Это обусловлено тем, что копирование вершины перехода режущей и калибрующей частей не сказывается на шероховатости поверхности, убывание толщины среза по калибрующей части плавное и калибрующая часть силовой развертки выполняет зачистные функции.

ЛИТЕРАТУРА

1. Я щерицын П.И., Комаров В.Н., Миткевич С.И. Режущий инструмент: A.c. 371037 (СССР). — БИ. 1973. № 12.

УДК 621.7.06

П.С.ЧИСТОСЕРДОВ, О.В.ЦУМАРЕВ

ГРАФОАНАЛИТИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО РАСПОЛОЖЕНИЯ РЕЖУЩЕГО И ДЕФОРМИРУЮЩЕГО ЭЛЕМЕНТОВ

Максимальной точности обработки комбинированным инструментом (КИ), содержащим один режущий (РЭ) и один деформирующий (ДЭ) элементы, можно достичь при условии, что равнодействующая P_{Σ} от сил резания P_{ρ} и деформирования P_{∂} будет направлена по касательной к обрабатываемой поверхности в точке контакта с ней вершины РЭ. Это условие выразится через параметры процесса совмещенной обработки следующим образом:

$$\sin \varepsilon = \frac{P_z + P_\partial \sin \beta_\partial}{\sqrt{P_p^2 + P_\partial^2 + 2P_p P_\partial \cos (\beta_\partial - \beta_p)}} = \pm 1, \qquad (1)$$

где ε , β_p , β_0 — соответственно углы между положительным направлением оси у и равнодействующей P_{Σ} , усилием резания P_{p-} и усилием деформирования P_{∂} ; P_{Z} — тангенциальная составляющая усилия резания.

Из формулы (1) видно, что при заданных параметрах обработки на значение величины $\sin \varepsilon$ можно влиять только за счет угла β_0 , который включает в себя угол ω взаимного углового расположения РЭ и ЛЭ:

$$\beta_{\partial} = \omega + \alpha_{\partial} - 90^{\circ}, \tag{2}$$

где ω — угол между РЭ и ДЭ; $\alpha_{\mathfrak{d}}$ — угол между тангенциальной составляющей усилия деформирования и величиной $P_{\mathfrak{d}}$.

Решив выражение (1) относительно угла β_{∂} , получим возможность определять оптимальное направление действия усилия деформирования P_{∂} в зависимости от параметров обработки:

$$\beta_{\partial \text{opt}} = \pm 2 \arctan \sqrt{\frac{P_{\partial}^{2} + P_{z}^{2} - P_{p}^{2}}{2P_{p}P_{\partial}\cos\beta_{p} + P_{z}^{2} - P_{p}^{2} - P_{\partial}^{2}}} \pm \frac{1}{2P_{p}P_{\partial}\cos\beta_{p} + P_{z}^{2} - P_{p}^{2} - P_{\partial}^{2}} \pm \frac{1}{2P_{p}P_{\partial}\cos\beta_{p} + P_{z}^{2} - P_{p}^{2} - P_{\partial}^{2}} - \frac{1}{2P_{p}P_{\partial}\cos\beta_{p} + P_{z}^{2} - P_{p}^{2} - P_{\partial}^{2}}}{2P_{p}P_{\partial}\cos\beta_{p} + P_{z}^{2} - P_{p}^{2} - P_{\partial}^{2}}.$$
(3)

Вычисление по формуле (3) ручным способом очень громоздко и трудоемко и поэтому рационально лишь при использовании ЭВМ.

Ниже предлагается методика определения оптимального направления действия усилия деформирования и углового расположения режущего и деформирующего элементов графоаналитическим методом.

Для заданных условий обработки: твердости обрабатываемого материала; геометрии РЭ; радиуса ДЭ; элементов режима обработки (скорости, глубины резания, подачи, натяга); наличия и вида СОЖ и т.д. известными методами определяются усилие резания P_p , усилие деформирования P_{∂} , составляющая усилия резания P_z и угол β_p = arc sin $\frac{P_z}{P_p}$. Для дальнейших построений примем си-

стему координат уоz, у которой ось у совпадает по направлению с составляющей P_y усилия резания, а центр координат (точка 0) совпадает с вершиной РЭ.

В координатных осях уог от оси у против хода часовой стрелки отсчитывается величина угла β_p и на этом направлении в выбранном масштабе откладывается величина усилия резания P_p (точка k) (рис. 1). Из центра координат радиусом r, равным в выбранном масштабе величине усилия P_{∂} , проводится окружность . Задача построения заключается в отыскании такого направления усилия P_{∂} , при котором равнодействующая P_{Σ} совпадала бы с осью z . Для этого через произвольную точку а , лежащую на оси z, проводится прямая, параллельная направлению действия усилия P_{D} ,

т.е. отрезку Ок. На этой прямой откладывается отрезок ab, равный по величине Ок, таким образом, чтобы точки k и b лежали по разные стороны от оси z . Затем через точку b проводится прямая, параллельная оси z , до пересечения ее с окружностью радиуса г. Получим точки с и c', через которые проводятся прямые, параллельные отрезкам ab и Ок, до пересечения их с осью z (точки d и d'). У параллелограммов Окdc и Okdc' стороны Ок , Ос и Остредставляют собой в выбранном масштабе усилия резания P_p и деформирования P_0 . Диагонали Оd и Od' не что иное, как равнодействующие P_{Σ} и P_{Σ} в том же масштабе и направленные по оси z , что и требовалось получить по условию.

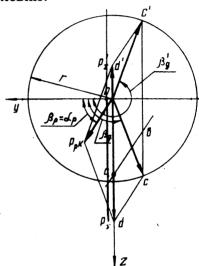


Рис. 1. Схема построения оптимального углового расположения режущего и деформирующего элементов комбинированного инструмента,

Далее необходимо измерить полученный построением угол eta_{0pt} и вычислить оптимальный угол установки ДЭ по формуле

$$\omega_{\text{opt}} = \beta_{\partial_{\text{opt}}} + \alpha_{\partial} - 90^{\circ}, \tag{4}$$

где α_{∂} = arcctg (0,03...0,12) [1].

Из построения видно, что для каждого определенного направления и значения усилия резания P_p существуют две (и только две) схемы КИ, удовлетворяющие условию (1). Выбор той или иной схемы КИ должен производиться с учетом жесткости технологической системы станка, на котором будет осуществляться обработка.

ЛИТЕРАТУРА

^{1.} Папшев Д.Д., Отделочно-упрочняющая обработка поверхностным пластическим деформированием. — М., 1978.