можно переходить от одного режима нагружения деталей машин к другому (а именно к более или менее тяжелому).

Изменять это отношение в пределах $0 \le \frac{\sigma_w}{\hat{\sigma} - \sigma} \le 1$ можно тремя способами:

- 1. Изменяя σ_w , т.е. степень тяжести режима (величину действующих напряжений или долю больших напряжений в блоке n) при постоянном $\hat{\sigma}$ (например при $\hat{\sigma} \approx (0,7...0,9) \cdot \sigma_{\rm T}$ максимально допустимое напряжение блока, зависящее от материала; однако при назначении верхнего предела $\hat{\sigma}$ следует помнить о возможном переходе из области многоцикловой в область малоцикловой усталости);
 - 2. Изменяя разность $(\hat{\sigma} \hat{\sigma})$, т.е. размах напряжений в нагрузочном блоке;
 - 3. Изменяя геометрические размеры и форму сечения детали.

Марка материала, т.е. его прочностные свойства, на величину отношения $\frac{\sigma_w}{\hat{\sigma} - \sigma}$ влияния не оказывают. Однако выбор марки материала зависит от степе-

ни жесткости нагрузочного режима, а значит, и от отношения $\frac{\sigma_w}{\hat{\sigma} - \sigma}$ и соответствующего ему параметра w.

Например, взяв более прочный с точки зрения сопротивления усталости материал (с большими значениями $\overline{\sigma}_R$, N_G и m), можно увеличить проектную долговечность. При этом чем большее значение $\overline{\sigma}_R$ имеет данный материал, тем меньшее количество напряжений нагрузочного блока будет повреждающим.

Рассеяние характеристик сопротивления усталости зависит от коэффициента вариации предела выносливости, а значит - от качества материала и множества технологических и конструктивных факторов (см., например, [3]).

Учитывая проведенный анализ и универсальность отношения $\frac{\sigma_w}{\hat{\sigma} - \sigma}$, назовем последнее критерием нагруженности и обозначим его K_w .

Таким образом, зная на стадии проектирования критерий нагруженности K_w и соответствующее ему значение параметра w, можно вести ресурсное проектирование деталей машин и элементов конструкций, подверженных в эксплуатации нерегулярному нагружению. Для реализации этой задачи необходимо создание соответствующего банка данных об эксплуатационной нагруженности различных деталей.

7. Основные результаты и выводы

- 1. Получено уравнение для оценки нерегулярного нагружения деталей машин с использованием распределения Вейбулла [4] (4.20).
- 2. Размер нагрузочного блока не оказывает существенного значения на степень тяжести нагрузочного режима при $n \ge 10^3$.
- 3. Степень тяжести нагрузочного режима необходимо оценивать критерием нагруженности $K_w = \frac{\sigma_w}{\hat{\sigma} \sigma}$ и, соответствующим ему значением параметра w.
- 4. Разработанный с использованием распределения Вейбулла [2] метод оценки нерегулярного нагружения позволяет в вероятностном аспекте оценить нагруженность, как на стадиях проверочных так и проектных расчетов.
- 5. Для оценки реальных режимов нагружения деталей (например мобильных машин) требуется накопление широкой экспериментальной информации о значениях критерия нагруженности K_w и соответствующего ему параметра w.
- 6. Проектная оценка режимов нагружения деталей возможна с использованием имитационного моделирования машин и условий их нагруженности [3, 5...11], а накопление экспериментальной информации о значениях критерия нагруженности K_w и соответствующего ему параметра w по результатам имитационных испытаний этих моделей в соответствующих эксплуатационных условиях [3, 12...16].

ЛИТЕРАТУРА

1. Капуста П.П. Уравнения нерегулярной нагруженности деталей машин// В сб. Машиностроение: Сб. научн. трудов. Вып. 17/Под ред. И.П. Филонова. – Мн.: УП "Технопринт", 2001. - С. 323-327. 2. ГОСТ 25.101-83. Расчеты и испытания на прочность. Методы схематизации случайных процессов нагружения элементов машин и конструкций и статистического представления результатов.- М.: Изд-во стандартов, 1983. - 29 с. 3. Капуста П.П. Вероятностная оценка характеристик сопротивления усталости деталей на стадии проектирования машин. - Мн.: Технопринт, 2001. - 97 с. 4. Вейбулл В. Усталостные испыта-

ния и анализ их результатов.-М.: Машиностроение, 1964.-276 с. 5. Капуста П.П. Ресурсное проектирование несущих деталей АТС// Автомобильная промышленность. - 2000. - №2. - С. 59 - 61. 6. Капуста П.П. Математическая модель как инструмент ресурсного проектирования АТС// Автомобильная промышленность. -2001. - № 11. - С. 15-18. 7. Почтенный Е.К., Капуста П.П. Приведение асимметричных циклов к эквивалентным по повреждающему воздействию симметричным или отнулевым// Весці НАН Беларусі: Серыя фізікатэхнічных навук.- 2000. - №2. - С. 59 - 61. 8. Почтенный Е.К., Капуста П.П. Прогнозирование случайного нагружения и построение нагрузочных блоков// Современные методы проектирования машин. Расчет, конструирование, технология изготовления. Сборник научных трудов. Вып. 1. В 3 томах. – Т. 2/ Под общ. ред. П.А. Витязя. – Минск: УП «Технопринт», 2002. - С. 334 – 344. 9. Почтенный Е.К., Капуста П.П. Анализ нагруженности и расчет ресурса конструкций при случайном нагружении// Современные методы проектирования машин. Вып. 2. В 7 томах. - Т. 1. Перспективные направления создания машин. - Мн., 2004. - С. 125-135. 10. Капуста П.П. Надежность и ресурсное проектирование несущих систем и элементов машин// Современные методы проектирования машин. Расчет, конструирование, технология изготовления. Сборник научных трудов. Вып. 1. В 3 томах. Т. 1/ Под общ. ред. П.А. Витязя. – Минск: УП «Технопринт», 2002.- С. 97 – 108. 11. Капуста П.П. Теоретическая модель оценки нерегулярной нагруженности деталей и конструкций машин// Теория и практика машиностроения, 2004. - №4. - С. 52-55. 12. Капуста П.П. Прогнозирование нагруженности и долговечности несущих конструкций на стадиях ресурсного проектирования мобильных машин заданной надежности// Современные методы проектирования машин. Вып. 2. В 7 томах. - Т. 4. Надежность и ресурсное проектирование машин. - Мн., 2004. - С. 22 - 34. 13. Капуста П.П. О методике имитационного компьютерного моделирования дорожных условий на стадиях проектирования автотранспортных средств// В сб. Материалы МНТК "Материалы, оборудование и ресурсосберегающие технологии", Могилев, 22-23 апреля 2004 г. В 3 частях. Часть 2:-С. 39-40. 14. Капуста П.П., Кобрусев С.В. Разработка алгоритма расчета высот микропрофиля автомобильных дорог// В сб. Материалы МНТК "Материалы, оборудование и ресурсосберегающие технологии", Могилев, 22-23 апреля 2004 г. В 3 частях. Часть 2.-С. 41-43, 15. Капуста П.П., Швец И.В., Мальев Д.В., Вихренко Д.В., Рыбаков Д.В. Прогнозирование нагруженности несущих элементов подвески автомобильного полуприцепа с использованием имитационного моделирования// Современные методы проектирования машин. Вып. 2. В 7 томах. - Т. 4. Надежность и ресурсное проектирование машин. - Мн., 2004. - С. 95 - 99. 16. Капуста П.П. О принципах создания компьютерного автополигона для прогнозирования нагруженности несущих систем автотранспортных средств// Современные методы проектирования машин. Вып. 2. В 7 томах. - Т. 6. Автоматизация проектирования и информационные технологии. - Мн., 2004. - С. 37-47.