НАГРУЗОЧНЫЕ РЕЖИМЫ ЛЕСНЫХ МАШИН

Белорусский государственный технологический университет Минск, Беларусь

При проектировании лесных машин стремятся к созданию такой ее конструкции, которая имела бы минимальную массу, максимальный КПД и производительность соответствующую заданной при работе в реальных условиях эксплуатации. В этом случае необходимо решить проблему оптимизации системы, которая для лесных машин является многопараметрической с учетом целого ряда ограничений.

Получение максимального КПД возможно в основном благодаря применению рациональной принципиальной схемы лесной машины и ее конструкции, которые отвечают принятым технологических процессам их функционирования при соответствующих видах рубок с учетом лесохозяйственных и экологических требований лесозаготовительного производства. Минимизацию же массы и оптимизацию техникоэксплуатационных показателей осуществляют конструктивными и технологическими мероприятиями с одновременным совершенствованием методов расчетов.

Известно, что любой расчет связан с созданием эквивалентной схемы рассматриваемого элемента или агрегата конструкции, с оценкой и заданием нагрузок, действующих на них. Под нагрузками в данном случае следует понимать не только силовые нагрузки (и их производные) на шасси базовой машины и технологическое оборудование, но и другие оценочные величины, такие как виброускорения, звуковое давление, которые являются функциями времени. Изменение во времени оценочных величин при движении машины в реальных условиях определяет эксплуатационный нагрузочный режим.

При эксплуатации лесных машин действующие нагрузки имеют различный характер изменения, который зависит как от внешних факторов (почвенно—грунтовые, дорожные и климатические условия, параметры и показатели произрастающего древостоя), так и от конструктивных особенностей самой машины.

Наглядное представление об эксплуатационном нагрузочном режиме можно получить по его временной реализации, которую определяют различными способами моделирования, измерений, записи и воспроизведения.

Выполняемая в настоящее время практически всеми крупными лесодобывающими странами работа по созданию и модернизации лесных машин требует накопления и систематизации данных по их нагрузочным режимам, особенно ввиду специ-

фичности условий эксплуатации, особенностей выполняемых рабочих операций и конструкции не только базового шасси, но и технологического оборудования.

Такая работа проводиться кафедрой лесных машин БГТУ совместно с ОКБ МТЗ. Получены и систематизированы данные по нагрузочным режимам лесовозных автопоездов, трелевочных тракторов, погрузочно – транспортных и других лесных машин. При этом использованы данные литературных источников, результаты моделирования и экспериментальных замеров, что позволило их классифицировать по виду воздействий на объекты. Использовались различные методы схематизации нагрузочных режимов в зависимости от вида и особенностей рабочих операций (размахов, полных циклов, превышений, корреляционного счета и др.), что в конечном счете преследует цель получения удельных показателей обобщенных нагрузочных режимов для однотипных лесных машин.

В качестве примера ниже приведены некоторые результаты этой работы.

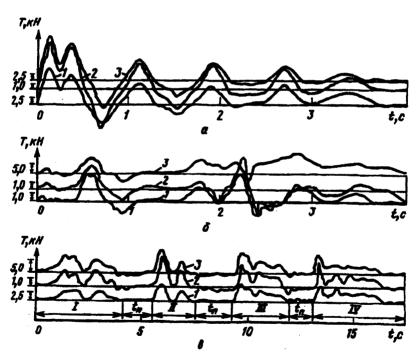


Рис. 1. Крутящие моменты на полуосях переднего (1), среднего (2) и заднего (3) мостов соответственно; (I - IV -номер передачи; (t_- время переключения передач)

На рис. 1 (по данным МГТУ им. Баумана) представлены нагрузочные режимы элементов трансмиссии колесной мапшны типа 6К6 при трогании с места путем быстрого включения сцепления (а), переезде единичной неровности синусоидальной формы (б) и в процессах плавного трогания и разгона с переключением передач (в). Характерным для таких видов нагружения является наличие экстремальных значений оценочных величин, изменение которых во времени представляет собой переходный процесс. При трогании с места происходит аналогичное нагружение рессор и реактивных штанг. При этом реактивные штанги могут воспринимать нагрузки, в 2-3 раза превышающие статические усилия, рассчитанные по максимальному моменту пвигателя.

Для рассмотренных процессов нагружения трансмиссии характерным является влияние различных параметров исследуемой системы и входного возмущения на динамические нагрузки.

Анализ экспериментальных данных нагрузочных режимов трансмиссии трансмиссии погрузочно-транспортной машины МЛПТ-354 типа 4К4 Минского тракторного завода показал, что значения кругящих моментов на переднем мосту при движении по лесному волоку превышают реализуемые задним мостом моменты на 40...80%. При отключении привода заднего моста его нагруженность возрастает в 1,5...2 раза. Максимальные значения Мкр наблюдаются при преодолении пороговых неровностей. Коэффициенты динамичности в этом случае составляют 3,2...3,7. Спектральный анализ крутильных колебаний в трансмиссии показал, что изменение моментов наблюдается в основном в основном в низкочастотном 2...10 Гц.

Лесные трелевочные тракторы характеризуются особо тяжелыми нагрузочными режимами, что характеризуется данными табл.1.

Таблица 1 Данные по нагруженности трансмиссии колесного трелевочного трактора МЛ-126 при испытаниях в условиях объединения «Молодечнолес»

Условия движения	Значения крутящих моментов на передней и задней полуосях машины, кН·м *				
	M _{rp,max}	σ_{M}	m_{M}		
 I передача, υ=2,2 км/ч, привод 					
заднего моста включен	4,27/3,43	0,95/0,76	2,67/1,58		
 III передача, υ=5,4 км/ч 	4,27/2,70	0,78/0,58	2,39/1,30		
 3. III передача, υ=7,6 км/ч, 	3,74/4,90	0,87/1,36	2,13/1,38		
4. I передача, υ=2,2 км/ч, привод					
заднего моста отключен	5,21/-	1,07/-	3,36/-		
 I передача, υ=3,2 км/ч 	5,07/-	0,81/-	2,80/-		
 III передача, υ=7,6 км/ч 	6,67/-	1,41/-	3,40/-		

Примечание. В числителе приведены – данные для передней полуоси, в знаменателе – для задней полуоси машины.

Вертикальная нагруженность ходовой части машины МЛПТ-354 при движении по волоку характеризуется данными, приведенными на рис. 2.

Проведенный расчетный анализ характера изменения спектральных плотностей динамических реакций на колесах тандемной тележки погрузочно-транспортной машины МЛ-131 показал, наличие балансирной оси обусловливает на кривой S(w) двух экстремумов. Причем их амплитуды зависят от скорости движения и сдвигаются вправо при v=3,6 км/ч до частоты 8 Гц. При скорости движения 10,8 км/ч характер изменения кривых изменяется как для передних, так и для задних колес балансирной тележки и максимальные их значения проявляются в частотном диапазоне 25... 30 Гц, имея первый всплеск большей величины, чем второй. Это можно объяснить особенностью кинематики балансирной тележки.

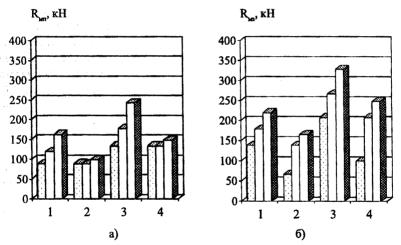


Рис. 2. Зависимость вертикальных динамических реакций переднего (а) и заднего (б) мостов машины 4K4 с грузом 5т (L_6 =4,35 м)от скорости и (3,6, 7,2 и 10,8 км/ч) при переезде неровности: при высоте неровности 0,2 м и длине - 0,3 (1) и 0,6 (2) м; при высоте неровности 0,3 м и длине - 0,3(2) и 0,6 (4) м

Анализ динамики груженого форвардера показывает, что происходит разгрузка передних колес балансирной тележки и дополнительное нагружение задних колес вследствие влияния параметров шин, соотношением плеч балансиров, условий и режимов движения. В зависимости от перечисленных факторов разгрузка передних колес балансира при движении груженой машины со скоростью 3,6 км/ч может дохо-

дить до 30%. С увеличением скорости движения до 10,8 км/ч возможно увеличение неравномерности распределения динамических нагрузок в 1,63 раза. При этом, в зависимости от соотношения показателей привода тандемной тележки возможна циркуляция паразитной мощности, повышение нагруженности трансмиссии и машины в целом, что предполагает проведение специальных исследований.

Нагрузочные режимы для полноприводного лесовозного автопоезда 6x6 были получены путем моделирования движения по участкам дорог с грунтовым и гравийным покрытиями со скоростями движения 20...65 км/ч. С целью моделирования экстремальных нагрузок рассматривался переезд через синусоидальные неровности при изменении их длин L от 0,5 до 1,5м и высот H — от 0,3 до 0,6 м со скоростями движения 5...20 км/ч.

В табл.2 приведены данные соответствующие движению автопоезда по опытному участку грунтовой дороги, выбранного в качестве типового, микропрофиль которого был получен путем прямого замера в объединении «Молодечнолес».

Таблица 2 Значения коэффициентов динамичности

v м/с	K _{dPk3}	K_{dl}	K _{d2}	K_{d9}	K _{d10}	K _{d11}
1	2,4255	2,1410	1,2037	1,2619	6,1724	1,3004
5	1,2557	2,5462	1,1634	1,2153	4,9339	1,5101
10	1,0987	2,3694	1,1153	1,1287	2,7031	1,6023

Примечание: K_{dPk3} , K_{di} , K_{dg} , K_{dg} , K_{di0} , K_{di1} – коэффициенты динамичности соответственно, продольное на оси передней оси, вертикальные на передней и задней осях рамы тягача, вертикальное и продольное на конике тягача, вертикальное на конике прицепа.

Из представленных данных видно, что при рассматриваемых условиях движения значения коэффициентов динамичности изменяются в пределах 1,1...2,7 за исключением Кд₁₀, соответствующего продольной силе на конике тягача, которая находится в резонансном режиме. Однако с увеличением скорости движения, динамические значения этой силы резко падают и при скорости 36 км/ч Р_{10мах} составляет всего 3,12 кH, а коэффициент динамичности равен 2,7.

Приведенные данные подтверждают факт сложности условий эксплуатации полно-приводных машин, особенно лесных, для которых характерна специфичность рабочих циклов и состав операций, что предопределяет тяжелые нагрузочные режимы, от учета показателей которых зависит качество их проектирования.