Таким образом, показано, что высокочастотные механические колебания могут быть успешно использованы для исследования усталостных характеристик литых алюминиевых сплавов.

ЛИТЕРАТУРА

1. Царук Ф.Ф., Довгялло И.Г., Долбин Н.А., Горновский Д.А. Высокочастотные колебания как метод ускорения усталостных испытаний элементов конструкций. Научн.-техн. конф. «Повышение технического уровня и надежности машин». (Минск, 28–29 октября 1993 г): Тез. докл. — Мн.: ИНДМАШ, 1993. — С. 47–48. 2. Немцов В.Б., Долбин Н.А., Царук Ф.Ф., Довгялло И.Г., Кондеев Ю.Н. К расчету напряженного состояния пластин, колеблющихся на низких ультразвуковых и звуковых частотах // Теоретическая и прикладная механика. — Вып. 16. — Мн., «Вышэйшая школа», 1989. — С. 113–117. 3. Блохин А.В. Особенности усталостных испытаний литейных алюминиевых сплавав. VIII Республиканская научн.-техн. конф. студентов и аспирантов. (Минск, 9–10 декабря 2003 г.): Тез. докл. Часть 1. — Мн.: 2003. — С. 154.

УДК 629.4.015

И.А. Ворожун

ОЦЕНКА ДИНАМИЧЕСКИХ СИЛ В КРЕПЛЕНИЯХ ТРУБ НА ПЛАТФОРМЕ ПРИ СОУДАРЕНИЯХ ВАГОНОВ

Белорусский государственный университет транспорта Гомель, Беларусь

Размещение пяти труб диаметром 1420 мм на железнодорожной платформе позволяет повысить коэффициент использования грузоподъемности платформы и снизить затраты на транспортировку труб. Поэтому вполне актуально создание устройств, для размещения и крепления указанных труб на железнодорожной платформе.

Цель работы — оценка динамических сил в элементах крепления труб на железнодорожной платформе в процессе соударения вагонов.

В расчетной схеме [1] пять труб диаметром 1420 мм размещены на железнодорожной платформе в три яруса, а реквизиты крепления содержат стальные канаты с натяжными устройствами. В ходе исследований установлено, что в процессе соударения вагонов все трубы перемещаются как единый пакет. В принятой схеме (рис. 1) нижний ярус труб уложен на опоры, закрепленные на раме платформы. Между нижним и средним ярусами труб установлены промежуточные опоры, которые посредством канатов прикреплены к раме платформы. Труба верхнего яруса размещена в седловине между трубами среднего яруса и посредством канатов поперечной обвязки прикреплена к раме платформы. От продольного смещения (в направлении движения платформы) трубы двух верхних ярусов удерживаются канатами, закрепленными на торцах труб, а трубы нижнего яруса удерживаются канатами, закрепленными на торцах рамы платформы.

В рассматриваемой математической модели процесса соударения платформы, загруженной тремя ярусами труб, с группой из трех неподвижных полногрузых вагонов все тела считаются абсолютно твердыми, а элементы продольных и поперечных обвязок, а также междувагонных связей обладают упругими свойствами и имеют линейные характеристики. Равнодействующие силы сухого трения между трубами и труб по опорам считаем условно приложенными в продольном диаметральном сечении труб. Движение механической системы рассматривается в продольной вертикальной плоскости на прямом горизонтальном участке пути от положения, которое она занимала в момент накатывания на группу из трех неподвижных вагонов. Продольные линейные перемещения поперечной обвязки, верхней трубы, двух труб среднего яруса, промежуточных опор, двух труб нижнего яруса, платформы и трех вагонов обозначим через $x_1, x_2, x_3, x_4, x_6, x_7, x_8, x_9$ соответственно. Таким образом, рассматриваемая система будет иметь девять независимых координат.

Рис. 1. Расчетная схема платформы с трубами

С учетом принятых допущений и использованием принципа Даламбера [2] составлены дифференциальные уравнения движения масс механической системы:

$$m_{1}\ddot{x}_{1} + T_{1}\sin\alpha_{1} - F_{1}\operatorname{sgn}(\dot{x}_{2} - \dot{x}_{1}) = 0;$$

$$m_{2}\ddot{x}_{2} + T_{2} + F_{1}\operatorname{sgn}(\dot{x}_{2} - \dot{x}_{1}) + F_{2}\operatorname{sgn}(\dot{x}_{2} - \dot{x}_{3}) = 0;$$

$$m_{3}\ddot{x}_{3} - T_{2} + T_{3} - F_{2}\operatorname{sgn}(\dot{x}_{2} - \dot{x}_{3}) + F_{3}\operatorname{sgn}(\dot{x}_{3} - \dot{x}_{4}) = 0;$$

$$m_{4}\ddot{x}_{4} + T_{4}\sin\alpha_{2} - F_{3}\operatorname{sgn}(\dot{x}_{3} - \dot{x}_{4}) - F_{4}\operatorname{sgn}(\dot{x}_{5} - \dot{x}_{4}) - T_{1}\sin\alpha_{1} = 0;$$

$$m_{5}\ddot{x} - T_{3} + T_{5} + F_{4}\operatorname{sgn}(\dot{x}_{5} - \dot{x}_{4}) + F_{5}\operatorname{sgn}(\dot{x}_{5} - \dot{x}_{6}) = 0;$$

$$m_{6}\ddot{x}_{6} - T_{4}\sin\alpha_{2} - T_{5} - F_{5} + R_{1} = 0;$$

$$m_{7}\ddot{x}_{7} - R_{1} + R_{2} = 0;$$

$$m_{8}\ddot{x}_{8} - R_{2} + R_{3} = 0;$$

$$m_{9}\ddot{x}_{9} - R_{3} + R_{4} = 0.$$
(1)

Входящие в уравнения системы (1) силы упругости элементов крепления труб, силы сухого трения и значения функций углов определяются следующими выражениями:

$$T_{1} = c_{1}(\lambda_{1} + \sqrt{l_{01}^{2} + (x_{1} - x_{4})^{2}} - l_{01});$$

$$T_{2} = c_{2}(\lambda_{2} + x_{2} - x_{3});$$

$$T_{3} = c_{3}(\lambda_{3} + x_{3} - x_{5});$$

$$T_{4} = c_{4}(\lambda_{4} + \sqrt{l_{02}^{2} + (x_{4} - x_{6})^{2}} - l_{02});$$

$$T_{5} = c_{5}(\lambda_{5} + x_{5} - x_{6}) \cdot$$

$$F_{1} = f_{1}(m_{1}g + T_{1}\cos\alpha_{1}); \quad F_{2} = f_{2}(m_{1} + m_{2})g + T_{1}\cos\alpha_{1};$$

$$= f_{3}(m_{1} + m_{2} + m_{3})g + T_{1}\cos\alpha_{1}; \quad F_{4} = f_{4}(m_{1} + m_{2} + m_{3} + m_{4})g + T_{4}\cos\alpha_{2}).$$

$$F_5 = (f_5(m_1 + m_2 + m_3 + m_4 + m_5)g + T_4 \cos \alpha_2)$$

 F_3

$$\sin \alpha_1 = \frac{x_1 - x_4}{\sqrt{(l_{01}^2 + (x_1 - x_4)^2)^2}}; \quad \cos \alpha_1 = \frac{l_{01}}{\sqrt{(l_{01}^2 + (x_1 - x_4)^2)^2}};$$
$$\sin \alpha_2 = \frac{x_4 - x_6}{\sqrt{(l_{02}^2 - (x_4 - x_6)^2)^2}}; \quad \cos \alpha_2 = \frac{l_{02}}{\sqrt{(l_{02}^2 - (x_4 - x_6)^2)^2}};$$

Силы в междувагонных связях с пружинно-фрикционными поглощающими аппаратами при перемещениях вагонов не превышающих ход поглощающих аппаратов приняты в виде [3]:

$$\begin{split} R_1 &= c(x_6 - x_7) [1 + \mu \operatorname{sgn}(\dot{x}_6 - \dot{x}_7)]; \quad R_2 = c(x_7 - x_8) [1 + \mu \operatorname{sgn}(\dot{x}_7 - \dot{x}_8)]; \\ R_3 &= c(x_8 - x_9) [1 + \mu \operatorname{sgn}(\dot{x}_8 - \dot{x}_9)]; \quad R_4 = cx_9 (1 + \mu \operatorname{sgn} \dot{x}_9). \end{split}$$

В представленных выражениях приняты следующие обозначения:

 $m_1, ..., m_9$ – соответственно массы поперечной обвязки, верхней трубы, двух труб среднего яруса, промежуточных опор, двух труб нижнего яруса, платформы и трех вагонов;

*T*₁,..., *T*₅ — соответственно силы упругости элементов поперечной обвязки, продольного крепления верхней трубы и труб среднего яруса, крепления промежуточных опор и продольного крепления труб нижнего яруса;

α₁, α₂ — соответственно углы отклонения от вертикали элементов верхней поперечной обвязки и крепления промежуточных опор;

*F*₁, ..., *F*₅ — соответственно силы сухого трения между элементами поперечной обвязки и верхпей трубой, верхней трубой и трубами среднего яруса, трубами среднего яруса и промежуточными опорами, трубами нижнего яруса и промежуточными опорами, а также опорами платформы;

*R*₁, ..., *R*₄ — силы в междувагонных связях;

с,*с*₁,...,*с*₅ — жесткости упругих элементов междувагонных связей и крепления труб;

 l_{or} ..., l_{o2} — длины элементов крепления в свободном (недеформированном) состоянии;

 $\lambda_1, ..., \lambda_5$ — величины предварительного натяжения упругих элементов крепления труб;

µ, f₁,..., f₄ – коэффициенты трения в элементах междувагонных связей и крепления труб;

g — ускорение свободного падения;

 $sgn(\dot{x}_{i+1} - \dot{x}_i)$ -знак «+» или «-» (i=1,...,9).

Численное интегрирование уравнений системы (1) проводилось для диапазона скоростей соударения вагонов 0,5...3 м/с при следующих исходных **Δ**AHHЫX: $m_1 = 10$ KF; $m_2 = 6800$ KF; $m_3 = m_5 = 13600$ KF; $m_4 = 100$ KF; $m_6 = 21000$ KF; $m_7 = m_8 = m_9 = 84000$ KF; $l_{01} = 2,5$ M; $l_{02} = 1,4$ M; $c = 5 \cdot 10^7$ H/M; $c_1 = c_4 = 1.10^6$ H/M; $c_2 = c_3 = 9.10^5$ H/M; $c_5 = 3.10^5$ H/M; $f_1 = f_2 = f_3 = f_4 = 0,4$; $\mu = 0,25$; $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = 0$.

Результаты расчетов для скорости соударения вагонов 2,5 м/с представлены в виде графиков изменения сил в канатах крепления труб (рис. 2). *a*) *б*)

Рис. 2. Изменение сил в канатах 1, 2, 3 продольного крепления труб (а) и в канатах 1, 2 поперечной обвязки (б)

Сравнительный анализ полученных результатов позволяет сделать заключение, что в процессе соударения вагонов наибольшие усилия возникают в канатах продольного крепления труб нижнего и верхнего ярусов (см. рис. 2a, кривые 1 и 2), а также в канатах крепления промежуточных опор к раме платформы (см. рис. 2б, кривая 1).

ЛИТЕРАТУРА

1.Ворожун И.А. Моделирование упругих элементов крепления труб на железнодорожной платформе при соударениях вагонов // Машиностроение. — Мн., 2001.— Вып.17. — С. 263–267. 2. Технические условия погрузки и крепления грузов. М.: Транспорт 1990. — 408с. 3. Соко- лов М.М., Хусидов В.Д., Минкин Ю.Г. Динамическая нагруженность вагона. — М.: Транспорт 1981.— 207с.