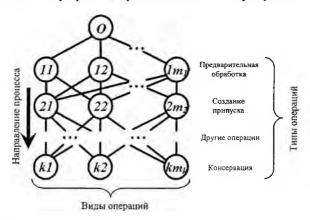
1	2	3	4
Потребление воздуха, л/мин.	320	450	280
Производительность	высокая	средняя	высокая
Расстояние до окращиваемого изделия, см	18-25	14-18	18-25

УДК 629.11

ОПТИМИЗАЦИЯ ЗАДАЧИ ПО РАЗРАБОТКЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ВОССТАНОВЛЕНИЯ КОРПУСНЫХ ДЕТАЛЕЙ

Шабусов Руслан Русланович. Научный руководитель — доцент А.В. Казацкий (Белорусский национальный технический университет)


В работе приведен анализ методик выбора способа восстановления для деталей класса "Корпусные детали" и доказательно предлагается использование метода графов.

Корпусные детали являются базовыми и основными деталями агрегатов автомобилей, и от качества их ремонта зависит дальнейшая работоспособность агрегатов. Корпусные детали агрегатов автомобилей изготавливают преимущественно из серого чугуна и алюминиевых сплавов. Характерными дефектами корпусных деталей являются: трещины, пробоины, обломы, износ посадочных отверстий под подшипники и оси, износ и повреждение резьбовых отверстий, износ отверстий под установочные штифты, коробление присоединительных поверхностей.

Существует три основных метода выбора способов восстановления детали, отличающихся различной степенью учета технических и экономических показателей (оценка полной себестоимости восстановления, оценка отношения затрат на восстановление к ресурсу детали и оценка комплексного показателя в виде функции критериев применимости, долговечности и технико-экономического). Однако все эти методы позволяют лишь количественно оценить эффективность того или иного способа восстановления, но ни один из них не дает информацию, позволяющую сформировать сам процесс восстановления детали.

Поэтому, с точки зрения структурного технического решения задачи по оптимизации состава маршрута восстановления корпусных деталей, определенный интерес представляет метод графового представления возможных вариантов составляющих технологических процессов и поиска определенного сочетания технологических операций, образующих оптимальный маршрут восстановления детали.

Согласно этому методу, структура процесса восстановления детали описывается графом Γ , представленном на рисунке.

Граф вариантов технологического процесса восстановления детали

Множество вершин графа p_{ij} соответствует множеству составляющих операций, а множество дуг $l_{i,\dots,j+1}$ – величине критериев оценки подготовки и выполнения последующих операций, то есть:

$$\Gamma = (p_{ij}, l_{i,\dots,j+1}).$$

Горизонтальные ряды вершин графа соответствуют подмножеству видов j=m операций i-го типа. В граф вводят лишь те технологические операции, которые способны обеспечить установленные ограничения по качеству и производительности восстановления.

Определенное сочетание вершин, взятых по одной из каждого ряда графа, определяет один вариант технологического процесса. Число таких вариантов достигает произведения $m_1m_2...m_k$. Несовместимость некоторых операций между собой сокращает число вариантов технологического процесса.

Кратчайший путь L_{i+1} между указанными вершинами определяют путем решения рекуррентного уравнения в каждой вершине графа:

$$L_{i+1} = \min \left(\text{ по всем } i, \text{ по всем } m \right) \left[L_{(i+1)-1} + L_i \right],$$

где і – шаг решения уравнения;

m — число видов технологических операций j — го типа;

 L_i –затраты на выполнение i – й операции;

 L_{i+1} – затраты, отнесенные к i+1 операциям;

 $L_{(i+1)-1}$ — затраты, отнесенные к присоединению (i+1)—й операции и процесса к i его операциям.

Выбранные на графе направления движения из его вершин обозначают стрелками. Эти связи обуславливают оптимальные сочетания операций на предыдущих шагах с операцией на последующем шаге. Расчеты ведутся от вершин нижнего ряда к вершине O. В вершины графа вписывают значения L_{i+1} .

Двигаясь в найденных направлениях из вершины O графа через одну из вершин каждого яруса графа, находят сочетание операций, которое при прочих равных условиях обеспечивает построение оптимального технологического процесса восстановления детали.

УДК 629.113.004

ТЕХНИЧЕСКОЕ СОСТОЯНИЕ ТРАНСПОРТНЫХ СРЕДСТВ КАК ОБЪЕКТ МОДЕЛИРОВАНИЯ И ОПТИМИЗАЦИИ

Колесникович Алексей Станиславович Научный руководитель – Г.А.Самко (Белорусский национальный технический университет)

Представлено описание возможных состояний транспортных средств и поставлена задача моделирования и оптимизации их технического состояния на основе методов линейного программирования.

Одним из основных понятий технической эксплуатации транспортных средств является понятие их технического состояния, которое характеризуется степенью исправности агрегатов, механизмов