ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ ИЗ ДРЕВЕСИНЫ ОБЪЕМНОГО ДЕФОРМИРОВАНИЯ

Белорусский государственный университет транспорта, Гомель, Беларусь

Отношение к древесине, как машиностроительному материалу, в процессе эволюции менялось от полного его использования в узлах трения механизмов, до полного его изъятия из всех улов и заменой ее на металл или искусственный полимер. Не зная особенностей технологии изготовления и ценных свойств прессованной древесины инженерно-технические работники предприятий до настоящего времени с недоверием и скептически относятся к ней, не желая внедрять в производство. В то же время многочисленные результаты производственных испытаний в течение прошлого столетия (с 1936 г.) показали, что детали скольжения на основе прессованной древесины незаменимы при работе на самосмазке в абразивных и агрессивных средах при скоростях до 1,5 м/с и нагрузках до 12 МПа (фактор ру до 3,5 МПаЧм/с). При этом древесина является высокоэкономичным заменителем цветных металлов и других дефицитных дорогостоящих материалов. Стоимость единицы объема прессованной древесины меньше: в 55 раз, чем фторопласта 3; в 50 раз, чем баббита Б-83; в 6 раз, чем бронзы ОЦС 5-6-7; в 4 раза, чем полиэтилена ПЭ-150 и находится на уровне чугуна СЧ-19-36.

До настоящего времени отсутствует совершенная промышленная технология по производству ДП, не разработано единой методики определения экономического эффекта производства и применения ДП в машиностроении и ремонтном хозяйстве, не создано единых ГОСТов на детали из ДП и отсутствуют работы по их унификации. Экономический эффект зачастую определяется без учета долговечности, сокращения времени ремонта машин и увеличения продолжительности их эксплуатации без ремонта, исключения техуходов, техосмотров и других технико-экономических мероприятий.

Производство подшипников из древесины объемного деформирования, как и каждая отрасль производства имеет свои технические и другие особенности, которые непосредственно влияют на экономические показатели. Степень эффективности производства и внедрения зависит от совокупности многих факторов. Эти факторы характеризуются тремя взаимосвязанными показателями: техническими; организационными; экономическими.

Технические показатели являются критерием для обоснования применения техники и технологии. Анализ технических показателей дает возможность находить наиболее рациональные способы и средства производства. В отдельных случаях технические показатели позволяют непосредственно судить об относительной эффективности сопоставляемых ва-

риантов технологии производства. Однако технические показатели не выражают общественных затрат труда, обусловленных применением той или иной техники и технологии, не дают полного ответа на вопрос об экономической эффективности, хотя они ее определяют.

Организационные показатели многообразны, основными из которых являются: режим работы (сменность, продолжительность рабочей недели); степень загрузки оборудования; объем производства продукции (за смену, месяц, год). На основе организационных показателей составляют планы работы участков, цехов. Однако и по ним нельзя иметь полного представления об экономичности производства, т.к. они не выражают заграт общественного труда.

Для выбора наиболее рационального варианта производства прессованной древесины, кроме анализа технических и организационных показателей необходимо проанализировать экономические показателы, которые отражают заграты труда и результаты производства. К ним относятся: производительность труда, себестоимость продукции, прибыль, рентабельность.

В то же время экономический эффект следует определять с учетом технологии, работоспособности, надежности и долговечности подшипников скольжения самосмазывающихся на основе древесины объемного деформирования (ПСС). Исходя из вышеизложенного следует, что наиболее полно экономический эффект производства и внедрения ПСС может быть определен по комплексу таких показателей как: затраты на производство единицы взаимозаменяющей продукции (подшипников); коэффициент замены с учетом массы, долговечности подшипников, потерь материала при изготовлении; время эксплуатации (или долговечность) сопряженных деталей с ПСС (валов, осей).

На основе этого предлагается методика определения экономической эффективности от внедрения ПСС с учетом коэффициента замены, которая была разработана после того, как ПСС начали широко применять в узлах трения различных машин и механизмов взамен подшипников качения и скольжения из традиционных подшипниковых антифрикционных материалов. ПСС устанавливаются в узлах трения различных транспортеров, конвейеров, сельскохозяйственных машин, строительном, железнодорожном подъемно-транспортном оборудовании и др. Они недефицитны, долговечны, надежны при эксплуатации.

Разработанная нами промышленная технология изготовления ПСС на основе древесины объемного ТПД и созданное высокопроизводительное оборудование для их выпуска позволит в оптимальные сроки при заинтересованности потребителей организовать их серийный выпуск или участок по восстановлению узлов трения с использованием ПСС.

Гомельским подшипниковым заводом (ГПЗ) освоено серийное производство малогабаритных ПСС, взаимозаменяющих подшипники качения ПК 200, 201, 202, 180503 и др. Производительность полуавтоматов 600-650 ПСС в смену. Фирмой "Элмис и К°" было освоено производство крупногабаритных ПСС.

При производстве ПСС ТПД мало ручного труда по сравнению с другими способами производства ПС (например, из прессованных секторов, прямоугольных пластин, конусообразных брусков, вкладышей торцового гнутья с поперечным прессованием, из секторов с переменной пропаркой и сушкой и др.).

Энергоемкость производства ПСС в 7-10 раз меньше по сравнению с перечисленными способами производства ПС из ДП.

Для полного расчета экономической эффективности ПСС необходимо учитывать и срок эксплуатации, долговечность как подшипников, так и рабочей поверхности вала. Сравнительные показатели по затратам на изготовление ПСС и сроку их эксплуатации с подшипниками качения и ПС из других антифрикционных материалов приведена в табл. 1. Данные взяты на ГПЗ и фирме "Элмис и Ко", производящих ПСС и отправляющих потребителю.

Таблица 1 Сравнительные данные по затратам на изготовление (или закупку) деталей и срокам их службы

Наимснование машин и механизмов	Наименование подшипинкового узла или детали	Количество вис- дренных ПСС, ШТ	Срок службы леталей (час) Затраты на закупку одного подпилника (тыс. руб)			Количество заменяе- мых леталей Затраты на ви закупку за период срока службы одного ПСС (тыс. руб)			Количество от- павших операций монтажа и демонтажа
			Бронза, чугун	пк	псс	бро нза	пк	псс	Ko Ilan
Бороны дисковые тракторные БДТ-7,0; БДТ-3,5	Кронштейн дис- ковой батареи (подвеска) 7212, 7213	500	<u>8</u> 14	160 16	350 5,1	500 70	3 48	1 5,1	3
Картофеленопалка КТН 2Б, КСТ-2	поддерживающая звездочка элеватора 180206, 80206	100	-	200 2,5	450 0,9	100	$\frac{3}{7,5}$	1 0,9	3
Агрегат комбиниро- ванный широкоза- хватный АКШ-7,2	Опорные колеса и планчатые катки 180210	115	1	250 8,8	500 1,4	115	2 17	11,4	2
Травяные жатки КСК-100	механизм криво- шипной шайбы привода ножа 1606,1209,7208	70	-	260 4,9	780 	70	3 14	1 4,3	3
Навозоразбрасыва- тели РОУ-6	Шнековые барабаны 1308, 0309	50	-	220 4,9	1100 4,32	50	5 25	4,32	3
Звеньевой рельсоукладчик	Роликоопора 409	100	-	430 5,8	780 4,52	100	$\frac{2}{12}$	4,52	2

Примечание. 409 — шарикоподшипник; 1308, 1309 — сферические однорядные подшипники; 180210, 180206, 80206 — закрытые и полузакрытые ПК; 1606 — самоустанавливающийся сдвоенный шарикоподшипник (сферический) двухрядный; 7208, 7212— роликоподшипник конический.

Как видно из таблицы затраты на изготовления ПСС и их себестоимость в 3-7 раз меньше, а срок службы их в 2-10 раз больше по сравнению с подшипниками качения и скольжения, изготовленных из других материалов.