2. Шарий, В. Н. Получение стержневых изделий скоростным горячим выдавливанием с плакированием торцовой части: дисс... канд. техн. наук: 05.16.05 / В. Н. Шарий. – Минск, 2009. – 163 с.

3. Согришин, Ю. П. Штамповка на высокоскоростных молотах / Ю. П. Согришин, Л. Г. Гришин, В. М. Воробьев. – М.: Машиностроение, 1978. – 164 с.

4. Мещанчук, П. А. К вопросу определения истинной степени деформации и характера контактного трения при осадке стали P18 в условиях высоких скоростей нагружения. / П. А. Мещанчук, Ю. П. Согришин // Высокоскоростная объемная штамповка. – М.: Машиностроение, 1969. – С. 85–92.

5. Грудев, А. П. Теория прессования металлов / А. П. Грудев. – М.: Металлургия, 1975. – 356 с.

6. Непершин, Р. И. Расчет усилия при высокоскоростном прессовании / Р. И. Непершин, В. И. Даценко, В. А. Матьяж // Кузнечно-штамповочное производство. – 1972, – № 2. – С. 1–4.

7. Томленов, А. Д. Определение усилий процессов плоского и осесимметричного высокоскоростного прессования / А. Д. Томленов. – М.: Наука, 1970. – 340 с.

8. Костышев, В. А. Высокоскоростная штамповка [Электронный ресурс]: электрон, учеб. пособие / В. А. Костышев; Минобрнауки России, Самар, гос. аэрокосм, ун-т им. С. П. Королева (нац. исслед. ун-т). – Электрон, текстовые и граф. дан. (1,91 Мбайт). – Самара, 2011. – 65 с.

УДК 621.1.016:536.2

Экспериментальные исследования 3D-моделей составов судов, эксплуатируемых в режимах толкания и буксировки

Качанов И. В., Ключников В. А., Ленкевич С. А., Шаталов И. М., Щербакова М. К., Власов В. В. Белорусский национальный технический университет Минск, Республика Беларусь

В процессе работы проводились экспериментальные исследования 3Dмоделей барже-буксирных составов с выдачей рекомендаций по их эффективной и рациональной эксплуатации на внутренних водных путях Республики Беларусь.

Гидромеханика в настоящее время не позволяет теоретически предсказать с требуемой для практики точностью геометрию обводов корпуса судна, кинематические и динамические характеристики потока вблизи поверхности судна и его сопротивление. Для количественных оценок этих характеристик используется модельный эксперимент на созданных 3D-моделях судов.

Для определения гидродинамических характеристик существующих барже-буксирных составов в ОАО «Белсудопроект» были разработаны цифровые модели судов исследуемого барже-буксирного состава (буксир-толкач проекта № 570 и баржа проекта № 775), а также в БНТУ были разработаны модели с оптимизированными обводами корпуса баржи для улучшения технологичности конструкции носовой части корпуса без ухудшения или с повышением показателей по сопротивлению движению судна, которые в последствии были напечатаны в БНТУ на 3D-принтере марки Premier-3D N1.

В первом варианте модернизации разрабатывались носовые части корпуса баржи с сохранением габаритных размеров корпуса и отношения габаритных длины и ширины L/B = 7,3 для последующего сравнения гидродинамических характеристик с прототипом – баржа проекта 775.

Второй вариант модернизации предполагал разработку моделей с повышением грузоподъемности баржи путем увеличения габаритных размеров корпуса судна и отношением L/B = 5,43 (с учетом ограниченной осадки несамоходных судов (барж) внутреннего плавания). Причем, при проектировании учитывалась возможность использования составных частей баржи проекта 775 в качестве донора при формировании корпуса баржи нового проекта.

Далее изготовленные 3D-модели барже-буксирного состава были испытаны на сопротивление их движению в гидродинамическом лотке в гидравлической лаборатории кафедры «Гидротехническое и энергетическое строительство, водный транспорт и гидравлика».

Принимая во внимание габаритные ограничения лотка для проведения испытаний был выбран оптимальный масштаб моделей, равный 1:100. Создание цифровых моделей производилось в выбранном масштабе.

Также, разработка 3D-моделей производилась с учетом плотности материала для последующей 3D-печати с получением правильной развесовки судна, с целью обеспечения на спокойной воде посадку судна в грузу (в соответствии с масштабом) прямо и на ровный киль и исключить дифферент на его оконечности.

Исходные данные, используемые для проектирования первого варианта:

- 1) длина судна *L* = 73,68 м;
- 2) ширина судна *B* = 10 м;
- 3) высота борта H = 2,3 м;
- 4) водоизмещение в грузу *D* = 1342,6 т;

5) осадка судна в грузу T = 1,85 м.

На рис. 1 представлены варианты сборки с заменяемыми носовыми и неизменной кормовой частями для варианта № 1.

Рис. 1. Внешний вид 3D-модели варианта № 1 в сборе и сменные части носовых оконечностей

Исходные данные для проектирования второго варианта:

- 1) длина судна L = 75 м;
- 2) ширина судна *B* = 13,8 м;
- 3) высота борта *H* = 2,3 м;
- 4) водоизмещение в грузу D = 1735 т;
- 5) осадка судна в грузу T = 1,88 м.

На рис. 2 представлены варианты сборки с заменяемыми носовыми и кормовой частями для варианта № 2.

Рис. 2. Внешний вид 3D-модели варианта № 2 в сборе и сменные части носовых и кормовых оконечностей

На рис. 3 схематично представлены варианты размещения баржи в лотке относительно измерительного комплекса [1].

Рис. 3. Схемы измерения силового воздействия потока воды на модели корпуса судна и внешний вид расположения датчиков измерительного комплекса, где модель баржи соединяется с измерительной штангой посредством: *а* – гибкой сцепки (нитки); *б* – полужесткой сцепки в виде пластины, которая жестко закреплена на измерительной штанге

На схеме, представленной на рис. 3, *а* модель баржи соединяется с измерительной штангой посредством гибкой сцепки (нитки), и сама модель свободно колеблется на воде. Данная схема предназначена для экспериментальных исследований влияния изменения геометрии обводов и отношения *L/B* корпуса баржи в режиме буксировки.

На схеме, представленной на рис. 3, δ модель баржи соединяется с измерительной штангой посредством полужесткой сцепки в виде пластины, которая жестко закреплена на измерительной штанге, а с баржей соединяется посредством двух цилиндрических направляющих, установленных на корме баржи и сама модель свободно колеблется на воде в вертикальном направлении. Данная схема предназначена для экспериментальных исследований влияния изменения геометрии обводов и отношения L/B корпуса баржи в режиме толкания.

Экспериментальные исследования моделей барже-буксирных составов проводились с целью оценки сил сопротивления движению при различных вариантах конструктивных параметров корпуса баржи с дальнейшим выбором его оптимальных параметров (формы обводов носовой части и отношения *L/B*), соответствующих минимальному сопротивлению движения [2; 3].

В исследованиях, в качестве критерия подобия был выбран критерий Фруда. Для оценки изменения сил сопротивления движению были выбраны три скорости состава с шагом относительно расчетной скорости v = 2 км/ч, что позволило для проведения исследований в гидродинамическом лотке выбрать следующий диапазон скоростей движения составов в реальных условиях водотока: 6 км/ч, 8 км/ч и 10 км/ч. Исходя из выше сказанного, число Фруда, для трех выбранных значений скоростей движения состава соответственно составило: Fr₆ = 0,062, Fr₈ = 0,083, Fr₁₀ = 0,104. Тогда средние скорости обтекания потока жидкости корпуса модели в гидродинамическом лотке при моделировании будут равны: $v_6 = 0,16$ м/с, $v_8 = 0,22$ м/с, $v_{10} = 0,27$ м/с [2; 3].

Обеспечение указанных значений средней скорости потока жидкости в гидродинамическом лотке производилось за счет изменения расхода воды, подаваемой в лоток. Контроль значений средней скорости обтекания потока производился при помощи гидрометрической микровертушки ГМЦМ-1, которая устанавливалась на расстоянии, исключающем ее влияние на обтекание модели [4].

Для сравнительного анализа в режиме толкания использовались результаты экспериментальных исследований для отношения L/B = 7,3 и для отношения L/B = 5,43 с различными типами обводов. По экспериментальным данным были построены графические зависимости, представленные на рис. 4.

Рис. 4. График изменения силы сопротивления движению модели состава в режиме толкания в зависимости от формы носовой части модели баржи, отношения *L/B* и средней скорости набегающего потока

Из анализа графиков видно, что для отношения L/B = 5,43 корпуса модели баржи, сила сопротивления движению X больше при всех формах носовой части чем для модели баржи при отношении L/B = 7,3.

При рабочих скоростях набегающего потока до 0,22 м/с (эксплуатационная скорость 8 км/час) оптимальные значения демонстрируют обводы с носовой частью с лекальными обводами и килеватым носом и лекальные обводы прототипа – проект 775 при L/B = 7,3, а при L/B = 5,43 оптимальные значения демонстрируют обводы с носовой частью с плоским носом с углом подъема 22°.

Для сравнительного анализа в режиме буксировки использовались результаты экспериментальных исследований для отношения L/B = 7,3 и для отношения L/B = 5,43 с различными типами обводов. По экспериментальным данным были построены графические зависимости, представленные на рис. 5.

Рис. 5. График изменения силы сопротивления движению модели состава в режиме буксировки в зависимости от формы носовой части модели баржи, отношения *L/B* и средней скорости набегающего потока

Из анализа графиков видно, что при рабочих скоростях набегающего потока до 0,22 м/с (эксплуатационная скорость 8 км/час) оптимальные значения демонстрируют обводы с носовой частью с лекальными обводами и килеватым носом и обводы с плоским носом и углом подъема 22° при L/B = 7,3, а при L/B = 5,43 оптимальные значения демонстрируют обводы с носовой частью с лекальными обводами и килеватым носом и лекальные обводы с ложкообразным носом.

Из анализа представленных зависимостей видно, что при малых скоростях (0,16–0,22 м/с) лекальные обводы повышают эффективность движения состава даже при режиме буксировки. Однако при выходе на рабочие скорости (0,22–0,27 м/с) режим толкания эффективнее для всех типов обводов, а в режиме буксировки сопротивление движению резко возрастает.

Из зависимостей видно, что при выходе на рабочие скорости (0,22–0,27 м/с) режим толкания эффективнее порядка на 25–40 % в сравнении с буксировкой для обоих составов.

Литература

1. Программно-аппаратный комплекс измерения усилий. Паспорт. Минск: БНТУ, 2008. – 2 с.

2. Войткунский, Я. И. Сопротивление движению судов. 2-е изд., перераб. и доп. / Я. И. Войткунский. – Л.: Судостроение, 1988. – 288 с.

3. Богданов, Б. В. Проектирование толкаемых составов и составных судов / Б. В. Богданов, Г. А. Алчуджан, В. Б. Жинкин. – Л.: Судостроение, 1981. – С. 224.

4. Микровертушка гидрометрическая ГМЦМ-1 (КК 001.00.00.00. 000ПС). Руководство по эксплуатации. Свид. об утв. типа РФ RU.C.28. 001.А № 34138, 2014. – 10 с.

УДК 626.3:627.86

Оценка степени оптимизации параметров мелиоративных каналов (на примере магистральных каналов ирригационных систем Китая)

Михневич Э. И., Ли Цзэмин Белорусский национальный технический университет Минск, Республика Беларусь

Предлагается методика оценки степени оптимизации параметров эксплуатируемых каналов на основе коэффициента оптимизации, представляющего отношение скорости течения воды в русле при максимальном расходе к скорости в канале с гидравлически наивыгоднейшим сечением. Эта методика позволяет также установить диапазон оптимальных значений