UDC 004.4

SPEEDUP OF BLOCKS CALCULATION IN BLOCKED FLOYD-
WARSHALL ALGORITHM

Prihozhy A. A.
Belarusian National Technical University,
Minsk, Belarus, prihozhy@yahoo.com

Finding shortest and longest paths in graphs [1-8] solves optimization problems
in many application domains. Based on the classical Floyd-Warshall algorithm
(FW) [9], the blocked Floyd-Warshall Algorithm 1 (BFW) was developed in works
[10-19] by means of decomposing the matrix D[NxN] of shortest path distances in a
weighted graph into the matrix B[MxM] of blocks B, ,[SxS], where N is the number
of graph vertices, S is the block size, M=N/S, and v,u=0...M-1. In BFW, all
blocks are calculated by the universal Algorithm 2 (BCA), which is in fact FW with
three input blocks B!, B2 and B3and one output block B. In BFW, there are four calls
of BCA with different arguments. In the DO call, all three arguments are copies of the
same block B . In the C1 call, two arguments are copies of block By, and one ar-
gument is block By, m. In the C2 call, two arguments are copies of block By, and one
argument is block Bn . In the P3 call, all arguments are unique blocks B, ., Byn and
Bmu. In the calls, BCA consumes different input data of different overall size. There-
fore. we develop a unique algorithm for each call, which replaces BCA during the
BFW execution. We refer to such a modification of BFW as a heterogeneous blocked
shortest paths algorithm, briefly HET.

Tab. 1 describes storage consumption per iteration of the loop along k, and the
overall storage consumption over all loop iterations. Here we assume that all ele-
ments of block B! are processed within each iteration, block B? is accessed within
each iteration row by row, and block B? is accessed within each iteration column by
column. BCA consumes the amount S® of storage while calculating the DO and con-
sumes the amount S3 + 252 of storage overalls while calculating the P3 block.

Algorithm 1: Blocked Floyd-Warshall (BFW)

Input: A number N of graph vertices
Input: A matrix W[NxN] of graph edge weights
Input: A size S of block
Output: A blocked matrix B[MxM] of path distances
B«WM <« N/S
form « 0 toM-1 do
Bm,m™*«BCA(Bmm, Bmm, Bm,m) // DO
forv < 0 toM-1 do
ifv=mthen
Bvm™*1«BCA(Bv,m, Bvm, Bmm) Il C1
Bmy"*1«BCA(Bm.v, Bmm, Bmy) /Il C2
forv < 0 toM-1 do
183

if v m then
foru « 0 toM-1 do
if u=m then

Bv,u(—BCA(Bv,u, Bv,m, Bm,u)
returnB

11 P3

Algorithm 2:Block calculation (BCA)

Input:S is size of block

Input:B?, B2, B® are input blocks
Output:B! is recalculated block

fork < 0toS-1do
fori<~0toS-1do
forj <« 0toS-1do

sum<«b?ik + b;
ifb% >sumthenb? j«—sum;

returnB?!

Table 1 — Storage consumption by four types of blocks

Block type

Per iteration of loop along k

Input B!

Input B2

Input B3

Over all iterations

DO

SS

C1

$3+5?

C2

S

$3 + &

P3

S

S
S

S3 + 282

Calculating diagonal block. Our new algorithm DO_A calculates block B! in
stepwise manner while adding vertices to a graph and adding row k and column k to

matrix B*. Fig. 1 illustrates the transition from matrix B'(k — 1) to matrix B!(k) in a
loop along k. First, element b is calculated over b%j and thj and element by is cal-
culated over bl and b for i, j =0...k- 1. Second, element b is recalculated over
blik and b for i, j = 0...k — 1. Algorithm 3 completely describes DO_A.

0

k

Figure 1 — Calculating diagonal block B(k) over B1(k — 1) — algorithm DO_A

184

Algorithm 3: Diagonal block calculation algorithm (D0_A)

Input: A block B!
Input: A size S of block
Output: A recalculated block B!
fork < 0 toS - 1 do
fori < 0 tok-1do
forj <~ 0tok - 1 do
so<—bljj + bljifblik>sothenblike—so
s1<bli + bljjifblk>sithenblije—s:
fori < 0tok-1do
forj <~ 0tok - 1 do
So<—blik + blyjifbli>s thenblj<s;
returnB!

Calculating vertical block of cross. Our new algorithm C1_A calculates block B!
over block B in stepwise manner while adding a vertex to a graph and adding a col-
umn k to matrix B*. Fig. 2 illustrates the transition from matrix B(k — 1) to matrix
B%(k) in a loop along k. First, element b of B! is calculated over b%; of B! and b3y of
B fori=0...S—1andj=0...k — 1. Second, element b'; of B! is recalculated over

blik of B! and b3 of B® for the same ranges of indices. Algorithm 4 completely de-
scribes C1_A.

0

5
Figure 2 — Calculating vertical block B(k) of cross over B(k-1) — algorithm C1_A

185

Algorithm 4: Calculating vertical block of cross (C1_A)

Input: Blocks B and B2
Input: A size S of block
Output: A recalculated block B!
fork <~ 1toS -1 do
fori<0toS-1do
forj <~ 0 tok - 1 do
so<—blj + b3jifblik>sethenbik<—so
fori< 0toS-1do
forj < 0tok-1do
so<—blik + bifbli>s thenblij<s;
returnB!

Calculating horizontal block of cross. The new algorithm C2_A calculates block
B! over block B? in stepwise manner while adding a vertex to a graph and adding a
row k to matrix B*. Fig. 3 illustrates the transition from matrix B*(k — 1) to matrix
B%(k) in a loop along k. First, element b of B! is calculated over b%; of B? and bY;; of
B! fori=0...k — 1 and j=0...S — 1. Second, element b'; of B! is recalculated over
b2 of B? and b of B! for the same ranges of indices. Algorithm 5 completely de-
scribes C2_A.

The algorithms DO_A, C1_A and C2_A are further improved by means of resyn-
chronizing the loops along i and j, merging the loops, and introducing the sequential
reference locality for blocked data due to collecting column elements in one-
dimensional arrays. Algorithms DO_A, C1 A and C2_A have advantages against the
BCA algorithm. They reduce the number of loop iterations in nested loops and ex-
ploit the hierarchical caches efficiently.

Figure 3 — Calculating horizontal block B*(k) of cross over B!(k — 1) — algorithm C2_A

Results. The experiments were carried out on a multi-core processor Intel(R)
Core(TM) i5-6200UCPU @ 2.20 GHz. They aimed for identifying the dependence of
the run-time of the FW, BFW and HET algorithms and the algorithms for calculating
four types of blocks depending on the graph size, block size and number of blocks.
They make it possible to compare the new HET algorithm with the known homoge-
neous blocked BFW algorithm. We used complete graphs with random weights on the
edges, for which the problem of shortest paths is the hardest. Tab. 2 reports the run-

186

time of the uniform BCA algorithm that is used by BFW for all types of blocks on ma-
trix B[2x2] of various graph-sizes and various block-sizes. The run-time is close for
all blocks of DO, C1, C2 and P3 types.

Algorithm 5: Calculating horizontal block of cross (C2_A)

Input: Blocks B! and B2
Input: A size S of block
Output: A recalculated block B!
fork <~ 1 toS - 1 do
fori < 0tok-1do
forj <~ 0toS-1do
so<—bi + blijifb>sethenblyj<so
fori <~ 0tok-1do
forj <« 0toS-1do
so<—b2i + blyjifbli>s thenblij«s;
returnB?

When we apply the DO_A, C1_A, C2_A and P3_A algorithms to the same graphs
and blocks, their run-time is different (tab. 3). The fastest algorithm is DO_A, which
yields the speedup of 33.94 % on average over BCA (fig. 4). Algorithms C1_A and
C2_A shows the speedup of 24.59 % and 25.26 % respectively. The slowest P3_A al-
gorithm has shown the speedup of only 2.72 %. We can explain this fact as the graph
extension-based technique has failed to be applied to the blocks of type P3. Fig.e 5
gives a pair-wise comparison of the FW, BFW and HET algorithms on graphs of 2400
vertices depending on the block-size. Algorithm BFW is faster than FW by 5.06 % on
average. The gain of the Het algorithm is from 9.28 % to 25.64 % over FW and is
from 3.57 % to 23.40 % over BFW. Thus, the new DO _A, C1 A, C2 A and P3_A al-
gorithms of block calculation have significantly contributed to the acceleration of the
shortest paths search.

Table 2 — Run-time (ms) of uniform algorithm BCA on all block types of blocked
matrix B[2x2] vs. vertex count N and block size S

N S Mean Min Max Min % Max %
480 240 45.8 43.5 48.5 4.92 6.01
720 360 142.6 140.5 144.5 1.49 1.31
960 480 335.1 332.0 339.5 0.93 1.31
1200 600 657.1 653.5 661.0 0.55 0.59
1440 720 1123.0 1115.0 1130.5 0.71 0.67
1680 840 1804.8 1782.0 1829.0 1.26 1.34
1920 960 2705.9 2684.0 2721.5 0.81 0.58
2160 1080 3865.4 3851.5 3893.5 0.36 0.73
2400 1200 5287.9 5236.0 5334.0 0.98 0.87

187

Table 3 — Run-time (ms) of algorithms DO_A, C1 A, C2_A and P3_A on blocked
matrix B[2x2] vs. vertex count N and block size S

N S DO_A ClA C2_A P3 A
480 240 29.0 33.0 325 43.0
720 360 96.0 115.0 108.5 141.0
960 480 227.0 253.0 251.0 330.0
1200 600 438.5 492.0 492.5 647.5
1440 720 751.0 846.0 848.5 1127.5
1680 840 1195.5 1345.0 1329.0 1764.5
1920 960 1838.0 2020.5 1993.0 2644.0
2160 1080 2527.5 2885.5 2837.5 3748.5
2400 1200 3472.5 3958.0 3898.5 5164.0

40,00

32,00 ‘\o——_.’o—o—o\./‘_‘

30,00

25,00 :\\\ e e AR R

20,00 RNl

15,00

10,00

5,00

O

5,00200 400 600 800 1000 1200
—8—D0 --Ak-Cl —&—C2 ---- P3

Figure 4 — Speedup % of algorithms DO_A, C1_A, C2_A and P3_A over BCA for B[2x2]
vs. block-size 240...1200 in graphs of 480...2400 vertices

30,00
25,00
20,00
15,00
10,00

5,00

0,00
200 400 600 800 1000 1200

-=-¥--- FW/Hom FW/Het —@— Hom/Het

Figure 5 — Speedup (%) of BFW over FW, HET over FW and HET over BFW
on graphs of 2400 vertices vs. block-size

188

References

1. Madkour A., Aref W. G., Rehman F. U., Rahman M. A., Basalamah S. A Survey
of Shortest-Path Algorithms. ArXiv:1705.02044v1 [cs.DS] 4 May 2017, 26 p.

2. Anu P., Kumar M. G. Finding All-Pairs Shortest Path for a Large-Scale
Transportation Network Using Parallel Floyd-Warshall and Parallel Dijkstra Algo-
rithms. Journal of Computing in Civil Engineering, 2013, vol. 27, no. 3,
pp. 263-273.

3. PrihozhyA.,Bezati E., Ab RahmanA.-H.,Mattavelli M. Synthesis and Opti-
mization of Pipelines for HW Implementations of Dataflow Programs, IEEE Trans-
actions on CAD, 2015, vol. 34, no. 10, pp. 1613-1626.

4. Ipuxoxuit A. A. Pacnpenenennas u napajienbHas o0OpaOoTka JaHHBIX. —
Munck: BHTY, 2016. — 90 c.

5. Prihozhy A. A., Mattavelli M., Mlynek D. Data dependences critical path
evaluation at C/C++ system level description. International Workshop PAT-
MQOS'2003, Springer, 2003, pp. 569-579.

6. [Ipuxoxuit A. A., Knanosckuii A. M., Kapacuk O. H., Marrasemu M. OB-
pI/ICTI/ILIeCKPlf/'I reHEeTUYECKUMN AJITOPUTM OITHMHU3AIWKN BBIYUCIIUTCIbHBIX KOHBele-
poB. loknaasl BI'YUP, 2017, Ne 1, c. 34-41.

7. Prihozhy A. ., Casale-Brunet S., Bezati E., Mattavelli M. Efficient Dynamic
Optimisation Heuristics for Dataflow Pipelines. 2018 IEEE International Workshop
on Signal Processing Systems (SiPS), 2018, pp. 1-6.

8. Prihozhy A. A., Casale-Brunet S., Bezati E., Mattavelli M. Pipeline Synthe-
sis and Optimization from Branched Feedback Dataflow Programs. Journal of Signal
Processing Systems [Electronic resource], 2020, vol. 92, pp. 1091-1099. — Mode of
access: https://doi.org/10.1007/s11265-020-01568-5. — Date of access: 20.09.2022.

9. Floyd R. W. Algorithm 97: Shortest Path. Communications of the ACM,
1962, vol. 5, no. 6, p. 345.

10. Venkataraman G.A., Sahni S., Mukhopadhyaya S. Blocked All-Pairs Short-
est Paths Algorithm, Journal of Experimental Algorithmics (JEA), 2003, vol. 8, pp.
857-874.

11. Park J., Penner M., Prasanna V. K. Optimizing graph algorithms for im-
proved cache performance. IEEE Transactions on Parallel and Distributed Systems,
2004, vol. 15, no. 9. pp. 769-782.

12. Albalwi E., Thulasiraman P., Thulasiram R. Task Level Parallelization of
All Pair Shortest Path Algorithm in OpenMP 3.0. Advances in Computer Science and
Engineering (CSE 2013), Los Angeles: Atlantis Press, 2013, pp. 109-112.

13. Tang P. Rapid development of parallel blocked all-pairs shortest paths code
for multi-core computers. IEEE SOUTHEASTCON 2014, Lexington, KY, USA,
IEEE, 2014, pp. 1-7.

14. Tlpuxoxwuit A. A., Kapacuk O. H. PazHopoiHbIil 0JIOYHBIN aNTOPUTM MTOUCKA
KpaTyalmmx myTed MeXIy BcemH mapamu BepinuH rpada. CHCTeMHBIN aHamu3 |
npukiagHas nHpopmartuka, 2017, Ne 3, ¢. 68-75.

15. Prihozhy A. A. Optimization of data allocation in hierarchical memory for
blocked shortest paths algorithms. System analysis and applied information science,
2021, no. 3, pp. 40-50.

189

16. Karasik O. N.,Prihozhy A. A. Threaded block-parallel algorithm for finding
the shortest pats on graph. Doklady BGUIR, 2018, No. 2, pp. 77-84.

17. Prihozhy A. A.,Karasik O. N. Cooperative block-parallel algorithms for task
execution on multi-core system. System analysis and applied information science,
2015, no. 2, pp. 10-18.

18. Prihozhy A. A. Simulation of direct mapped, k-way and fully associative
cacheonall pairs shortest paths algorithms. System analysis and applied information
science, 2019, no. 4, pp. 10-18.

19. Prihozhy A. A., Karasik, O. N. Inference of shortest path algorithms with
spatial and temporal locality for Big Data processing.Big Data and Advanced Analyt-
ics: Proceedings of VIII InternationalConference.Minsk: Bestprint, 2022, pp. 56—66.

190

