УДК: 621.785.53

Изучение влияния химического состава чугуна на структуру отливок для получения заданной микроструктуры

Каримов А. К. Каршинский инженерно-экономический институт Республика Узбекистан

Аннотация. В статье рассматривается апробации научно- исследовательских работ в области средне специального образования для изучения материалов по подготовке формовых комплектов.

Ключевые слова: модификатор, графит, перлит, мартенсит, циркон, эвтектик, аустенит, фосфида железа, селен, сера, медь, оловом

Принятая национальная программа по подготовке кадров способствовала к коренному изменению структуру образования в Республике. Построены много сотни профессионально технические колледжи, академические лицеи, открылись филиалы институтов и университетов многих зарубежных стран.

Приняты ряд правительственных постановлений по развитию образования. При подготовке высоко квалифицированных кадров профессионально технических колледжей и высших учебных завидней требуется совместная сотрудничества.

Для учащихся профессионально технических колледжей технических направлений предусмотрено изучение таких предметов как, технология металлов, материаловедение и технология конструкционных материалов.

Для усвоения знаний по этим предметам на сегодняшний день достаточно учебных пособий и учебников. Однако для углубления освоения навыков по этим предметам необходимо организация сотрудничества колледжей и высших учебных завидней по совместному использованию материально- технической базы, учебников, учебных пособий и методических указаний по этим предметам.

Мы для апробации научно-исследовательских работ в области средне специального образования проводили совместных работ для изучения материалов по подготовке формовых комплектов. С этой целью организовали учебные занятия по усвоению навыков по подготовке форма комплектов. В проведенных занятиях представлены визуальные и видео материалы которые способствуют углублению знаний по основным свойством материалов. Для учащейся были представлены материалы по получению и исследования физика- химических свойств чугунов.

Введенные в серый чугун, компоненты, входящие в состав модификатора, проявляют себя следующим образом.

Кремний способствует выделению графита, несколько повышает механические свойства чугуна. Бор стабилизирует карбиды. Кальций и РЗМ раскисляют чугун, способствуют получению мелкозернистой структуры сплава.

Стронций уменьшает количество газовых включений в чугуне. Серый чугун, например, следующего состава, масс. %; углерод 2,9; кремний 1,2; марганец 0,6; алюминий 0,005; ванадий 0,96; сера 0,18; фосфор 0,18; хром 0,08; железо - остальное, имеет прочность 530 МПа. Обработка его модификатором позволит повысить прочность сплава на 3-5%.

В чугуне для формы комплектов исходная структура должна быть чисто перлитной, иначе для растворения пластинчатого графита необходимы более высокие температуры, ведущие к образованию трещин. Полезно легирование чугуна хромом, никелем и молибденом. Поверхность отливок должна быть свободна от включений и окислов.

Температура нагрева рекомендуется 800 - 850 для низколегированного чугуна. При более высоких температурах получается грубый мартенсит с низкой ударной вязкостью, склонный к образованию трещин при шлифовании.

В качестве модификатора для серого чугуна, применяются составы содержащие, масс. %:

- 1.кремний 70,0-80,0; кальций до 0,8; стронций 0,5-2,0; РЗМ до 0,8; железо остальное.
- 2.кремний 50,0-60,0; кальций 1,5-2,5; стронций 0,2-0,3; РЗМ 1,5-2,5; железо остальное.

Для получения низколегированного чугуна, содержащий углерод, кремний, марганец, фосфор, серу, никель, хром, титан, цирконий, железо, необходимо ввести церий и селен, при следующем соотношении компонентов, масс. %: углерод 3,0-3,2, кремний 1,9-2,4, марганец 0,03-0,07, фосфор 0,03-0,07, сера 0,03-0,07, никель 0,1-0,15, хром 0,03-0,07, титан 0,03-0,07, цирконий 0,03-0,07, церий 0,15-0,2, селец 0,1-0,15, железо - остальное.

В таблице приведены составы низколегированного чугуна с предлагаемым химические составом.

Таблица1 - Составы низколегированного чугуна с предлагаемым химические составом

Компоненты	Состав, масс.%		
Углерод	3,0	3,1	3,2
Кремний	2,4	2,2	1,9
Марганец	0,07	0,05	0,03
Фосфор	0,07	0,05	0,03
Cepa	0,07	0,05	0,03
Никель	0,15	0,13	0,1
Хром	0,03	0,05	0,07
Титан	0,03	0,05	0,07
Цирконий	0,07	0,05	0,03
Церий	0,15	0,18	0,2
Селен	0,15	0,13	0,1
Железо	остальное	остальное	остальное

В составе чугуна компоненты проявляют себя следующим образом. Комплексное введение в состав чугуна марганца, никеля, хрома, титана, селена обеспечивает ему мелкозернистое строение.

Церий раскисляет сплав. Фосфор, образуя легкоплавкую эвтектику, состоящую из аустенита и фосфида железа, улучшает жидко текучесть чугуна. Селен и сера улучшают обработку сплава резанием и способствуют повышению качества поверхности чугунных изделий.

Введение циркония способствует образованию сульфидов циркония, которые способствуют изоляции очагов межкристаллитной коррозии и повышению качества поверхности изделий.

Легирование чугуна медью и оловом, присутствующим в латуни, способствует перлитизации его структуры и положительно сказывается на механических свойствах. После обработки получается чугун перлитного класса с мелкими (25 90 мкм) включениями графита. Содержание меди в чугуне в результате легирования составляет 0,4 -1,0% а олова 0,02- 0,055, что является достаточным для форма комплектов [2].

Исходя из вышеизложенного, можно делать выводы что, изучение основных свойств материалов для приготовления формовых комплектов способствует укрепления знаний по предметам технология металлов и технология конструкционных материалов.

Список используемых источников

- 1. Чистяков Д.Г. Разработка технологии изготовления чугунных отливок стеклоформ с повышенным эксплуатационным ресурсом Нижний Новгород 2014
- 2. Туляков, Г. А. Термическая усталость в теплоэнергетике-М.: Машиностроение, 1978.-199 с. 3.Виноградов А.А. Физические основы процесса сверления труднообрабатываемых материалов твердосплавными сверлами. Киев Наука думка, 1985.